
AElf
Release release/1.2.3

Apr 06, 2023

Contents

1 Welcome to AElf’s official documentation. 1

2 Development Environment 3
2.1 Install . 3
2.2 Node . 16

3 Smart Contract Development 39
3.1 Greeter Contract . 39
3.2 Smart contract deployment . 50

4 AElf Blockchain Boot Sequence 53
4.1 Start initial nodes . 53
4.2 Run full node . 53
4.3 Be a candidate node . 55
4.4 User vote election . 55
4.5 Become production node . 57
4.6 Add more production nodes . 57

5 How to join the testnet 59
5.1 Setup the database . 59
5.2 Node configuration . 60
5.3 Running a full node with Docker . 62
5.4 Running a full node with the binary release . 62
5.5 Running a full node with the source . 62
5.6 Check the node . 63
5.7 Run side-chains . 63

6 How to join the mainnet 65
6.1 Setup the database . 65
6.2 Node configuration . 66
6.3 Running a full node with Docker . 68
6.4 Running a full node with the binary release . 68
6.5 Running a full node with the source . 68
6.6 Check the node . 69
6.7 Run side-chains . 69

7 Running a side chain 71

i

7.1 Requesting the creation of a side chain . 71
7.2 Running a side chain (after its release) . 79

8 Running AElf on the cloud 83
8.1 Getting started with Google cloud . 83

9 Smart Contract Developing Demos 87
9.1 Bingo Game . 87

10 Consensus 93
10.1 Overview . 93
10.2 AEDPoS Process . 94
10.3 Irreversible Block . 96

11 Network 97
11.1 Introduction . 97
11.2 Architecture . 97
11.3 Protocol . 99

12 Address 105
12.1 Overview . 105
12.2 User Address . 105
12.3 Contract Address . 106
12.4 Contract Virtual Address . 106

13 Overview 109
13.1 Smart Contract . 109
13.2 Action & View . 109
13.3 Transaction Instance . 110
13.4 Transaction Id . 111

14 Core 113
14.1 Application pattern . 113
14.2 Design principles: . 114

15 Cross Chain 117
15.1 Introduction . 117
15.2 Overview . 118
15.3 Cross chain verification . 120
15.4 Cross chain verify . 122
15.5 Cross chain transfer . 123

16 Smart contract 127
16.1 Smart contract architecture . 127
16.2 Smart contract service . 129
16.3 Smart contract events . 130
16.4 Smart contract messages . 130
16.5 Development Requirements and Restrictions . 131

17 AELF API 1.0 139
17.1 Chain API . 139
17.2 Net API . 151

18 Chain SDK 161
18.1 aelf-sdk.js - AELF JavaScript API . 161
18.2 aelf-sdk.cs - AELF C# API . 173

ii

18.3 aelf-sdk.go - AELF Go API . 187
18.4 aelf-sdk.java - AELF Java API . 201
18.5 aelf-sdk.php - AELF PHP API . 215
18.6 aelf-sdk.py - AELF Python API . 230

19 C# reference 245
19.1 AElf.Sdk.CSharp . 245
19.2 AElf.CSharp.Core . 269

20 Smart Contract APIs 283
20.1 AElf.Contracts.Association . 283
20.2 AElf.Contracts.Referendum . 293
20.3 AElf.Contracts.Parliament . 303
20.4 AElf.Contracts.Consensus.AEDPoS . 313
20.5 AElf.Contracts.Election . 329
20.6 AElf.Contracts.Genesis . 340
20.7 AElf.Contracts.MultiToken . 350
20.8 AElf.Contracts.Profit . 373
20.9 AElf.Contracts.CrossChain . 384
20.10 AElf.Contracts.Treasury . 400
20.11 AElf.Contracts.Vote . 409
20.12 AElf.Contracts.TokenHolder . 419
20.13 AElf.Contracts.Economic . 426
20.14 AElf.Contracts.TokenConverter . 432
20.15 AElf.Contracts.Configuration . 440

21 Acs Introduction 447
21.1 ACS0 - Contract Deployment Standard . 447
21.2 ACS1 - Transaction Fee Standard . 455
21.3 ACS2 - Parallel Execution Standard . 461
21.4 ACS3 - Contract Proposal Standard . 467
21.5 ACS4 - Consensus Standard . 478
21.6 ACS5 - Contract Threshold Standard . 485
21.7 ACS6 - Random Number Provider Standard . 489
21.8 ACS7 - Contract CrossChain Standard . 490
21.9 ACS8 - Transaction Resource Token Fee Standard . 500
21.10 ACS9 - Contract profit dividend standard . 502
21.11 ACS10 - Dividend Pool Standard . 512
21.12 ACS11 - Cross Chain Consensus Standard . 522

22 Command line interface 527
22.1 Introduction to the CLI . 527
22.2 Commands . 531

23 Wallet and Block Explorer 547
23.1 Explorer . 547
23.2 iOS/Android Wallet . 547
23.3 Web Wallet . 547

24 aelf-web-extension 553
24.1 For User . 553
24.2 For Dapp Developers . 553
24.3 Data Format . 554
24.4 For Extension Developers . 561
24.5 Project Information . 561

iii

25 DevOps 563
25.1 Open source development . 563
25.2 Deployment . 563
25.3 Testing . 564
25.4 Monitoring . 564

26 QuickStart 565
26.1 Manual build & run the sources . 565

27 Developing smart contracts 569
27.1 Contracts in AElf . 569
27.2 Development . 570

iv

CHAPTER 1

Welcome to AElf’s official documentation.

This site is where we centralize our guides, documents and api references. Wether you’re a dApp developer looking to
build some awesome apps on top of AElf or simply just interested in seeing what a running node looks like, this place
is for you!

As of today the documentation is correct but still a work in progress so we invite you to frequently visit and discover
any new content.

1

AElf, Release release/1.2.3

2 Chapter 1. Welcome to AElf’s official documentation.

CHAPTER 2

Development Environment

2.1 Install

Before you get started with the tutorials, you need to install the following tools and frameworks.

For most of these dependencies, we provide command line instructions for macOS, Linux Ubuntu 18, and Windows.
In case any problems occur or if you have more complex needs, please leave a message on GitHub and we will handle
it ASAP.

2.1.1 macOS

Configure Environment

You can install and set up the development environment on macOS computers with either Intel or Apple M1 processors.
This will take 10-20 minutes.

Before You Start

Before you install and set up the development environment on a macOS device, please make sure that your computer
meets these basic requirements:

• Operating system version is 10.7 Lion or higher.

• At least a 2Ghz processor, 3Ghz recommended.

• At least 8 GB RAM, 16 GB recommended.

• No less than 10 GB of available space.

• Broadband internet connection.

Support for Apple M1

3

AElf, Release release/1.2.3

If you use a macOS computer with an Apple M1 chip, you need to install Apple Rosetta. Open the Terminal on your
computer and execute this command,Please be patient while the command is executed.

/usr/sbin/softwareupdate --install-rosetta --agree-to-license

Install Homebrew

In most cases, you should use Homebrew to install and manage packages on macOS devices. If Homebrew is not
installed on your local computer yet, you should download and install it before you continue.

To install Homebrew:

1. Open Terminal.

2. Execute this command to install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓HEAD/install.sh)"

3. Execute this command to check if Homebrew is installed:

brew --version

The following output suggests successful installation:

Homebrew 3.3.1

Homebrew/homebrew-core (git revision c6c488fbc0f; last commit 2021-10-30)

Homebrew/homebrew-cask (git revision 66bab33b26; last commit 2021-10-30)

Environment Update

Execute this command to update your environment:

brew update

You will see output like this.

You have xx outdated formula installed.
You can upgrade it with brew upgrade
or list it with brew outdated.

You can execute the following command to upgrade or skip to the installation of Git.

brew upgrade

Install Git

If you want to use our customized smart contract development environment or to run a node, you need to clone aelf’s
repo (download source code). As aelf’s code is hosted on GitHub, you need to install Git first.

1. Execute this command in Terminal:

4 Chapter 2. Development Environment

AElf, Release release/1.2.3

brew install git

2. Execute this command to check if Git is installed:

git --version

The following output suggests successful installation:

git version xx.xx.xx

Install .NET SDK

As aelf is mostly developed with .NET Core, you need to download and install .NET Core SDK (Installers - x64
recommended for macOS devices with Intel processors; Installers - Arm64 recommended for macOS devices with M1
chips).

1. Download and install .NET 6.0 which is currently used in aelf’s repo.

2. Please reopen Terminal after the installation is done.

3. Execute this command to check if .NET is installed:

dotnet --version

The following output suggests successful installation:

6.0.403

Install protoBuf

1. Execute this command to install protoBuf:

brew install protobuf

If it shows error Permission denied @ apply2files, then there is a permission issue. You can solve
it using the following command and then redo the installation with the above command:

sudo chown -R $(whoami) $(brew --prefix)/*

2. Execute this command to check if protoBuf is installed:

protoc --version

The following output suggests successful installation:

libprotoc 3.21.9

Install Redis

1. Execute this command to install Redis:

brew install redis

2.1. Install 5

https://dotnet.microsoft.com/en-us/download/dotnet/6.0

AElf, Release release/1.2.3

2. Execute this command to start a Redis instance and check if Redis is installed:

redis-server

The following output suggests Redis is installed and a Redis instance is started:

Install Nodejs

1. Execute this command to install Nodejs:

brew install node

2. Execute this command to check if Nodejs is installed:

npm --version

The following output suggests successful installation:

6.14.8

2.1.2 Linux

Configure Environment

You can install and set up the development environment on computers running 64-bit Linux. This will take 10-20
minutes.

6 Chapter 2. Development Environment

AElf, Release release/1.2.3

Before You Start

Before you install and set up the development environment on a Linux device, please make sure that your computer
meets these basic requirements:

• Ubuntu 18.

• Broadband internet connection.

Update Environment

Execute this command to update your environment, Please be patient while the command is executed:

sudo apt-get update

The following output suggests successful update:

Fetched 25.0 MB in 3s (8,574 kB/s)
Reading package lists... Done

Install Git

If you want to use our customized smart contract development environment or to run a node, you need to clone aelf’s
repo (download source code). As aelf’s code is hosted on GitHub, you need to install Git first.

1. Open the terminal.

2. Execute this command to install Git:

sudo apt-get install git -y

3. Execute this command to check if Git is installed:

git --version

The following output suggests successful installation:

git version 2.17.1

Install .NET SDK

As aelf is mostly developed with .NET Core, you need to download and install .NET Core SDK.

1. Execute the following commands to install .NET 6.0.

1. Execute this command to download .NET packages:

wget https://packages.microsoft.com/config/ubuntu/22.04/packages-microsoft-
→˓prod.deb -O packages-microsoft-prod.deb

2. Execute this command to unzip .NET packages:

sudo dpkg -i packages-microsoft-prod.deb

rm packages-microsoft-prod.deb

2.1. Install 7

AElf, Release release/1.2.3

3. Execute this command to install .NET:

sudo apt-get update && \

sudo apt-get install -y dotnet-sdk-6.0

2. Execute this command to check if .NET 6.0 is installed:

dotnet --version

The following output suggests successful installation:

6.0.403

Install protoBuf

Before you start the installation, please check the directory you use and execute the following commands to install.

1. Execute the following commands to install protoBuf.

1. Execute this command to download protoBuf packages:

curl -OL https://github.com/google/protobuf/releases/download/v21.9/protoc-21.
→˓9-linux-x86_64.zip

2. Execute this command to unzip protoBuf packages:

unzip protoc-21.9-linux-x86_64.zip -d protoc3

3. Execute these commands to install protoBuf:

sudo mv protoc3/bin/* /usr/local/bin/

sudo mv protoc3/include/* /usr/local/include/

sudo chown ${USER} /usr/local/bin/protoc

sudo chown -R ${USER} /usr/local/include/google

If it shows error Permission denied @ apply2files, then there is a permission issue. You can
solve it using the following command and then redo the installation with the above commands:

sudo chown -R $(whoami) $(brew --prefix)/*

2. Execute this command to check if protoBuf is installed:

protoc --version

The following output suggests successful installation:

libprotoc 3.21.9

Install Redis

1. Execute this command to install Redis:

8 Chapter 2. Development Environment

AElf, Release release/1.2.3

sudo apt-get install redis -y

2. Execute this command to start a Redis instance and check if Redis is installed:

redis-server

The following output suggests Redis is installed and a Redis instance is started:

Server initialized
Ready to accept connections

You can open a new terminal and use redis-cli to start Redis command line. The command below can be used to clear
Redis cache (be careful to use it):

flushall

Install Nodejs

1. Execute these commands to install Nodejs:

curl -fsSL https://deb.nodesource.com/setup_14.x | sudo -E bash -

sudo apt-get install -y nodejs

2. Execute this command to check if Nodejs is installed:

npm --version

The following output suggests successful installation:

6.14.8

2.1.3 Windows

Configure Environment

You can install and set up the development environment on computers running Windows 10 or higher. This will take
10-20 minutes.

Before You Start

Before you install and set up the development environment on a Windows device, please make sure that your computer
meets these basic requirements:

• Operating system version is Windows 10 or higher.

• Broadband internet connection.

2.1. Install 9

AElf, Release release/1.2.3

Install Chocolatey (Recommended)

Chocolatey is an open-source package manager for Windows software that makes installation simpler, like Homebrew
for Linux and macOS. If you don’t want to install it, please use the provided download links for each software to
complete their installation.

1. Open cmd or PowerShell as administrator (Press Win + x).

2. Execute the following commands in order and enter y to install Chocolatey, Please be patient while the command
is executed:

Set-ExecutionPolicy AllSigned

Set-ExecutionPolicy Bypass -Scope Process

Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.
→˓WebClient).DownloadString('https://chocolatey.org/install.ps1'))

Set-ExecutionPolicy RemoteSigned

3. Execute this command to check if Chocolatey is installed:

choco

The following output suggests successful installation:

Chocolatey vx.x.x

If it showsThe term 'choco' is not recognized as the name of a cmdlet, function,
script file, or operable program, then there is a permission issue with PowerShell. To solve it:

• Right-click the computer icon and select Properties.

• Click Advanced in System Properties and select Environment Variables on the bottom right.

• Check if the ChocolateyInstall variable is in System variables, and its default value is the Chocolatey installa-
tion path C:\Program Files\Chocolatey. If you don’t find it, click New System Variable to manually
add it.

Install Git

If you want to use our customized smart contract development environment or to run a node, you need to clone aelf’s
repo (download source code). As aelf’s code is hosted on GitHub, you need to install Git first.

1. You can download Git through this link or execute this command in cmd or PowerShell:

choco install git -y

2. Execute this command to check if Git is installed:

git --version

The following output suggests successful installation:

git version xx.xx.xx

If it shows The term 'git' is not recognized as the name of a cmdlet, function,
script file, or operable program, you can:

10 Chapter 2. Development Environment

AElf, Release release/1.2.3

• Right-click the computer icon and select Properties.

• Click Advanced in System Properties and select Environment Variables on the bottom right.

• Check if the Git variable is in Path in System variables, and its default value is the Git installation path
C:\Program Files\git. If you don’t find it, click New System Variable to manually add it.

Install .NET SDK

As aelf is mostly developed with .NET Core, you need to download and install .NET Core SDK (Installers - x64
recommended for Windows devices).

1. Download and install .NET 6.0 which is currently used in aelf’s repo.

2. Please reopen cmd or PowerShell after the installation is done.

3. Execute this command to check if .NET is installed:

dotnet --version

The following output suggests successful installation:

6.0.403

Install protoBuf

1. You can download protoBuf through this link or execute this command in cmd or PowerShell:

choco install protoc --version=3.11.4 -y

choco install unzip -y

2. Execute this command to check if protoBuf is installed:

protoc --version

The following output suggests successful installation:

libprotoc 3.21.9

Install Redis

1. You can download Redis through MicroSoftArchive-Redis or execute this command in cmd or PowerShell:

choco install redis-64 -y

2. Execute this command to start a Redis instance and check if Redis is installed:

memurai

The following output suggests Redis is installed and a Redis instance is started:

2.1. Install 11

https://dotnet.microsoft.com/en-us/download/dotnet/6.0

AElf, Release release/1.2.3

Install Nodejs

1. You can download Nodejs through Node.js or execute this command in cmd or PowerShell:

choco install nodejs -y

2. Execute this command to check if Nodejs is installed:

npm --version

The following output suggests successful installation:

6.14.8

If it shows The term ‘npm’ is not recognized as the name of a cmdlet, function, script file, or operable program, you
can:

• Right-click the computer icon and select Properties.

• Click Advanced in System Properties and select Environment Variables on the bottom right.

• Check if the Nodejs variable is in Path in System variables, and its default value is the Nodejs installation path
C:\Program Files\nodejs. If you don’t find it, click New System Variable to manually add it.

2.1.4 Codespaces

A codespace is an instant development environment that’s hosted in the cloud. It provides users with general-purpose
programming languages and tooling through containers. You can install and set up the development environment in

12 Chapter 2. Development Environment

AElf, Release release/1.2.3

Codespaces. This will take 10-20 minutes. Please be patient while the command is executed.

Basic Environment Configurations

1. Visit AElfProject / AElf via a browser.

2. Click the green Code button on the top right.

3. Select Codespaces and click +.

Then a new tab will be opened that shows the Codespaces interface. After the page is loaded, you will see:

• The left side displays all the content in this repo.

• The upper right side is where you can write code or view text.

• The lower right side is a terminal where you can build and run code (If the terminal doesn’t open by default, you
can click the hamburger menu on the top left and select Terminal -> New Terminal, or press control + shift + ‘
on your keyboard).

Currently, Codespaces have completed the configuration for part of the environments, yet there are some you need
to manually configure.

At the time of writing, Codespaces have done the configuration for git and nodejs. You can type the following
commands to check their versions:

git version 2.25.1
git --version

8.19.2
npm --version

Update Environment

Execute this command to update your environment:

2.1. Install 13

https://github.com/AElfProject/AElf

AElf, Release release/1.2.3

sudo apt-get update

The following output suggests successful update:

Fetched 25.0 MB in 3s (8,574 kB/s)
Reading package lists... Done

Install .NET SDK

.NET SDK 7.0 is used in this repo. Hence, you need to reinstall v6.0 otherwise there will be building issues.

1. Execute this command to check if v7.0 is used:

7.0.100
dotnet --version

If there is v7.0, execute this command to delete it:

sudo rm -rf /home/codespace/.dotnet/*

2. Execute this command to reinstall v6.0:

wget https://packages.microsoft.com/config/ubuntu/22.04/packages-microsoft-prod.
→˓deb -O packages-microsoft-prod.deb

sudo dpkg -i packages-microsoft-prod.deb

rm packages-microsoft-prod.deb

sudo apt-get update && \

sudo apt-get install -y dotnet-sdk-6.0

14 Chapter 2. Development Environment

AElf, Release release/1.2.3

3. Restart bash after the installation and execute this command to check if v6.0 is installed:

6.0.403
dotnet --version

The following output suggests successful installation:

6.0.403

Install protoBuf

1. Execute this command to install protoBuf:

curl -OL https://github.com/google/protobuf/releases/download/v21.9/protoc-21.9-
→˓linux-x86_64.zip
unzip protoc-21.9-linux-x86_64.zip -d protoc3

sudo mv protoc3/bin/* /usr/local/bin/

sudo mv protoc3/include/* /usr/local/include/

sudo chown ${USER} /usr/local/bin/protoc

sudo chown -R ${USER} /usr/local/include/google

2. Execute this command to check if protoBuf is installed:

protoc --version

The following output suggests successful installation:

libprotoc 3.21.9

Install Redis

1. Execute this command to install Redis:

sudo apt-get install redis -y

2. Execute this command to start a Redis instance and check if Redis is installed:

redis-server

The following output suggests Redis is installed and a Redis instance is started:

Server initialized
Ready to accept connections

What’s Next

If you have already installed the tools and frameworks above, you can skip this step. For info about contract deploy-
ment and nodes running, please read the following:

2.1. Install 15

AElf, Release release/1.2.3

Smart contract development

Smart contract deployment

Node

2.2 Node

If you already know something about aelf blockchain and want to get deeply involved, you can proceed with the
following and run your own node.

If you are a beginner or you want to deploy contracts onto aelf, please click here to learn more.

Why Should I Run a Node

• Full node: A full node stores the complete blockchain data and you can view all the info. It also enables you to
deploy DApps and contracts on aelf or interact with its contracts.

• BP: To run a full node that produces blocks, the node needs to participate in the election. If ranked among the
top 2N+1 (N=8 in the first year and increases by 1 every year. Currently the threshold is 17), it can get involved
in the governance of aelf.

Next, we will show you how to deploy nodes.

2.2.1 Single Node

macOS

Follow this doc to run an aelf single node on a macOS device and this will take around 20 minutes to complete.

Install aelf-command

Execute this command to install aelf-command:

npm i aelf-command -g

The following output suggests successful installation:

+ aelf-command@0.1.44
added 314 packages from 208 contributors in 25.958s

Besides, you might see warnings like this due to differences in system configuration. Please ignore it.

If it shows error Permission denied @ apply2files, then there is a permission issue. You can solve it using
the following command and then redo the installation with the above command:

16 Chapter 2. Development Environment

https://docs.aelf.io/en/latest/getting-started/smart-contract-development/index.html
https://docs.aelf.io/en/latest/getting-started/smart-contract-development/index.html
../../getting-started/development-environment/node.html
https://docs.aelf.io/en/latest/getting-started/smart-contract-development/index.html

AElf, Release release/1.2.3

sudo chmod 755 /usr/local/lib/node_modules

Clone and Build aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

mkdir ~/Desktop/Code

2. Execute this command to change the directory:

cd ~/Desktop/Code

3. Execute this command to clone aelf’s code:

git clone https://github.com/AElfProject/AElf.git

4. Execute this command to change to aelf’s directory:

cd AElf

5. Execute this command to restore aelf’s files:

dotnet restore AElf.All.sln

6. Execute this command to build aelf’s code (this will take several minutes):

dotnet build AElf.All.sln

The following output suggests successful building:

xx Warning(s)
0 Error(s)

Time Elapsed 00:15:59.77

If contract_csharp_plugin fails to be called, it may be because you don’t have Rosetta 2 installed. Please execute this
command and then retry:

/usr/sbin/softwareupdate --install-rosetta --agree-to-license

Create an aelf Account

Execute this command:

aelf-command create

An aelf account will be automatically created and you will see info like:

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
→˓buzz hip mad surround recall
AElf [Info]: Private Key :
→˓4bf625afea60e21aa5afcab5ea682b3dfb614941245698632d72a09ae13***** (continues on next page)

2.2. Node 17

AElf, Release release/1.2.3

(continued from previous page)

AElf [Info]: Public Key :
→˓04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
AElf [Info]: Address : 21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****

You will then be asked whether you want the account data stored as a json file. Enter y to confirm and the file will be
stored in /Users/{username}/.local/share/aelf/keys/.

Please make sure you remember the account data or the json file’s location.

You will be required to set a password (referred to as * here):

Enter a password: ********
Confirm password: ********

For the sake of convenience, you are encouraged to keep this Terminal on the account info interface and open another
Terminal to continue the following.

Run a Single Node

A single node runs aelf blockchain on one node. It is usually used to test the execution of contracts only.

1. Execute this command to start a Redis instance (skip this step if redis-server is already started):

redis-server

2. Open another Terminal and execute this command to change to aelf’s directory:

cd ~/Desktop/Code/AElf

3. Execute this command to change to the AElf.Launcher directory:

cd src/AElf.Launcher

4. Modify the appsettings.json file: for novices, you can go to desktop -> Code -> AElf -> src ->
AElf.Launcher and open the appsettings.json file in the editor to modify it (or, if you are familiar with
Linux commands, you can run the vim appsettings.json command and modify the file in the command-
line interface).

Find the account data you just created using aelf-command create.

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
→˓buzz hip mad surround recall
AElf [Info]: Private Key :
→˓4bf625afea60e21aa5afcab5ea682b3dfb614941245698632d72a09ae13*****
AElf [Info]: Public Key :
→˓04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
AElf [Info]: Address : 21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****

Fill in the NodeAccount and NodeAccountPassword under Account using the Address and password
you set in appsettings.json:

"Account": {
"NodeAccount": "",
"NodeAccountPassword": ""

}

18 Chapter 2. Development Environment

AElf, Release release/1.2.3

It may look like this when you complete it:

"Account": {
"NodeAccount": "21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****",
"NodeAccountPassword": "********"

},

Fill in the InitialMineList under Consensus using Public Key:

"Consensus": {
"InitialMinerList": [],
"MiningInterval": 4000,
"StartTimestamp": 0,
"PeriodSeconds": 604800,
"MinerIncreaseInterval": 31536000

}

It may look like this when you complete it (make sure the key is bracketed):

"Consensus": {
"InitialMinerList": [

→˓"04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
→˓"],

"MiningInterval": 4000,
"StartTimestamp": 0,
"PeriodSeconds": 604800,
"MinerIncreaseInterval": 31536000

}

If the IP and port for Redis have been changed, you can modify them under ConnectionStrings in
appsettings.json (skip this step if they are not changed):

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

}

5. Execute dotnet run:

sudo dotnet run

The following output suggests successful execution:

2022-11-29 16:07:44,554 [.NET ThreadPool Worker] INFO AElf.Kernel.
→˓SmartContractExecution.Application.BlockExecutionResultProcessingService - Attach
→˓blocks to best chain, best chain hash:
→˓"f396756945d9bb883f81827ab36fcb0533d3c66f7062269700e49b74895*****", height: 177

If you want to check the node’s block height and other block info, you can visit this page where you can access the
API docs and interact with this single node.

To shut the node down, please use control + c on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis-cli flushall

2.2. Node 19

http://localhost:8000/swagger/index.html

AElf, Release release/1.2.3

Linux and Codespaces

Follow this doc to run an aelf single node in Linux and Codespaces and this will take around 20 minutes to complete.

Install aelf-command

Execute this command to install aelf-command:

npm i aelf-command -g

The following output suggests successful installation:

+ aelf-command@0.1.44
added 314 packages from 208 contributors in 25.958s

You might see warnings like this due to differences in system configuration. Please ignore it:

Clone and Build aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

mkdir ~/Desktop/Code

2. Execute this command to change the directory:

cd ~/Desktop/Code

3. Execute this command to clone aelf’s code:

git clone https://github.com/AElfProject/AElf.git

4. Execute this command to change to aelf’s directory:

cd AElf

5. Execute this command to restore aelf’s files:

dotnet restore AElf.All.sln

6. Execute this command to build aelf’s code (this will take several minutes):

dotnet build AElf.All.sln

The following output suggests successful building:

20 Chapter 2. Development Environment

AElf, Release release/1.2.3

xx Warning(s)
0 Error(s)

Time Elapsed 00:15:59.77

Create an aelf Account

Execute this command:

aelf-command create

An aelf account will be automatically created and you will see info like:

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
→˓buzz hip mad surround recall
AElf [Info]: Private Key :
→˓4bf625afea60e21aa5afcab5ea682b3dfb614941245698632d72a09ae13*****
AElf [Info]: Public Key :
→˓04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
AElf [Info]: Address : 21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****

You will then be asked whether you want the account data stored as a json file. Enter y to confirm and the file will be
stored in /root/.local/share/aelf/keys/.

Please make sure you remember the account data or the json file’s location.

You will be required to set a password (referred to as * here):

Enter a password: ********
Confirm password: ********

For the sake of convenience, you are encouraged to keep this Terminal on the account info interface and open another
Terminal to continue the following.

Run a Single Node

A single node runs aelf blockchain on one node. It is usually used to test the execution of contracts only.

1. Execute this command to start a Redis instance (skip this step if redis-server is already started):

redis-server

2. Open another Terminal and execute this command to change to aelf’s directory:

cd ~/Desktop/Code/AElf

3. Execute this command to change to the AElf.Launcher directory:

cd src/AElf.Launcher

4. Modify the appsettings.json file: for novices, you can go to desktop -> Code -> AElf -> src ->
AElf.Launcher and open the appsettings.json file in the editor to modify it (or, if you are familiar with
Linux commands, you can run the vim appsettings.json command and modify the file in the command-
line interface).

2.2. Node 21

AElf, Release release/1.2.3

Find the account data you just created using aelf-command create.

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
→˓buzz hip mad surround recall
AElf [Info]: Private Key :
→˓4bf625afea60e21aa5afcab5ea682b3dfb614941245698632d72a09ae13*****
AElf [Info]: Public Key :
→˓04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
AElf [Info]: Address : 21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****

Fill in the NodeAccount and NodeAccountPassword under Account using the Address and password
you set in appsettings.json:

"Account": {
"NodeAccount": "",
"NodeAccountPassword": ""

}

It may look like this when you complete it:

"Account": {
"NodeAccount": "21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****",
"NodeAccountPassword": "********"

},

Fill in the InitialMineList under Consensus using Public Key:

"Consensus": {
"InitialMinerList": [],
"MiningInterval": 4000,
"StartTimestamp": 0,
"PeriodSeconds": 604800,
"MinerIncreaseInterval": 31536000

}

It may look like this when you complete it (make sure the key is bracketed):

"Consensus": {
"InitialMinerList": [

→˓"04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
→˓"],

"MiningInterval": 4000,
"StartTimestamp": 0,
"PeriodSeconds": 604800,
"MinerIncreaseInterval": 31536000

}

If the IP and port for Redis have been changed, you can modify them under ConnectionStrings in
appsettings.json (skip this step if they are not changed):

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

}

Save the changes and keep them in the AElf.Launcher directory.

5. Execute dotnet run:

22 Chapter 2. Development Environment

AElf, Release release/1.2.3

sudo dotnet run

The following output suggests successful execution:

2022-11-29 16:07:44,554 [.NET ThreadPool Worker] INFO AElf.Kernel.
→˓SmartContractExecution.Application.BlockExecutionResultProcessingService - Attach
→˓blocks to best chain, best chain hash:
→˓"f396756945d9bb883f81827ab36fcb0533d3c66f7062269700e49b74895*****", height: 177

If you want to check the node’s block height and other block info, you can visit this page where you can access the
API docs and interact with this single node.

To shut the node down, please use control + c on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis-cli flushall

Windows

Follow this doc to run an aelf single node on a Windows device and this will take around 20 minutes to complete.

Install aelf-command

Execute npm command to install aelf-command:

npm i aelf-command -g

The following output suggests successful installation:

+ aelf-command@0.1.44
added 314 packages from 208 contributors in 25.958s

You might see warnings like this due to differences in system configuration. Please ignore it:

Clone and Build aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command in cmd or PowerShell to create a directory:

mkdir C:/Users/${username}/Desktop/Code

2. Execute this command to change the directory:

2.2. Node 23

http://localhost:8000/swagger/index.html

AElf, Release release/1.2.3

cd C:/Users/${username}/Desktop/Code

3. Execute this command to clone aelf’s code:

git clone https://github.com/AElfProject/AElf.git

4. Execute this command to change to aelf’s directory:

cd AElf

5. Execute this command to restore aelf’s files:

dotnet restore AElf.All.sln

6. Execute this command to build aelf’s code (this will take several minutes):

dotnet build AElf.All.sln

The following output suggests successful building:

xx Warning(s)
0 Error(s)

Time Elapsed 00:15:59.77

Create an aelf Account

Execute this command:

aelf-command create

An aelf account will be automatically created and you will see info like:

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
→˓buzz hip mad surround recall
AElf [Info]: Private Key :
→˓4bf625afea60e21aa5afcab5ea682b3dfb614941245698632d72a09ae13*****
AElf [Info]: Public Key :
→˓04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
AElf [Info]: Address : 21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****

You will then be asked whether you want the account data stored as a json file. Enter y to confirm and the file will be
stored locally.

Please make sure you remember the account data or the json file’s location.

You will be required to set a password (referred to as * here):

Enter a password: ********
Confirm password: ********

For the sake of convenience, you are encouraged to keep this cmd or PowerShell on the account info interface and
open another cmd or PowerShell to continue the following.

24 Chapter 2. Development Environment

AElf, Release release/1.2.3

Run a Single Node

A single node runs aelf blockchain on one node. It is usually used to test the execution of contracts only.

1. Execute this command to start a Redis instance (skip this step if redis-server is already started):

redis-server

2. Open another cmd or PowerShell and execute this command to change to aelf’s directory:

cd C:/Users/${username}/Desktop/Code

3. Execute this command to change to the AElf.Launcher directory:

cd src/AElf.Launcher

4. Modify the appsettings.json file: for novices, you can go to desktop -> Code -> AElf -> src ->
AElf.Launcher and open the appsettings.json file in the editor to modify it (or you can run the start
appsettings.json command and open the appsettings.json file in the editor).

Find the account data you just created using aelf-command create.

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
→˓buzz hip mad surround recall
AElf [Info]: Private Key :
→˓4bf625afea60e21aa5afcab5ea682b3dfb614941245698632d72a09ae13*****
AElf [Info]: Public Key :
→˓04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
AElf [Info]: Address : 21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****

Fill in the NodeAccount and NodeAccountPassword under Account using the Address and password
you set in appsettings.json:

"Account": {
"NodeAccount": "",
"NodeAccountPassword": ""

}

It may look like this when you complete it:

"Account": {
"NodeAccount": "21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****",
"NodeAccountPassword": "********"

},

Fill in the InitialMineList under Consensus using Public Key:

"Consensus": {
"InitialMinerList": [],
"MiningInterval": 4000,
"StartTimestamp": 0,
"PeriodSeconds": 604800,
"MinerIncreaseInterval": 31536000

}

It may look like this when you complete it (make sure the key is bracketed):

2.2. Node 25

AElf, Release release/1.2.3

"Consensus": {
"InitialMinerList": [

→˓"04f9bb56a9eca921bd494e677307f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32ce5e63205930dabdc0b9f13fc80c1f4e31760618d182*****
→˓"],

"MiningInterval": 4000,
"StartTimestamp": 0,
"PeriodSeconds": 604800,
"MinerIncreaseInterval": 31536000

}

If the IP and port for Redis have been changed, you can modify them under ConnectionStrings in
appsettings.json (skip this step if they are not changed):

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

}

Save the changes and keep them in the AElf.Launcher directory.

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

}

5. Execute dotnet run:

sudo dotnet run

The following output suggests successful execution:

2022-11-29 16:07:44,554 [.NET ThreadPool Worker] INFO AElf.Kernel.
→˓SmartContractExecution.Application.BlockExecutionResultProcessingService - Attach
→˓blocks to best chain, best chain hash:
→˓"f396756945d9bb883f81827ab36fcb0533d3c66f7062269700e49b74895*****", height: 177

If you want to check the node’s block height and other block info, you can visit this page where you can access the
API docs and interact with this single node.

To shut the node down, please use control + c on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis-cli flushall

2.2.2 Multi Nodes

macOS

Follow this doc to run aelf multi-nodes on a macOS device and this will take around 20 minutes to complete.

Run Multi-Nodes

This tutorial will guide you through how to run three nodes.

26 Chapter 2. Development Environment

http://localhost:8000/swagger/index.html

AElf, Release release/1.2.3

Publish aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

mkdir ~/Desktop/Out

2. Execute this command to change the directory:

cd ~/Desktop/Code/AElf

3. Execute this command to publish aelf’s code (this will take several minutes):

sudo dotnet publish AElf.All.sln /p:NoBuild=false --configuration Debug -o ~/Desktop/
→˓Out

Configure Three Nodes

1. Execute this command three times to create three accounts: A, B, and C.

aelf-command create

Please make sure you remember their Public Keys and Addresses.

Create a directory for node configuration. This tutorial uses a directory on the desktop for reference.

2. Execute this command to create a directory:

mkdir ~/Desktop/Config

3. Execute this command to change the directory:

cd ~/Desktop/Config

4. Execute this command to create three new directories: bp1, bp2, and bp3 in the “Config” directory and create
their respective “keys” directories.

mkdir -p ~/Desktop/Config/bp1/keys

mkdir -p ~/Desktop/Config/bp2/keys

mkdir -p ~/Desktop/Config/bp3/keys

5. Copy account A, B, and C from /Users/{username}/.local/share/aelf/keys/ to bp1/keys,
bp2/keys, and bp3/keys respectively (If you can’t find .local, you can use cmd + shift + g in Finder to
designate the directories).

6. Execute this command to create appsettings.json files and appsettings.MainChain.MainNet.
json files in directories bp1, bp2, and bp3:

cd ~/Desktop/Config/bp1;touch appsettings.json;touch appsettings.MainChain.MainNet.
→˓json

cd ~/Desktop/Config/bp2;touch appsettings.json;touch appsettings.MainChain.MainNet.
→˓json

(continues on next page)

2.2. Node 27

AElf, Release release/1.2.3

(continued from previous page)

cd ~/Desktop/Config/bp3;touch appsettings.json;touch appsettings.MainChain.MainNet.
→˓json

For appsettings.json:

{
"Logging": {
"LogLevel": {

"Default": "Debug"
}

},
"AllowedHosts": "*",
"CorsOrigins": "*",
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

},
"ChainId": "AELF",
"IsMainChain" : true,
"NetType": "MainNet",
"Account": {
"NodeAccount": "21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****",
"NodeAccountPassword": "********"

},
"Network": {
"BootNodes": [],
"ListeningPort": 7001,
"NetAllowed": "",
"NetWhitelist": []

},
"Kestrel": {
"EndPoints": {

"Http": {
"Url": "http://*:8001/"

}
}

},
"Runner": {
"BlackList": [],
"WhiteList": []

},
"DeployServiceUrl": "",
"Consensus": {
"InitialMinerList" : [

→˓"04884d9563b3b67a589e2b9b47794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e2303d631683acaed34acf87526dd489e3805211cba710d956718*****
→˓",

→˓"045670526219d73154847b1e9367be9af293601793c9f7e34a96336650c9c1104a4aac9aaee960af00e775dcd88048698629891b0617ab605e646ae78961c*****
→˓",

→˓"046a5913eae5fee3da9ee33604119f025a0ad45575dfed1257eff5da2c24e629845b1e1a131c5da8751971d545cc5c03826b3eb2b7109b5141679a1927338*****
→˓"

],
"MiningInterval" : 4000,
"StartTimestamp": 0,

(continues on next page)

28 Chapter 2. Development Environment

AElf, Release release/1.2.3

(continued from previous page)

"PeriodSeconds": 120
},
"BackgroundJobWorker":{
"JobPollPeriod": 1

}
}

For appsettings.MainChain.MainNet.json:

{
"ChainId": "AELF",
"TokenInitial": {

"Symbol": "ELF",
"Name": "elf token",
"TotalSupply": 1000000000,
"Decimals": 2,
"IsBurnable": true,
"DividendPoolRatio": 0.2

},
"ElectionInitial": {

"LockForElection": 100000,
"TimeEachTerm": 2,
"BaseTimeUnit": 2,
"MinimumLockTime": 1,
"MaximumLockTime": 2000

}
}

7. Modify the appsettings.json files in directory bp1, bp2, and bp3 as instructed:

1. Change the numbers following db= in BlockchainDb and StateDb under ConnectionStrings:

1. bp1: redis://localhost:6379?db=1

2. bp2: redis://localhost:6379?db=2

3. bp3: redis://localhost:6379?db=3

2. Replace NodeAccount and NodeAccountPassword under Account with Address and
password in account A, B, and C.

3. Fill in all three InitialMineList under Consensus using account A, B, and C’s Public Key,
keys separated with,:

"Consensus": {
"InitialMinerList" : [

→˓"04884d9563b3b67a589e2b9b47794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e2303d631683acaed34acf87526dd489e3805211cba710d956718*****
→˓",

→˓"045670526219d73154847b1e9367be9af293601793c9f7e34a96336650c9c1104a4aac9aaee960af00e775dcd88048698629891b0617ab605e646ae78961c*****
→˓",

→˓"046a5913eae5fee3da9ee33604119f025a0ad45575dfed1257eff5da2c24e629845b1e1a131c5da8751971d545cc5c03826b3eb2b7109b5141679a1927338*****
→˓"

],

4. In bp1, BootNodes is blank and ListeningPort is 7001. In bp2, BootNodes is 127.0.0.
1:7001 (make sure to bracket it), and ListeningPort is 7002. In bp3, BootNodes are 127.

2.2. Node 29

AElf, Release release/1.2.3

0.0.1:7001 and 127.0.0.1:7002 (make sure to bracket them and separate them with ,) and
ListeningPort is 7003.

5. Change the port numbers in Kestrel-EndPoints-Http-Url to 8001, 8002, and 8003 respectively
(to ensure there is no conflict of ports).

8. Execute this command to start a Redis instance:

redis-server

Run Three Nodes

In this tutorial, code is published in ~/Desktop/Out and the three nodes are configured in ~/Desktop/Config.

Use redis-server to start a Redis instance.

We recommend you open three new Terminals to monitor the nodes’ operation.

Execute this command to launch node 1:

cd ~/Desktop/Config/bp1;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 2:

cd ~/Desktop/Config/bp2;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 3:

cd ~/Desktop/Config/bp3;dotnet ~/Desktop/Out/AElf.Launcher.dll

The three nodes run successfully if all Terminals show the following output:

2022-11-30 20:51:04,163 [.NET ThreadPool Worker] INFO AElf.Kernel.Miner.Application.
→˓MiningService - Generated block: { id:
→˓"12f519e1601dd9f755a186b1370fd12696a8c080ea04465dadc*********2463", height: 25 },
→˓previous: 5308de83c3585dbb4a097a9187a3b2f9b8584db4889d428484ca3e4df09e2860,
→˓executed transactions: 2, not executed transactions 0

To shut the nodes down, please use control + c on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis-cli flushall

Linux and Codespaces

Follow this doc to run aelf multi-nodes in Linux and Codespaces and this will take around 20 minutes to complete.

Run Multi-Nodes

This tutorial will guide you through how to run three nodes.

30 Chapter 2. Development Environment

AElf, Release release/1.2.3

Publish aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

mkdir ~/Desktop/Code

2. Execute this command to change the directory:

cd ~/Desktop/Code/AElf

3. Execute this command to publish aelf’s code (this will take several minutes):

sudo dotnet publish AElf.All.sln /p:NoBuild=false --configuration Debug -o ~/Desktop/
→˓Out

Configure Three Nodes

1. Execute this command three times to create three accounts: A, B, and C.

aelf-command create

Please make sure you remember their Public Keys and Addresses.

Create a directory for node configuration. This tutorial uses a directory on the desktop for reference.

2. Execute this command to create a directory:

mkdir ~/Desktop/Config

3. Execute this command to change the directory:

cd ~/Desktop/Config

4. Execute this command to create three new directories: bp1, bp2, and bp3 in the “Config” directory and create
their respective “keys” directories.

mkdir -p ~/Desktop/Config/bp1/keys

mkdir -p ~/Desktop/Config/bp2/keys

mkdir -p ~/Desktop/Config/bp3/keys

5. Copy account A, B, and C from /root/.local/share/aelf/keys/ to bp1/keys, bp2/keys, and
bp3/keys respectively (If you can’t find .local, you can use cmd + shift + g in Finder to designate the
directories).

6. Execute this command to create appsettings.json files and appsettings.MainChain.MainNet.
json files in directories bp1, bp2, and bp3:

cd ~/Desktop/Config/bp1;touch appsettings.json;touch appsettings.MainChain.MainNet.
→˓json

cd ~/Desktop/Config/bp2;touch appsettings.json;touch appsettings.MainChain.MainNet.
→˓json

(continues on next page)

2.2. Node 31

AElf, Release release/1.2.3

(continued from previous page)

cd ~/Desktop/Config/bp3;touch appsettings.json;touch appsettings.MainChain.MainNet.
→˓json

Copy the following templates to each file:

For appsettings.json:

{
"Logging": {
"LogLevel": {

"Default": "Debug"
}

},
"AllowedHosts": "*",
"CorsOrigins": "*",
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

},
"ChainId": "AELF",
"IsMainChain" : true,
"NetType": "MainNet",
"Account": {
"NodeAccount": "21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****",
"NodeAccountPassword": "********"

},
"Network": {
"BootNodes": [],
"ListeningPort": 7001,
"NetAllowed": "",
"NetWhitelist": []

},
"Kestrel": {
"EndPoints": {

"Http": {
"Url": "http://*:8001/"

}
}

},
"Runner": {
"BlackList": [],
"WhiteList": []

},
"DeployServiceUrl": "",
"Consensus": {
"InitialMinerList" : [

→˓"04884d9563b3b67a589e2b9b47794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e2303d631683acaed34acf87526dd489e3805211cba710d956718*****
→˓",

→˓"045670526219d73154847b1e9367be9af293601793c9f7e34a96336650c9c1104a4aac9aaee960af00e775dcd88048698629891b0617ab605e646ae78961c*****
→˓",

→˓"046a5913eae5fee3da9ee33604119f025a0ad45575dfed1257eff5da2c24e629845b1e1a131c5da8751971d545cc5c03826b3eb2b7109b5141679a1927338*****
→˓"

],

(continues on next page)

32 Chapter 2. Development Environment

AElf, Release release/1.2.3

(continued from previous page)

"MiningInterval" : 4000,
"StartTimestamp": 0,
"PeriodSeconds": 120

},
"BackgroundJobWorker":{
"JobPollPeriod": 1

}
}

For appsettings.MainChain.MainNet.json:

{
"ChainId": "AELF",
"TokenInitial": {

"Symbol": "ELF",
"Name": "elf token",
"TotalSupply": 1000000000,
"Decimals": 2,
"IsBurnable": true,
"DividendPoolRatio": 0.2

},
"ElectionInitial": {

"LockForElection": 100000,
"TimeEachTerm": 2,
"BaseTimeUnit": 2,
"MinimumLockTime": 1,
"MaximumLockTime": 2000

}
}

7. Modify the appsettings.json files in directory bp1, bp2, and bp3 as instructed:

1. Change the numbers following db= in BlockchainDb and StateDb under ConnectionStrings:

1. bp1: redis://localhost:6379?db=1

2. bp2: redis://localhost:6379?db=2

3. bp3: redis://localhost:6379?db=3

2. Replace NodeAccount and NodeAccountPassword under Account with Address and
password in account A, B, and C.

3. Fill in all three InitialMineList under Consensus using account A, B, and C’s Public Key,
keys separated with,:

"Consensus": {
"InitialMinerList" : [

→˓"04884d9563b3b67a589e2b9b47794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e2303d631683acaed34acf87526dd489e3805211cba710d956718*****
→˓",

→˓"045670526219d73154847b1e9367be9af293601793c9f7e34a96336650c9c1104a4aac9aaee960af00e775dcd88048698629891b0617ab605e646ae78961c*****
→˓",

→˓"046a5913eae5fee3da9ee33604119f025a0ad45575dfed1257eff5da2c24e629845b1e1a131c5da8751971d545cc5c03826b3eb2b7109b5141679a1927338*****
→˓"
],

2.2. Node 33

AElf, Release release/1.2.3

4. In bp1, BootNodes is blank and ListeningPort is 7001. In bp2, BootNodes is 127.0.0.
1:7001 (make sure to bracket it), and ListeningPort is 7002. In bp3, BootNodes are 127.
0.0.1:7001 and 127.0.0.1:7002 (make sure to bracket them and separate them with ,) and
ListeningPort is 7003.

5. Change the port numbers in Kestrel-EndPoints-Http-Url to 8001, 8002, and 8003 respectively
(to ensure there is no conflict of ports).

8. Execute this command to start a Redis instance:

redis-server

Run Three Nodes

In this tutorial, code is published in ~/Desktop/Out and the three nodes are configured in ~/Desktop/Config.

Use redis-server to start a Redis instance.

We recommend you open three new Terminals to monitor the nodes’ operation.

Execute this command to launch node 1:

cd ~/Desktop/Config/bp1;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 2:

cd ~/Desktop/Config/bp2;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 3:

cd ~/Desktop/Config/bp3;dotnet ~/Desktop/Out/AElf.Launcher.dll

The three nodes run successfully if all Terminals show the following output:

2022-11-30 20:51:04,163 [.NET ThreadPool Worker] INFO AElf.Kernel.Miner.Application.
→˓MiningService - Generated block: { id:
→˓"12f519e1601dd9f755a186b1370fd12696a8c080ea04465dadc*********2463", height: 25 },
→˓previous: 5308de83c3585dbb4a097a9187a3b2f9b8584db4889d428484ca3e4df09e2860,
→˓executed transactions: 2, not executed transactions 0

To shut the nodes down, please use control + c on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis-cli flushall

Windows

Follow this doc to run aelf multi-nodes on a Windows device and this will take around 20 minutes to complete.

Run Multi-Nodes

This tutorial will guide you through how to run three nodes.

34 Chapter 2. Development Environment

AElf, Release release/1.2.3

Publish aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

mkdir C:/Users/${username}/Desktop/Out

2. Execute this command to change the directory:

cd C:/Users/${username}/Desktop/Code/AElf

3. Execute this command to publish aelf’s code (this will take several minutes):

Note: Be sure to replace ${username} here with your user name.

sudo dotnet publish AElf.All.sln /p:NoBuild=false --configuration Debug -o C:/Users/$
→˓{username}/Desktop/Out

Configure Three Nodes

1. Execute this command three times to create three accounts: A, B, and C.

aelf-command create

Please make sure you remember their Public Keys and Addresses.

Create a directory for node configuration. This tutorial uses a directory on the desktop for reference.

2. Execute this command to create a directory:

mkdir C:/Users/${username}/Desktop/Config

3. Execute this command to change the directory:

cd C:/Users/${username}/Desktop/Config

4. Execute this command to create three new directories: bp1, bp2, and bp3 in the “Config” directory and create
their respective “keys” directories.

mkdir -p C:/Users/${username}/Desktop/Config/bp1/keys

mkdir -p C:/Users/${username}/Desktop/Config/bp2/keys

mkdir -p C:/Users/${username}/Desktop/Config/bp3/keys

5. Copy account A, B, and C from their json files to bp1/keys, bp2/keys, and bp3/keys respectively.

6. Execute this command to create appsettings.json files and appsettings.MainChain.MainNet.
json files in directories bp1, bp2, and bp3:

cd C:/Users/${username}/Desktop/Config/bp1;touch appsettings.json;touch appsettings.
→˓MainChain.MainNet.json

cd C:/Users/${username}/Desktop/Config/bp2;touch appsettings.json;touch appsettings.
→˓MainChain.MainNet.json

(continues on next page)

2.2. Node 35

AElf, Release release/1.2.3

(continued from previous page)

cd C:/Users/${username}/Desktop/Config/bp3;touch appsettings.json;touch appsettings.
→˓MainChain.MainNet.json

Copy the following templates to each file:

For appsettings.json:

{
"Logging": {
"LogLevel": {

"Default": "Debug"
}

},
"AllowedHosts": "*",
"CorsOrigins": "*",
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

},
"ChainId": "AELF",
"IsMainChain" : true,
"NetType": "MainNet",
"Account": {
"NodeAccount": "21qciGwcaowwBttKMjMk86AW6WajhcodSHytY1vCyZb7p*****",
"NodeAccountPassword": "********"

},
"Network": {
"BootNodes": [],
"ListeningPort": 7001,
"NetAllowed": "",
"NetWhitelist": []

},
"Kestrel": {
"EndPoints": {

"Http": {
"Url": "http://*:8001/"

}
}

},
"Runner": {
"BlackList": [],
"WhiteList": []

},
"DeployServiceUrl": "",
"Consensus": {
"InitialMinerList" : [

→˓"04884d9563b3b67a589e2b9b47794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e2303d631683acaed34acf87526dd489e3805211cba710d956718*****
→˓",

→˓"045670526219d73154847b1e9367be9af293601793c9f7e34a96336650c9c1104a4aac9aaee960af00e775dcd88048698629891b0617ab605e646ae78961c*****
→˓",

→˓"046a5913eae5fee3da9ee33604119f025a0ad45575dfed1257eff5da2c24e629845b1e1a131c5da8751971d545cc5c03826b3eb2b7109b5141679a1927338*****
→˓"

],

(continues on next page)

36 Chapter 2. Development Environment

AElf, Release release/1.2.3

(continued from previous page)

"MiningInterval" : 4000,
"StartTimestamp": 0,
"PeriodSeconds": 120

},
"BackgroundJobWorker":{
"JobPollPeriod": 1

}
}

For appsettings.MainChain.MainNet.json:

{
"ChainId": "AELF",
"TokenInitial": {

"Symbol": "ELF",
"Name": "elf token",
"TotalSupply": 1000000000,
"Decimals": 2,
"IsBurnable": true,
"DividendPoolRatio": 0.2

},
"ElectionInitial": {

"LockForElection": 100000,
"TimeEachTerm": 2,
"BaseTimeUnit": 2,
"MinimumLockTime": 1,
"MaximumLockTime": 2000

}
}

7. Modify the appsettings.json files in directory bp1, bp2, and bp3 as instructed:

1. Change the numbers following db= in BlockchainDb and StateDb under ConnectionStrings:

1. bp1: redis://localhost:6379?db=1

2. bp2: redis://localhost:6379?db=2

3. bp3: redis://localhost:6379?db=3

2. Replace NodeAccount and NodeAccountPassword under Account with Address and
password in account A, B, and C.

3. Fill in all three InitialMineList under Consensus using account A, B, and C’s Public Key,
keys separated with,:

"Consensus": {
"InitialMinerList" : [

→˓"04884d9563b3b67a589e2b9b47794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e2303d631683acaed34acf87526dd489e3805211cba710d956718*****
→˓",

→˓"045670526219d73154847b1e9367be9af293601793c9f7e34a96336650c9c1104a4aac9aaee960af00e775dcd88048698629891b0617ab605e646ae78961c*****
→˓",

→˓"046a5913eae5fee3da9ee33604119f025a0ad45575dfed1257eff5da2c24e629845b1e1a131c5da8751971d545cc5c03826b3eb2b7109b5141679a1927338*****
→˓"

],

2.2. Node 37

AElf, Release release/1.2.3

4. In bp1, BootNodes is blank and ListeningPort is 7001. In bp2, BootNodes is 127.0.0.
1:7001 (make sure to bracket it), and ListeningPort is 7002. In bp3, BootNodes are 127.
0.0.1:7001 and 127.0.0.1:7002 (make sure to bracket them and separate them with ,) and
ListeningPort is 7003.

5. Change the port numbers in Kestrel-EndPoints-Http-Url to 8001, 8002, and 8003 respectively
(to ensure there is no conflict of ports).

8. Execute this command to start a Redis instance:

redis-server

Run Three Nodes

In this tutorial, code is published in C:/Users/${username}/Desktop/Out and the three nodes are configured
in C:/Users/${username}/Desktop/Config.

Use redis-server to start a Redis instance.

We recommend you open three new terminals to monitor the nodes’ operation.

Execute this command to launch node 1:

cd ~/Desktop/Config/bp1;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 2:

cd ~/Desktop/Config/bp2;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 3:

cd ~/Desktop/Config/bp3;dotnet ~/Desktop/Out/AElf.Launcher.dll

The three nodes run successfully if all Terminals show the following output:

2022-11-30 20:51:04,163 [.NET ThreadPool Worker] INFO AElf.Kernel.Miner.Application.
→˓MiningService - Generated block: { id:
→˓"12f519e1601dd9f755a186b1370fd12696a8c080ea04465dadc*********2463", height: 25 },
→˓previous: 5308de83c3585dbb4a097a9187a3b2f9b8584db4889d428484ca3e4df09e2860,
→˓executed transactions: 2, not executed transactions 0

To shut the nodes down, please use control + c on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis-cli flushall

38 Chapter 2. Development Environment

CHAPTER 3

Smart Contract Development

3.1 Greeter Contract

3.1.1 Smart contract implementation

This article will guide you through how to use AElf Boilerplate to implement a smart contract. It takes an example
on the Greeter contract that’s already included in Boilerplate. Based on the concepts this article presents, you’ll be
able to create your own basic contract.

Greeter contract

The following content will walk you through the basics of writing a smart contract; this process contains essentially
four steps:

• create the project: generate the contract template using AElf Boilerplate’s code generator.

• define the contract and its types: the methods and types needed in your contract should be defined in a protobuf
file, following typical protobuf syntax.

• generate the code: build the project to generate the base contract code from the proto definition.

• extend the generated code: implement the logic of the contract methods.

The Greeter contract is a very simple contract that exposes a Greet method that simply logs to the console and
returns a “Hello World” message and a more sophisticated GreetTo method that records every greeting it receives
and returns the greeting message as well as the time of the greeting.

This tutorial shows you how to develop a smart contract with the C# contract SDK; you can find you more here.
Boilerplate will automatically add the reference to the SDK.

Create the project

With AElf Boilerplate’s code generator, you can easily and quickly set up a contract project. See here for details.

39

https://aelf-boilerplate-docs.readthedocs.io/en/latest/usage/index.html

AElf, Release release/1.2.3

Defining the contract

After creating the contract project, you can define the methods and types of your contract. AElf defines smart contracts
as services that are implemented using gRPC and Protobuf. The definition contains no logic; at build time the proto
file is used to generate C# classes that will be used to implement the logic and state of the contract.

We recommend putting the contract’s definition in Boilerplate’s protobuf folder so that it can easily be in-
cluded in the build/generation process and also that you name the contract with the following syntax con-
tract_name_contract.proto:

.
Boilerplate

chain
protobuf

aelf
options.proto // contract options
core.proto // core blockchain types

greeter_contract.proto
another_contract.proto
token_contract.proto // system contracts
acs0.proto // AElf contract standard
...

The “protobuf” folder already contains a certain amount of contract definitions, including tutorial examples, system
contracts. You’ll also notice it contains AElf Contract Standard definitions that are also defined the same way as
contracts. Lastly, it also contains options.proto and core.proto that contain fundamental types for developing smart
contracts, more on this later.

Best practices:

• place your contract definition in Boilerplate’s protobuf folder.

• name your contract with contractname_contract.proto, all lower case.

Now let’s take a look a the Greeter contract’s definition:

// protobuf/greeter_contract.proto

syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) {

option (aelf.is_view) = true;
}

(continues on next page)

40 Chapter 3. Smart Contract Development

AElf, Release release/1.2.3

(continued from previous page)

}

message GreetToOutput {
string name = 1;
google.protobuf.Timestamp greet_time = 2;

}

message GreetedList {
repeated string value = 1;

}

Above is the full definition of the contract; it is mainly composed of three parts:

• imports: the dependencies of your contract.

• the service definition: the methods of your contract.

• types: some custom defined types used by the contract.

Let’s have a deeper look at the three different parts.

Syntax, imports and namespace

syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

The first line specifies the syntax that this protobuf file uses, we recommend you always use proto3 for your contracts.
Next, you’ll notice that this contract specifies some imports, let’s analyze them briefly:

• aelf/options.proto : contracts can use AElf specific options; this file contains the definitions. One example is
the is_view options that we will use later.

• empty.proto, timestamp.proto and wrappers.proto : these are proto files imported directly from protobuf’s
library. They are useful for defining things like an empty return value, time, and wrappers around some common
types such as string.

The last line specifies an option that determines the target namespace of the generated code. Here the generated code
will be in the AElf.Contracts.Greeter namespace.

The service definition

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

(continues on next page)

3.1. Greeter Contract 41

AElf, Release release/1.2.3

(continued from previous page)

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) {

option (aelf.is_view) = true;
}

}

The first line here uses the aelf.csharp_state option to specify the name (full name) of the state class. This
means that the state of the contract should be defined in the GreeterContractState class under the AElf.
Contracts.Greeter namespace.

Next, two action methods are defined: Greet and GreetTo. A contract method is defined by three things: the
method name, the input argument(s) type(s) and the output type. For example, Greet requires that the input
type is google.protobuf.Empty that is used to specify that this method takes no arguments and the output type
will be a google.protobuf.StringValue is a traditional string. As you can see with the GreetTo method, you can use
custom types as input and output of contract methods.

The service also defines a view method, that is, a method used only to query the contracts state, and that has no side
effect on the state. For example, the definition of GetGreetedList uses the aelf.is_view option to make it a view
method.

Best practice:

• use google.protobuf.Empty to specify that a method takes no arguments (import google/protobuf/
empty.proto).

• use google.protobuf.StringValue to use a string (import google/protobuf/wrappers.proto).

• use the aelf.is_view option to create a view method (import aelf/options.proto).

• use the aelf.csharp_state to specify the namespace of your contracts state (import aelf/options.proto).

Custom types

message GreetToOutput {
string name = 1;
google.protobuf.Timestamp greet_time = 2;

}

message GreetedList {
repeated string value = 1;

}

The protobuf file also includes the definition of two custom types. The GreetToOutput is the type returned by the
GreetTo method and GreetedList is the return type of the GetGreetedList view method. You’ll notice the
repeated keyword the GreetedList message. This is protobuf syntax to represent a collection.

Best practice:

• use google.protobuf.Timestamp to represent a point in time (import google/protobuf/timestamp.
proto).

• use repeated to represent a collection of items of the same type.

Extend the generated code

After defining and generating the code from the definition, the contract author extends the generated code to implement
the logic of his contract. Two files are presented here:

42 Chapter 3. Smart Contract Development

AElf, Release release/1.2.3

• GreeterContract: the actual implementation of the logic, it inherits from the contract base generated by proto-
buf.

• GreeterContractState: the state class that contains properties for reading and writing the state. This class
inherits the ContractState class from the C# SDK.

// contract/AElf.Contracts.GreeterContract/GreeterContract.cs

using Google.Protobuf.WellKnownTypes;

namespace AElf.Contracts.Greeter
{

public class GreeterContract : GreeterContractContainer.GreeterContractBase
{

public override StringValue Greet(Empty input)
{

Context.LogDebug(() => "Hello World!");
return new StringValue {Value = "Hello World!"};

}

public override GreetToOutput GreetTo(StringValue input)
{

// Should not greet to empty string or white space.
Assert(!string.IsNullOrWhiteSpace(input.Value), "Invalid name.");

// State.GreetedList.Value is null if not initialized.
var greetList = State.GreetedList.Value ?? new GreetedList();

// Add input.Value to State.GreetedList.Value if it's new to this list.
if (!greetList.Value.Contains(input.Value))
{

greetList.Value.Add(input.Value);
}

// Update State.GreetedList.Value by setting it's value directly.
State.GreetedList.Value = greetList;

Context.LogDebug(() => "Hello {0}!", input.Value);

return new GreetToOutput
{

GreetTime = Context.CurrentBlockTime,
Name = input.Value.Trim()

};
}

public override GreetedList GetGreetedList(Empty input)
{

return State.GreetedList.Value ?? new GreetedList();
}

}
}

// contract/AElf.Contracts.GreeterContract/GreeterContractState.cs

using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter
(continues on next page)

3.1. Greeter Contract 43

AElf, Release release/1.2.3

(continued from previous page)

{
public class GreeterContractState : ContractState
{

public SingletonState<GreetedList> GreetedList { get; set; }
}

}

Let’s briefly explain what is happening in the GreetTo method:

Asserting

Assert(!string.IsNullOrWhiteSpace(input.Value), "Invalid name.");

When writing a smart contract, it is often useful (and recommended) to validate the input. AElf smart contracts can
use the Assert method defined in the base smart contract class to implement this pattern. For example, here, the
method validates that the input string is null or composed only of white spaces. If the condition is false, this line will
abort the execution of the transaction.

Accessing and saving state

var greetList = State.GreetedList.Value ?? new GreetedList();
...
State.GreetedList.Value = greetList;

From within the contract methods, you can easily access the contracts state through the State property of the con-
tract. Here the state property refers to the GreeterContractState class in which is defined the GreetedList
collection. The second effectively updates the state (this is needed; otherwise, the method would have no effect on the
state).

Note that because the GreetedList type is wrapped in a SingletonState you have to use the Value property
to access the data (more on this later).

Logging

Context.LogDebug(() => "Hello {0}!", input.Value);

It is also possible to log from smart contract methods. The above example will log “Hello” and the value of the input.
It also prints useful information like the ID of the transaction. It will print in the console log if you launch the node
with DEBUG mode. This is only for debug use and has no impacts on state at all.

More on state

As a reminder, here is the state definition in the contract (we specified the name of the class and a type) as well as the
custom type GreetedList:

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";
...

}

(continues on next page)

44 Chapter 3. Smart Contract Development

AElf, Release release/1.2.3

(continued from previous page)

// ...

message GreetedList {
repeated string value = 1;

}

The aelf.csharp_state option allows the contract author to specify in which namespace and class name the
state will be. To implement a state class, you need to inherit from the ContractState class that is contained in the
C# SDK (notice the using statement here below).

Below is the state class that we saw previously:

using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter
{

public class GreeterContractState : ContractState
{

public SingletonState<GreetedList> GreetedList { get; set; }
}

}

The state uses the custom GreetedList type, which was generated from the Protobuf definition at build time and
contained exactly one property: a singleton state of type GreetedList.

The SingletonState is part of the C# SDK and is used to represent exactly one value. The value can be of any
type, including collection types. Here we only wanted our contract to store one list (here a list of strings).

Note that you have to wrap your state types in a type like SingletonState (others are also available like
MappedState) because behind the scene, they implement the state read and write operations.

3.1.2 Unit testing a contract

The previous article exposed how to add the proto definition and implement the logic of your contract. This article
expands on the previous and will show you how to test your contract.

AElf Contract TestKit is a testing framework specifically used to test AElf smart contracts. With this framework, you
can simulate the execution of a transaction by constructing a stub of a smart contract and using the methods provided
by the Stub instance (corresponding to the contract’s Action methods) and query (corresponding to the View methods
of the contract), and then get the transaction execution results in the test case.

Test project

AElf Boilerplate’s code generator has automatically generated test project for you, you just need to add your test
cases.

As you can see, tests are placed in the test folder. Each test folder usually contains a project file (.csproj) and at least
four .cs files. The project file is a basic C# xUnit test project file, to which we’ve added some references.

.
chain

contract
protobuf
src

(continues on next page)

3.1. Greeter Contract 45

AElf, Release release/1.2.3

(continued from previous page)

test
AElf.Contracts.GreeterContract.Tests

AElf.Contracts.GreeterContract.Tests.csproj // xUnit test project
GreeterContractTestBase.cs
GreeterContractTestModule.cs
GreeterContractTests.cs
GreeterContractInitializationProvider.cs

...

Test your contract

Now for the easy part, the test class only needs to inherit from the test base. After this you can go ahead and create the
test cases you need.

GreeterContractTest.cs

public class GreeterContractTests : GreeterContractTestBase
{

// declare the method as a xUnit test method
[Fact]
public async Task GreetTest()
{

// Use the contracts stub to call the 'Greet' method and get a reference to
// the transaction result.
var txResult = await GetGreeterContractStub(_defaultKeyPair).Greet.

→˓SendAsync(new Empty());

// check that the transaction was mined
txResult.TransactionResult.Status.ShouldBe(TransactionResultStatus.Mined);

// parse the result (return from the contract)
var text = new StringValue();
text.MergeFrom(txResult.TransactionResult.ReturnValue);

// check that the value is correct
text.Value.ShouldBe("Hello World!");

}

// ...
}

From the previous code snippet you can note several things:

• the test case is a classic xUnit test class.

• you can use the contracts stub to call the contract and check returns.

Feel free to have a look at the full test class in the Boilerplate source code.

3.1.3 Run the node

Next you can run Boilerplate (and it’s an internal node). This will automatically deploy the Greeter contract. Open a
terminal in the root Boilerplate directory and navigate to the launcher project:

46 Chapter 3. Smart Contract Development

AElf, Release release/1.2.3

cd chain/src/AElf.Boilerplate.GreeterContract.Launcher

Next, run the node:

dotnet run AElf.Boilerplate.GreeterContract.Launcher.csproj

From here, you should see the build and eventually the nodes logs.

Boilerplate will deploy your contract when the node starts. You can call the Boilerplate node API:

aelf-command get-chain-status
? Enter the the URI of an AElf node: http://127.0.0.1:1235
XXX Succeed
{

"ChainId": "AELF",
"Branches": {
"6032b553ec9a5c81713cf8410f426dfc1ca0f43e64d56f527fc7a9c60b90e694": 3073

},
"NotLinkedBlocks": {},
"LongestChainHeight": 3073,
"LongestChainHash":

→˓"6032b553ec9a5c81713cf8410f426dfc1ca0f43e64d56f527fc7a9c60b90e694",
"GenesisBlockHash":

→˓"c3bddca1909ebf37b95be7f26b990e07916790913e0f48da1a831b3c777d59ff",
"GenesisContractAddress": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"LastIrreversibleBlockHash":

→˓"85fee024d156de3be665c296c567423026e0e3369ad7dc5ee81dbb2a15dfe2f2",
"LastIrreversibleBlockHeight": 3042,
"BestChainHash": "6032b553ec9a5c81713cf8410f426dfc1ca0f43e64d56f527fc7a9c60b90e694",
"BestChainHeight": 3073

}

This enables further testing of the contract, including testing it from a dApp.

3.1.4 Front end

This tutorial will show you how to develop a front-end app (JavaScript in our case) that will demonstrate how to
interact with a contract that was developed with Boilerplate.

At the top-level Boilerplate contains two folders:

• chain : used for developing the contracts.

• web : used for developing the front-end.

The web folder already contains some projects that can serve as examples. This tutorial presents a front-end for the
Greeter contract shown in the previous tutorials.

Run the front-end

After you run Boilerplate, open another terminal at the repo’s root and navigate to the greeter project:

cd web/greeter

From here, you can install and run the Greeter’s front end:

3.1. Greeter Contract 47

AElf, Release release/1.2.3

npm i
npm start

And a page will be opened by webpack in your default browser.

Front-end code

The code is straightforward, it uses aelf-sdk + webpack. You can check out more here.

Warning: be careful, this code is in no way production-ready and is for demonstration purposes only.

It demonstrates the following capabilities of the js sdk:

• getting the chain status.

• getting a contract object.

• calling a contract method.

• calling a view method.

Getting the chain status

The following code snippet shows how to call the nodes API to get the chains status:

aelf.chain.getChainStatus()
.then(res => {

if (!res) {
throw new Error('Error occurred when getting chain status');

}
// use the chain status

})
.catch(err => {

console.log(err);
});

For more information about the chain status API : GET /api/blockChain/chainStatus.

As we will see next, the chain status is very useful for retrieving the genesis contract.

getting a contract object

The following code snippet shows how to get a contract object with the js-sdk:

async function getContract(name, walletInstance) {

// if not loaded, load the genesis
if (!genesisContract) {

const chainStatus = await aelf.chain.getChainStatus();
if (!chainStatus) {

throw new Error('Error occurred when getting chain status');
}
genesisContract = await aelf.chain.contractAt(chainStatus.

→˓GenesisContractAddress, walletInstance);
}

(continues on next page)

48 Chapter 3. Smart Contract Development

https://github.com/AElfProject/aelf-sdk.js

AElf, Release release/1.2.3

(continued from previous page)

// if the contract is not already loaded, get it by name.
if (!contract[name]) {

const address = await genesisContract.GetContractAddressByName.
→˓call(sha256(name));

contract = {
...contract,
[name]: await aelf.chain.contractAt(address, walletInstance)

};
}
return contract[name];

}

As seen above, the following steps will enable you to build a contract object:

• use getChainStatus to get the genesis contract’s address.

• use contractAt to build an instance of the genesis contract.

• use the genesis contract to get the address of the greeter contract with the GetContractAddressByName
method.

• with the address use contractAt again to build a greeter contract object.

Once you have a reference to the greeter contract, you can use it to call the methods.

calling a contract method

The following snippet shows how to send a transaction to the contract:

greetToButton.onclick = () => {

getContract('AElf.ContractNames.Greeter', wallet)
.then(greeterContract => greeterContract.GreetTo({

value: "SomeName"
}))
.then(tx => pollMining(tx.TransactionId))
.then(ret => {

greetToResponse.innerHTML = ret.ReadableReturnValue;
})
.catch(err => {

console.log(err);
});

};

Here the getContract retrieves the greeter contract instance. On the instance it calls GreetTo that will send a trans-
action to the node. The pollMining method is a helper method that will wait for the transaction to be mined. After
mined the transaction results, ReadableReturnValue will be used to see the result.

calling a view method

The following snippet shows how to call a view method on the contract:

getGreeted.onclick = () => {

getContract('AElf.ContractNames.Greeter', wallet)

(continues on next page)

3.1. Greeter Contract 49

AElf, Release release/1.2.3

(continued from previous page)

.then(greeterContract => greeterContract.GetGreetedList.call())

.then(ret => {
greeted.innerHTML = JSON.stringify(ret, null, 2);

})
.catch(err => {

console.log(err);
});

};

Here the getContract retrieves the greeter contract instance. On the instance, it calls GetGreetedList with “.call”
appended to it, which will indicate a read-only execution (no broadcasted transaction).

3.2 Smart contract deployment

After the contract has been compiled, the user must register this contract with the blockchain. Generally, to deploy a
contract, there must be transactions sent to Smart contract zero, which is one of AElf’s genesis contracts. The node
will then broadcast these transactions, and it will eventually get included in a block when the block gets executed the
smart contract will be deployed.

For contract deployment, what matters is the ContractDeploymentAuthorityRequired option in the
ContractOptions for this network. It is determined since the launch of the chain.

• if ContractDeploymentAuthorityRequired is false, anyone can directly deploy contract with trans-
action

• Only account with specific authority is permitted to deploy contract if
ContractDeploymentAuthorityRequired is true

This part will introduce contract deployment pipeline for different chain type on AElf mainnet/testnet/customnet net-
work.

3.2.1 Authority check

ContractDeploymentAuthorityRequired is false

Anyone can directly deploy contract with transaction if ContractDeploymentAuthorityRequired is false.
It is usually set as false especially when it is for contract unit test or custom network.

rpc DeploySmartContract (ContractDeploymentInput) returns (aelf.Address) {
}

message ContractDeploymentInput {
sint32 category = 1;
bytes code = 2;

}

The return value of this transaction indicates the address of the deployed contract. Note that you should specific 0 as
category for c# contract and provide your contract dll bytes.

ContractDeploymentAuthorityRequired is true

ContractDeploymentAuthorityRequired is always true when it comes to public net-
works(Mainnet/Testnet). And contract pipelines are distinguished for different chain types. But for sure, no

50 Chapter 3. Smart Contract Development

AElf, Release release/1.2.3

one can directly deploy.

For public network, no matter it is mainnet or testnet, things are going more complex. No one can directly deploy on
the chain but few authorities have the permission to propose.

• Main Chain: only current miners have the permission to propose contract

• Exclusive Side Chain: only side chain creator are allowed to propose contract

• Shared Side Chain: anyone can propose contract

And contract proposing steps are provided as below

rpc ProposeNewContract (ContractDeploymentInput) returns (aelf.Hash) {
}
message ContractDeploymentInput {

sint32 category = 1;
bytes code = 2;

}

message ContractProposed
{

option (aelf.is_event) = true;
aelf.Hash proposed_contract_input_hash = 1;

}

Event ContractProposed will be fired containing proposed_contract_input_hash and this will also
trigger the first proposal for one parliament organization, which is specified as contract deployment controller since
the beginning of the chain. This proposal would be expired in 24 hours. Once the proposal can be released (refer to
Parliament contract for detail), proposer should send transaction to

rpc ReleaseApprovedContract (ReleaseContractInput) returns (google.protobuf.
→˓Empty) {

}
message ReleaseContractInput {

aelf.Hash proposal_id = 1;
aelf.Hash proposed_contract_input_hash = 2;

}

This will trigger the second proposal for one parliament organization, which is specified as contract code-check con-
troller since the beginning of the chain. This proposal would be expired in 10 min. Once the proposal can be released,
proposer should send transaction to

rpc ReleaseCodeCheckedContract (ReleaseContractInput) returns (google.protobuf.
→˓Empty) {

}
message ReleaseContractInput {

aelf.Hash proposal_id = 1;
aelf.Hash proposed_contract_input_hash = 2;

}

message ContractDeployed
{

option (aelf.is_event) = true;
aelf.Address author = 1 [(aelf.is_indexed) = true];
aelf.Hash code_hash = 2 [(aelf.is_indexed) = true];
aelf.Address address = 3;
int32 version = 4;
aelf.Hash Name = 5;

}

3.2. Smart contract deployment 51

AElf, Release release/1.2.3

Finally, the contract would be deployed. Event ContractDeployed containing new contract address will be fired
and it is available in TransactionResult.Logs.

3.2.2 Use aelf-command send or aelf-command proposal to deploy

If you set ContractDeploymentAuthorityRequired: true in appsetting.json, please use aelf-command
proposal.

$ aelf-command send <GenesisContractAddress> DeploySmartContract # aelf-command send
$ aelf-command send <GenesisContractAddress> ProposeNewContract # aelf-command
→˓proposal
Follow the instructions

• You must input contract method parameters in the prompting way, note that you can input a relative or absolute
path of contract file to pass a file to aelf-command, aelf-command will read the file content and encode it as a
base64 string.

• After call ProposeNewContract, you need to wait for the organization members to approve your
proposal and you can release your proposal by calling ReleaseApprovedContract and
ReleaseCodeCheckedContract in this order.

The deploy command(This command has been deprecated)

The deploy command on the cli will help you deploy the contract:

aelf-command deploy <category> <code>

The deploy command will create and send the transaction to the nodes RPC. Here the code is the path to the compiled
code. This will be embedded in the transaction as a parameter to the DeploySmartContract method on smart contract
zero. The command will return the ID of the transaction that was sent by the command. You will see in the next
section how to use it.

verify the result

When the deployment transaction gets included in a block, the contract should be deployed. To check this, you can use
the transaction ID returned by the deploy command. When the status of the transaction becomes mined: "Status":
"Mined", then the contract is ready to be called.

The ReadableReturnValue field indicates the address of the deployed contract. You can use this address to call the
contract methods.

52 Chapter 3. Smart Contract Development

CHAPTER 4

AElf Blockchain Boot Sequence

This section mainly explains how the AElf Blockchain starts from the initial nodes, and gradually replaces the initial
nodes with true production nodes through elections, thus completing the complete process of AElf Blockchain startup.

4.1 Start initial nodes

We need to start at least one or more initial nodes to start the AElf Blockchain, and 1-5 initial nodes are recommended.

In the Getting Started section, we described the steps to start multiple nodes, you can follow the Running multi-nodes
with Docker to complete the initial nodes startup (this section also takes the example of starting three initial nodes).

Since the default period of election time is 604800 seconds(7 days), if you want to see the result of the election
more quickly, modify the configuration file appsettings.json before starting the boot nodes to set the PeriodSeconds to
smaller:

{
"Consensus": {
"PeriodSeconds": 604800

},
}

4.2 Run full node

4.2.1 Create an account for the full node:

aelf-command create

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : major clap hurdle hammer push slogan ranch quantum
→˓reunion hope enroll repeat

(continues on next page)

53

AElf, Release release/1.2.3

(continued from previous page)

AElf [Info]: Private Key :
→˓2229945cf294431183fd1d8101e27b17a1a590d3a1f7f2b9299850b24262ed8a
AElf [Info]: Public Key :
→˓04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
AElf [Info]: Address : Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC

4.2.2 Start full node:

The startup steps for the full node are similar to the initial node startup, but the configuration file section notes that the
InitialMinerList needs to be consistent with the initial node:

{
"InitialMinerList" : [

→˓"0499d3bb14337961c4d338b9729f46b20de8a49ed38e260a5c19a18da569462b44b820e206df8e848185dac6c139f05392c268effe915c147cde422e69514cc927
→˓",

→˓"048397dfd9e1035fdd7260329d9492d88824f42917c156aef93fd7c2e3ab73b636f482b8ceb5cb435c556bfa067445a86e6f5c3b44ae6853c7f3dd7052609ed40b
→˓",

→˓"041cc962a51e7bbdd829a8855eca8a03fda708fdf31969251321cb31edadd564bf3c6e7ab31b4c1f49f0f206be81dbe68a75c70b293bf9d04d867ee5e415d3bf8a
→˓"
],

}

4.2.3 Full node started successfully:

By checking the current node state, it can be seen that the full node is synchronizing, and the BestChainHeight and
the LastIrreversibleBlockHeight are growing up. After catching up with the height of the initial node, the subsequent
steps can be carried out.

aelf-command get-chain-status

{
"ChainId": "AELF",
"Branches": {
"fb749177c2f43db8c7d73ea050240b9f870c40584f044b13e7ec146c460b0eff": 2449

},
"NotLinkedBlocks": {},
"LongestChainHeight": 2449,
"LongestChainHash":

→˓"fb749177c2f43db8c7d73ea050240b9f870c40584f044b13e7ec146c460b0eff",
"GenesisBlockHash":

→˓"ea9c0b026bd638ceb38323eb71174814c95333e39c62936a38c4e01a8f18062e",
"GenesisContractAddress": "pykr77ft9UUKJZLVq15wCH8PinBSjVRQ12sD1Ayq92mKFsJ1i",
"LastIrreversibleBlockHash":

→˓"66638f538038bd56357f3cf205424e7393c5966830ef0d16a75d4a117847e0bc",
"LastIrreversibleBlockHeight": 2446,
"BestChainHash": "fb749177c2f43db8c7d73ea050240b9f870c40584f044b13e7ec146c460b0eff",
"BestChainHeight": 2449

}

54 Chapter 4. AElf Blockchain Boot Sequence

AElf, Release release/1.2.3

4.3 Be a candidate node

Full nodes need to call Election contract to become candidate nodes. The nodes need to mortgage 10W ELF to
participate in the election, please make sure that the account of the nodes has enough tokens.

To facilitate the quick demonstration, we directly transfer the token from the first initial node account to the full node
account:

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELF", "to":
→˓"Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC", "amount": "20000000000000"}'

By checking the balance of the full node account, we can see that the full node account has enough tokens, 20W ELF:

aelf-command call AElf.ContractNames.Token GetBalance '{"symbol": "ELF", "owner":
→˓"Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC"}'

Result:
{

"symbol": "ELF",
"owner": "Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC",
"balance": "20000000000000"

}

Full node announces election with admin specified in params:

aelf-command send AElf.ContractNames.Election AnnounceElection '{"value":
→˓"Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC"}' -a
→˓Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC

By inquiring candidate information, we can see the full node is already candidates:

aelf-command call AElf.ContractNames.Election GetCandidateInformation '{"value":
→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓"}'

Result:
{

"terms": [],
"pubkey":

→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓",
"producedBlocks": "0",
"missedTimeSlots": "0",
"continualAppointmentCount": "0",
"announcementTransactionId":

→˓"8cc8eb5de35e390e4f7964bbdc7edc433498b041647761361903c6165b9f8659",
"isCurrentCandidate": true

}

4.4 User vote election

For the simulated user voting scenario, we create a user account:

aelf-command create

(continues on next page)

4.3. Be a candidate node 55

AElf, Release release/1.2.3

(continued from previous page)

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : walnut market museum play grunt chuckle hybrid
→˓accuse relief misery share meadow
AElf [Info]: Private Key :
→˓919a220fac2d80e674a256f2367ac840845f344269f4dcdd56d37460de17f947
AElf [Info]: Public Key :
→˓04794948de40ffda2a6c884d7e6a99bb8e42b8b96b9ee5cc4545da3a1d5f7725eec93de62ddbfb598ef6f04fe52aa310acc7d17abeeea3946622573c4b0b2433ac
AElf [Info]: Address : ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei

After the user account is created successfully, we will first trsnfer some tokens to the account for voting.

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELF", "to":
→˓"ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei", "amount": "200000000000"}'

Confirm the tokens has been received:

aelf-command call AElf.ContractNames.Token GetBalance '{"symbol": "ELF", "owner":
→˓"ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei"}'

Result:
{

"symbol": "ELF",
"owner": "ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei",
"balance": "200000000000"

}

Users vote on candidate nodes through the election contract.

aelf-command send AElf.ContractNames.Election Vote '{"candidatePubkey":
→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓","amount":2000000000,"endTimestamp":{"seconds":1600271999,"nanos":999000}}' -a
→˓ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei

By inquiring the votes of candidates, we can see that the full node has successfully obtained 20 votes.

aelf-command call AElf.ContractNames.Election GetCandidateVote '{"value":
→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓"}'

Result:
{

"obtainedActiveVotingRecordIds": [
"172375e9cee303ce60361aa73d7326920706553e80f4485f97ffefdb904486f1"

],
"obtainedWithdrawnVotingRecordIds": [],
"obtainedActiveVotingRecords": [],
"obtainedWithdrawnVotesRecords": [],
"obtainedActiveVotedVotesAmount": "2000000000",
"allObtainedVotedVotesAmount": "2000000000",
"pubkey":

→˓"BO7QDrAJzNKDeY44Yngc69Je1qRkHg4bfQ47a1kCUEBnn8TcDtyd4Wa9YwxyVRiKmurfyDL9rggoJw93xu8meQU=
→˓"
}

56 Chapter 4. AElf Blockchain Boot Sequence

AElf, Release release/1.2.3

4.5 Become production node

At the next election, the candidate nodes with votes in the first 17 are automatically elected as production nodes, and
the current production node list can be viewed through consensus contracts.

Quantity 17 is the default maximum production node quantity, which can be modified by proposal. Please refer to the
Consensus and Proposal Contract API for details.

aelf-command call AElf.ContractNames.Consensus GetCurrentMinerPubkeyList '{}'

Result:
{

"pubkeys": [

→˓"0499d3bb14337961c4d338b9729f46b20de8a49ed38e260a5c19a18da569462b44b820e206df8e848185dac6c139f05392c268effe915c147cde422e69514cc927
→˓",

→˓"048397dfd9e1035fdd7260329d9492d88824f42917c156aef93fd7c2e3ab73b636f482b8ceb5cb435c556bfa067445a86e6f5c3b44ae6853c7f3dd7052609ed40b
→˓",

→˓"041cc962a51e7bbdd829a8855eca8a03fda708fdf31969251321cb31edadd564bf3c6e7ab31b4c1f49f0f206be81dbe68a75c70b293bf9d04d867ee5e415d3bf8a
→˓",

→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓"
]

}

4.6 Add more production nodes

Repeat steps 2-4 to add more production nodes. When the number of initial nodes plus the number of candidate nodes
exceeds the maximum number of production node, the replacement will replace the initial nodes step by step, and
the replaced initial nodes are not allowed to run for election again. At this time, the initial node has completed its
responsibility of starting AElf Blockchain.

4.5. Become production node 57

AElf, Release release/1.2.3

58 Chapter 4. AElf Blockchain Boot Sequence

CHAPTER 5

How to join the testnet

There’s two ways to run a AElf node: you can either use Docker (recommended method) or run the binaries available
on Github. Before you jump into the guides and tutorials you’ll need to install the following tools and frameworks.
For most of these dependencies we provide ready-to-use command line instructions. In case of problems or if you
have more complex needs, we provide more information in the Environment setup section.

Summary of the steps to set up a node:

1. Execute the snapshot download script and load the snapshot into the database.

2. Download our template setting files and docker run script.

3. Modify the appsettings according to your needs.

4. Run and check the node.

Hardware suggestion: for the AElf testnet we use the following Amazon configuration: c5.large instance with 2
vCPUs, 4GiB RAM and a 200GiB hard drive for each node we run. We recommend using something similar per node
that you want to run (one for the mainchain node and one per side chain node).

Note: any server you use to run a node should be time synced via NTP. Failing to do this will prevent your node from
syncing.

5.1 Setup the database

We currently support two key-value databases to store our nodes data: Redis and SSDB, but for the testnet we only
provide snapshots for SSDB. We will configure two SSDB instances, one for chain database and one for the state
database (run these on different machines for better performances).

5.1.1 Import the snapshot data

After you’ve finished setting up the database, download the latest snapshots. The following gives you the template for
the download URL,but you have to specify the snapshot date. We recommend you get the latest.

Restore the chain database from snapshot:

59

AElf, Release release/1.2.3

>> mkdir snapshot
>> cd snapshot

fetch the snapshot download script
>> curl -O -s https://aelf-node.s3-ap-southeast-1.amazonaws.com/snapshot/testnet/
→˓download-mainchain-db.sh

execute the script, you can optionally specify a date by appending “yyyymmdd” as
→˓parameter
>> sh download-mainchain-db.sh

chain database: decompress and load the chain database snapshot
>> tar xvzf aelf-testnet-mainchain-chaindb-*.tar.gz
>> stop your chain database instance (ssdb server)
>> cp -r aelf-testnet-mainchain-chaindb-*/* /path/to/install/chaindb/ssdb/var/
>> start your chain database instance
>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has
→˓been imported)

state database : decompress and load the state database
>> tar xvzf aelf-testnet-mainchain-statedb-*.tar.gz
>> stop your state database instance (ssdb server)
>> cp -r aelf-testnet-mainchain-statedb-*/* /path/to/install/statedb/ssdb/var/
>> start your state database instance
>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has
→˓been imported)

5.2 Node configuration

5.2.1 Generating the nodes account

This section explains how to generate an account for the node. First you need to install the aelf-command npm package.
Open a terminal and enter the following command to install aelf-command:

>> npm i -g aelf-command

After installing the package, you can use the following command to create an account/key-pair:

>> aelf-command create

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : term jar tourist monitor melody tourist catch sad
→˓ankle disagree great adult
AElf [Info]: Private Key :
→˓34192c729751bd6ac0a5f18926d74255112464b471aec499064d5d1e5b8ff3ce
AElf [Info]: Public Key :
→˓04904e51a944ab13b031cb4fead8caa6c027b09661dc5550ee258ef5c5e78d949b1082636dc8e27f20bc427b25b99a1cadac483fae35dd6410f347096d65c80402
AElf [Info]: Address : 29KM437eJRRuTfvhsB8QAsyVvi8mmyN9Wqqame6TsJhrqXbeWd
? Save account info into a file? Yes
? Enter a password: *********

(continues on next page)

60 Chapter 5. How to join the testnet

AElf, Release release/1.2.3

(continued from previous page)

? Confirm password: *********
XXX Account info has been saved to "/usr/local/share/aelf/keys/
→˓29KM437eJRRuTfvhsB8QAsyVvi8mmyN9Wqqame6TsJhrqXbeWd.json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf directory is the
data directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

5.2.2 Prepare node configuration

download the settings template and docker script
>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rc1/
→˓aelf-testnet-mainchain.zip
>> unzip aelf-testnet-mainchain.zip
>> mv aelf-testnet-mainchain /opt/aelf-node

Update the appsetting.json file with your account. This will require the information printed during the creation of the
account. Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

{
"Account": {

"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H",
"NodeAccountPassword": "********"

}
}

You also have to configure the database connection strings (port/db number):

{
"ConnectionStrings": {

"BlockchainDb": "redis://your chain database server ip address:port",
"StateDb": "redis://your state database server ip address:port"

},
}

If you use docker to run the node and it is on the same server as the database, please do not use 127.0.0.1 as the
database monitoring ip.

Next add the testnet mainchain nodes as peer (bootnode peers):

{
"Network": {

"BootNodes": [
"xxx.xxxx.xxx.xxx:6800",
"..."

],
"ListeningPort": 6800

}
}

Note: if your infrastructure is behind a firewall you need to open the P2P listening port of the node. You also need

5.2. Node configuration 61

AElf, Release release/1.2.3

to configure your listening ip and port for the side chain connections in appsettings.MainChain.TestNet.
json:

{
"CrossChain": {

"Grpc": {
"LocalServerPort": 5000,

}
},

}

5.3 Running a full node with Docker

To run the node with Docker, enter the following commands:

pull AElf’s image and navigate to the template folder to execute the start script
>> docker pull aelf/node:testnet-v1.0.0
>> cd /opt/aelf-node
>> sh aelf-node.sh start aelf/node:testnet-v1.0.0

to stop the node you can run:

>> sh aelf-node.sh stop

5.4 Running a full node with the binary release

Most of AElf is developed with dotnet core, so to run the binaries you will need to download and install the .NET Core
SDK before you start: Download .NET Core 6.0. For now AElf depends on version 6.0 of the SDK, on the provided
link find the download for your platform, and install it.

Get the latest release with the following commands:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rc1/
→˓aelf.zip
>> unzip aelf.zip
>> mv aelf /opt/aelf-node/

Enter the configuration folder and run the node:

>> cd /opt/aelf-node
>> dotnet aelf/AElf.Launcher.dll

5.5 Running a full node with the source

The most convenient way is to directly use docker or the binary packages, but if you want you can compile from
source code. First make sure the code version is consistent (current is release AELF v1.0.0), and secondly make sure
to compile on a Ubuntu Linux machine (we recommend Ubuntu 18.04.2 LTS) and have dotnet core SDK version 6.0
installed. This is because different platforms or compilers will cause the dll hashes to be inconsistent with the current
chain.

62 Chapter 5. How to join the testnet

https://dotnet.microsoft.com/download/dotnet-core/6.0

AElf, Release release/1.2.3

5.6 Check the node

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

aelf-command get-blk-height -e http://your node ip address:port

5.7 Run side-chains

This section explains how to set up a side-chain node, you will have to repeat these steps for all side chains (currently
only one is running):

1. Fetch the appsettings and the docker run script.

2. Download and restore the snapshot data with the URLs provided below (steps are the same as in A - Setup the
database).

3. Run the side-chain node.

Running a side chain is very much like running a mainchain node, only configuration will change. Here you can find
the instructions for sidechain1:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rc1/
→˓aelf-testnet-sidechain1.zip
>> unzip aelf-testnet-sidechain1.zip
>> mv aelf-testnet-sidechain1 /opt/aelf-node

In order for a sidechain to connect to a mainchain node you need to modify the appsettings.SideChain.
TestNet.json with your node information.

{
"CrossChain": {

"Grpc": {
"ParentChainServerPort": 5000,
"ParentChainServerIp": "your mainchain ip address",
"ListeningPort": 5001,

},
"ParentChainId": "AELF"

}
}

Here you can find the snapshot data for the only current side-chain running, optionally you can specify the date, but
we recommend you get the latest:

>> curl -O -s https://aelf-node.s3-ap-southeast-1.amazonaws.com/snapshot/testnet/
→˓download-sidechain1-db.sh

Here you can find the list of templates folders (appsettings and docker run script) for the side-chain:

wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rc1/aelf-testnet-
→˓sidechain1.zip

Each side chain has its own P2P network, add the testnet sidechain nodes as peer:

bootnode → ["xxx.xxxx.xxx.xxx:6800", "..."]

5.6. Check the node 63

AElf, Release release/1.2.3

{
"Network": {

"BootNodes": [
"Add the right boot node according sidechain"

],
"ListeningPort": 6800

}
}

64 Chapter 5. How to join the testnet

CHAPTER 6

How to join the mainnet

There’s two ways to run a AElf node: you can either use Docker (recommended method) or run the binaries available
on Github. Before you jump into the guides and tutorials you’ll need to install the following tools and frameworks.
For most of these dependencies we provide ready-to-use command line instructions. In case of problems or if you
have more complex needs, we provide more information in the Environment setup section.

Summary of the steps to set up a node:

1. Execute the snapshot download script and load the snapshot into the database.

2. Download our template setting files and docker run script.

3. Modify the appsettings according to your needs.

4. Run and check the node.

Hardware suggestion: for the AElf mainnet we use the following Amazon configuration: c5.xlarge instance with 4
vCPUs, 8GiB RAM and a 500GiB hard drive for each node we run. We recommend using something similar per node
that you want to run (one for the mainchain node and one per side chain node).

Note: any server you use to run a node should be time synced via NTP. Failing to do this will prevent your node from
syncing.

6.1 Setup the database

We currently support two key-value databases to store our nodes data: Redis and SSDB, but for the mainnet we only
provide snapshots for SSDB. We will configure two SSDB instances, one for chain database and one for the state
database (run these on different machines for better performances).

6.1.1 Import the snapshot data

After you’ve finished setting up the database, download the latest snapshots. The following gives you the template for
the download URL,but you have to specify the snapshot date. We recommend you get the latest.

Restore the chain database from snapshot:

65

AElf, Release release/1.2.3

>> mkdir snapshot
>> cd snapshot

fetch the snapshot download script
>> curl -O -s https://aelf-backup.s3.ap-northeast-2.amazonaws.com/snapshot/mainnet/
→˓download-mainchain-db.sh

execute the script, you can optionally specify a date by appending “yyyymmdd” as
→˓parameter
>> sh download-mainchain-db.sh

chain database: decompress and load the chain database snapshot
>> tar xvzf aelf-mainnet-mainchain-chaindb-*.tar.gz
>> stop your chain database instance (ssdb server)
>> cp -r aelf-mainnet-mainchain-chaindb-*/* /path/to/install/chaindb/ssdb/var/
>> start your chain database instance
>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has
→˓been imported)

state database : decompress and load the state database
>> tar xvzf aelf-mainnet-mainchain-statedb-*.tar.gz
>> stop your state database instance (ssdb server)
>> cp -r aelf-mainnet-mainchain-statedb-*/* /path/to/install/statedb/ssdb/var/
>> start your state database instance
>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has
→˓been imported)

6.2 Node configuration

6.2.1 Generating the nodes account

This section explains how to generate an account for the node. First you need to install the aelf-command npm package.
Open a terminal and enter the following command to install aelf-command:

>> npm i -g aelf-command

After installing the package, you can use the following command to create an account/key-pair:

>> aelf-command create

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : term jar tourist monitor melody tourist catch sad
→˓ankle disagree great adult
AElf [Info]: Private Key :
→˓34192c729751bd6ac0a5f18926d74255112464b471aec499064d5d1e5b8ff3ce
AElf [Info]: Public Key :
→˓04904e51a944ab13b031cb4fead8caa6c027b09661dc5550ee258ef5c5e78d949b1082636dc8e27f20bc427b25b99a1cadac483fae35dd6410f347096d65c80402
AElf [Info]: Address : 29KM437eJRRuTfvhsB8QAsyVvi8mmyN9Wqqame6TsJhrqXbeWd
? Save account info into a file? Yes
? Enter a password: *********

(continues on next page)

66 Chapter 6. How to join the mainnet

AElf, Release release/1.2.3

(continued from previous page)

? Confirm password: *********
XXX Account info has been saved to "/usr/local/share/aelf/keys/
→˓29KM437eJRRuTfvhsB8QAsyVvi8mmyN9Wqqame6TsJhrqXbeWd.json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf directory is the
data directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

6.2.2 Prepare node configuration

download the settings template and docker script
>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf-
→˓mainnet-mainchain.zip
>> unzip aelf-mainnet-mainchain.zip
>> mv aelf-mainnet-mainchain /opt/aelf-node

Update the appsetting.json file with your account. This will require the information printed during the creation of the
account. Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

{
"Account": {

"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H",
"NodeAccountPassword": "********"

}
}

You also have to configure the database connection strings (port/db number):

{
"ConnectionStrings": {

"BlockchainDb": "redis://your chain database server ip address:port",
"StateDb": "redis://your state database server ip address:port"

},
}

If you use docker to run the node and it is on the same server as the database, please do not use 127.0.0.1 as the
database monitoring ip.

Next add the mainnet mainchain nodes as peer (bootnode peers):

{
"Network": {

"BootNodes": [
"xxx.xxxx.xxx.xxx:6800",
"..."

],
"ListeningPort": 6800

}
}

Note: if your infrastructure is behind a firewall you need to open the P2P listening port of the node. You also need

6.2. Node configuration 67

AElf, Release release/1.2.3

to configure your listening ip and port for the side chain connections in appsettings.MainChain.MainNet.
json:

{
"CrossChain": {

"Grpc": {
"LocalServerPort": 5000,

}
},

}

6.3 Running a full node with Docker

To run the node with Docker, enter the following commands:

pull AElf’s image and navigate to the template folder to execute the start script
>> docker pull aelf/node:mainnet-v1.0.0
>> cd /opt/aelf-node
>> sh aelf-node.sh start aelf/node:mainnet-v1.0.0

to stop the node you can run:

>> sh aelf-node.sh stop

6.4 Running a full node with the binary release

Most of AElf is developed with dotnet core, so to run the binaries you will need to download and install the .NET Core
SDK before you start: Download .NET Core 6.0. For now AElf depends on version 6.0 of the SDK, on the provided
link find the download for your platform, and install it.

Get the latest release with the following commands:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf.
→˓zip
>> unzip aelf.zip
>> mv aelf /opt/aelf-node/

Enter the configuration folder and run the node:

>> cd /opt/aelf-node
>> dotnet aelf/AElf.Launcher.dll

6.5 Running a full node with the source

The most convenient way is to directly use docker or the binary packages, but if you want you can compile from
source code. First make sure the code version is consistent (current is release AELF v1.0.0), and secondly make sure
to compile on a Ubuntu Linux machine (we recommend Ubuntu 18.04.2 LTS) and have dotnet core SDK version 6.0
installed. This is because different platforms or compilers will cause the dll hashes to be inconsistent with the current
chain.

68 Chapter 6. How to join the mainnet

https://dotnet.microsoft.com/download/dotnet-core/6.0

AElf, Release release/1.2.3

6.6 Check the node

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

aelf-command get-blk-height -e http://your node ip address:port

6.7 Run side-chains

This section explains how to set up a side-chain node, you will have to repeat these steps for all side chains (currently
only one is running):

1. Fetch the appsettings and the docker run script.

2. Download and restore the snapshot data with the URLs provided below (steps are the same as in Setup the
database).

3. Run the side-chain node.

Running a side chain is very much like running a mainchain node, only configuration will change. Here you can find
the instructions for sidechain1:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf-
→˓mainnet-sidechain1.zip
>> unzip aelf-mainnet-sidechain1.zip
>> mv aelf-mainnet-sidechain1 /opt/aelf-node

In order for a sidechain to connect to a mainchain node you need to modify the appsettings.SideChain.
MainNet.json with your node information.

{
"CrossChain": {

"Grpc": {
"ParentChainServerPort": 5001,
"ParentChainServerIp": "your mainchain ip address",
"ListeningPort": 5011,

},
"ParentChainId": "AELF",
"Economic": {

"SymbolListToPayTxFee": "WRITE,READ,STORAGE,TRAFFIC",
"SymbolListToPayRental": "CPU,RAM,DISK,NET"

}
}

}

Here you can find the snapshot data for the only current side-chain running, optionally you can specify the date, but
we recommend you get the latest:

>> curl -O -s https://aelf-backup.s3.ap-northeast-2.amazonaws.com/snapshot/mainnet/
→˓download-sidechain-db.sh

Here you can find the list of templates folders (appsettings and docker run script) for the side-chain:

wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf-mainnet-
→˓sidechain1.zip

6.6. Check the node 69

AElf, Release release/1.2.3

Each side chain has its own P2P network, add the mainnet sidechain nodes as peer:

bootnode → ["xxx.xxxx.xxx.xxx:6800", "..."]

{
"Network": {

"BootNodes": [
"Add the right boot node according sidechain"

],
"ListeningPort": 6800

}
}

70 Chapter 6. How to join the mainnet

CHAPTER 7

Running a side chain

7.1 Requesting the creation of a side chain

Side chains can be created in the AELF ecosystem to enable scalability. This part is going to introduce these periods
in detail.

7.1.1 Side chain creation api

Anyone can request the side chain creation in the AELF ecosystem. The proposer/creator of a new side chain will
need to request the creation of the side chain through the cross-chain contract on the main-chain. The request contains
different fields that will determine the type of side chain that will be created.

This section show the API to use in order to propose the creation of a side chain. The fields that are in the
SideChainCreationRequest will determine the type of side chain that is created. For more api details, you
can follow the RequestSideChainCreation in Crosschain contract.

A new proposal about the side chain creation would be created and the event ProposalCreated containing pro-
posal id would be fired. A parliament organization which is specified since the chain launched is going to approve this
proposal in 24 hours(refer to Parliament contract for detail). Proposer is able to release the side chain creation request
with proposal id once the proposal can be released. Refer ReleaseSideChainCreation in Crosschain contract.

New side chain would be created and the event SideChainCreatedEvent containing chain id would be fired.

Side chain node can be launched since it is already created on main chain. Side chain id from the creation result should
be configured correctly before launching the side chain node. Please make sure cross chain communication context
is correctly set, because side chain node is going to request main chain node for chain initialization data. For more
details, check side chain node running tutorial.

7.1.2 Side chain types

Two types of side-chain’s currently exist: exclusive or shared. An exclusive side-chain is a type of dedicated side-
chain (as opposed to shared) that allows developers to choose the transaction fee model and set the transaction fee

71

AElf, Release release/1.2.3

price. The creator has exclusive use of this side-chain. For example, only creator of this exclusive side-chain can
propose to deploy a new contract.

7.1.3 Pay for Side chain

Indexing fee

Indexing fee, literally, is paid for the side chain indexing. You can specify the indexing fee price and prepayments
amount when you request side chain creation. Cross chain contract is going to charge your prepayments once the side
chain created and pay the miner who indexes the side chain block every time.

Resource fee

Developers of an exclusive side-chain pay the producers for running it by paying CPU, RAM, DISK, NET resource
tokens: this model is called charge-by-time. The amount side chain creator must share with the producers is set after
creation of the chain. The exclusive side-chain is priced according to the time used. The unit price of the fee is
determined through negotiation between the production node and the developer.

See Economic whitepaper - 4.3 Sidechain Developer Charging Model for more information.

7.1.4 Simple demo for side chain creation request

When a user (usually a developer) feels the need to create a new side chain on AElf he must call the cross-chain
contract and request a side chain creation. After requested, parliament organization members will either approve this
creation or reject it. If the request is approved, the developer must then release the proposal.

Throughout this tutorial we’ll give step-by-step code snippets that use the aelf-js-sdk to create a new side chain, the
full script will be given at the end of the tutorial.

This creation of a side chain (logical, on-chain creation) is done in four steps:

• the developer must allow/approve some tokens to the cross-chain contract of the main chain.

• the developer calls the cross-chain contract of the main chain, to request the creation.

• the parliament organization members must approve this request.

• finally the developer must release the request to finalize the creation.

Keep in mind that this is just the logical on-chain creation of the side chain. After the side chain is released there’s
extra steps needed for it to be a fully functional blockchain, including the producers running the side chain’s nodes.

Set-up

If you want to test the creation process you will need a producer node running and the following:

• you need a key-pair (account) created, this will be your Producer (in this tutorial we also use the producer to
create the creation request).

• the node needs to be configured with an API endpoint, account and miner list that correspond to what is in the
script.

The following snippet shows constants and initialization code used in the script:

72 Chapter 7. Running a side chain

https://aelf.com/gridcn/aelf_Economic_and_Governance_Whitepaper_v1.2_en.pdf
https://github.com/AElfProject/aelf-sdk.js/tree/master

AElf, Release release/1.2.3

const AElf = require('aelf-sdk');
const Wallet = AElf.wallet;

const { sha256 } = AElf.utils;

// set the private key of the block producer.
// REPLACE
const defaultPrivateKey =
→˓'e119487fea0658badc42f089fbaa56de23d8c0e8d999c5f76ac12ad8ae897d76';
const defaultPrivateKeyAddress = 'HEtBQStfqu53cHVC3PxJU6iGP3RGxiNUfQGvAPTjfrF3ZWH3U';

// load the wallet associated with your block producers account.
const wallet = Wallet.getWalletByPrivateKey(defaultPrivateKey);

// API link to the node
// REPLACE
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1234'));

// names of the contracts that will be used.
const tokenContractName = 'AElf.ContractNames.Token';
const parliamentContractName = 'AElf.ContractNames.Parliament';
const crossChainContractName = 'AElf.ContractNames.CrossChain';

...

const createSideChain = async () => {
// check the chain status to make sure the node is running
const chainStatus = await aelf.chain.getChainStatus({sync: true});
const genesisContract = await aelf.chain.contractAt(chainStatus.

→˓GenesisContractAddress, wallet)
.catch((err) => {
console.log(err);
});

// get the addresses of the contracts that we'll need to call
const tokenContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(tokenContractName));
const parliamentContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(parliamentContractName));
const crossChainContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(crossChainContractName));

// build the aelf-sdk contract instance objects
const parliamentContract = await aelf.chain.contractAt(parliamentContractAddress,

→˓wallet);
const tokenContract = await aelf.chain.contractAt(tokenContractAddress, wallet);
const crossChainContract = await aelf.chain.contractAt(crossChainContractAddress,

→˓wallet);

...
}

When running the script, the createSideChain will be executed and automatically will run through the full process of
creating the side chain.

Creation of the side chain

7.1. Requesting the creation of a side chain 73

AElf, Release release/1.2.3

Set the Allowance.

First the developer must approve some ELF tokens for use by the cross-chain contract.

var setAllowance = async function(tokenContract, crossChainContractAddress)
{

// set some allowance to the cross-chain contract
const approvalResult = await tokenContract.Approve({

symbol:'ELF',
spender: crossChainContractAddress,
amount: 20000
});

let approveTransactionResult = await pollMining(approvalResult.TransactionId);
}

Creation request

In order to request a side chain creation the developer must call RequestSideChainCreation on the cross-chain
contract, this will create a proposal with the Parliament contract. After calling this method, a ProposalCreated log
will be created in which the ProposalId be found. This ID will enable the producers to approve it.

rpc RequestSideChainCreation(SideChainCreationRequest) returns (google.protobuf.Empty)
→˓{}

message SideChainCreationRequest {
// The cross chain indexing price.
int64 indexing_price = 1;
// Initial locked balance for a new side chain.
int64 locked_token_amount = 2;
// Creator privilege boolean flag: True if chain creator privilege preserved,

→˓otherwise false.
bool is_privilege_preserved = 3;
// Side chain token information.
SideChainTokenCreationRequest side_chain_token_creation_request = 4;
// A list of accounts and amounts that will be issued when the chain starts.
repeated SideChainTokenInitialIssue side_chain_token_initial_issue_list = 5;
// The initial rent resources.
map<string, int32> initial_resource_amount = 6;

}

message SideChainTokenCreationRequest{
// Token symbol of the side chain to be created
string side_chain_token_symbol = 1;
// Token name of the side chain to be created
string side_chain_token_name = 2;
// Token total supply of the side chain to be created
int64 side_chain_token_total_supply = 3;
// Token decimals of the side chain to be created
int32 side_chain_token_decimals = 4;

}

message SideChainTokenInitialIssue{
// The account that will be issued.
aelf.Address address = 1;

(continues on next page)

74 Chapter 7. Running a side chain

AElf, Release release/1.2.3

(continued from previous page)

// The amount that will be issued.
int64 amount = 2;

}

In order for the creation request to succeed, some assertions must pass:

• the Sender can only have one pending request at any time.

• the locked_token_amount cannot be lower than the indexing price.

• if is_privilege_preserved is true, which means it requests exclusive side chain, the token initial issue list cannot
be empty and all with an amount greater than 0.

• if is_privilege_preserved is true, which means it requests exclusive side chain, the initial_resource_amount
must contain all resource tokens of the chain and the value must be greater than 0.

• the allowance approved to cross chain contract from the proposer (Sender of the transaction) cannot be lower
than the locked_token_amount.

• no need to provide data about side chain token if is_privilege_preserved is false, and side chain token won’t be
created even you provide token info.

const sideChainCreationRequestTx = await crossChainContract.RequestSideChainCreation(
→˓{

indexingPrice: 1,
lockedTokenAmount: '20000',
isPrivilegePreserved: true,
sideChainTokenCreationRequest: {

sideChainTokenDecimals: 8,
sideChainTokenName: 'SCATokenName',
sideChainTokenSymbol: 'SCA',
sideChainTokenTotalSupply: '100000000000000000',

},
sideChainTokenInitialIssueList: [

{
address: '28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK',
amount: '1000000000000000'

}
],
initialResourceAmount: { CPU: 2, RAM: 4, DISK: 512, NET: 1024 },

});

let sideChainCreationRequestTxResult = await pollMining(sideChainCreationRequestTx.
→˓TransactionId);

// deserialize the log to get the proposal's ID.
let deserializedLogs = parliamentContract.
→˓deserializeLog(sideChainCreationRequestTxResult.Logs, 'ProposalCreated');

The last line will print the proposal ID and this is what will be used for approving by the producers.

Approval from producers

This is where the parliament organization members approve the proposal:

7.1. Requesting the creation of a side chain 75

AElf, Release release/1.2.3

var proposalApproveTx = await parliamentContract.Approve(deserializedLogs[0].
→˓proposalId);
await pollMining(proposalApproveTx.TransactionId);

Note: when calling Approve it will be the Sender of the transaction that approves. Here the script is set to use the key
of one parliament organization member, see full script at the end.

Release

This part of the script releases the proposal:

var releaseResult = await crossChainContract.ReleaseSideChainCreation({
proposalId: deserializedLogs[0].proposalId

});

let releaseTxResult = await pollMining(releaseResult.TransactionId);

// Parse the logs to get the chain id.
let sideChainCreationEvent = crossChainContract.deserializeLog(releaseTxResult.Logs,
→˓'SideChainCreatedEvent');

This is the last step involved in creating a side chain, after this the chain id of the new side chain is accessible in the
SideChainCreatedEvent event log.

Full script

This section presents the full script. Remember that in order to run successfully, a node must be running, configured
with one producer. The configured producer must match the defaultPrivateKey and defaultPrivateKeyAddress of
the script.

Also, notice that this script by default tries to connect to the node’s API at the following address http://127.0.0.1:1234,
if your node is listening on a different address you have to modify the address.

If you haven’t already installed it, you need the aelf-sdk:

npm install aelf-sdk

You can simply run the script from anywhere:

node sideChainProposal.js

sideChainProposal.js:

const AElf = require('aelf-sdk');
const Wallet = AElf.wallet;

const { sha256 } = AElf.utils;

// set the private key of the block producer
const defaultPrivateKey =
→˓'e119487fea0658badc42f089fbaa56de23d8c0e8d999c5f76ac12ad8ae897d76';
const defaultPrivateKeyAddress = 'HEtBQStfqu53cHVC3PxJU6iGP3RGxiNUfQGvAPTjfrF3ZWH3U';

const wallet = Wallet.getWalletByPrivateKey(defaultPrivateKey);

(continues on next page)

76 Chapter 7. Running a side chain

http://127.0.0.1:1234

AElf, Release release/1.2.3

(continued from previous page)

// link to the node
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:8000'));

if (!aelf.isConnected()) {
console.log('Could not connect to the node.');

}

const tokenContractName = 'AElf.ContractNames.Token';
const parliamentContractName = 'AElf.ContractNames.Parliament';
const crossChainContractName = 'AElf.ContractNames.CrossChain';

var pollMining = async function(transactionId) {
console.log(`>> Waiting for ${transactionId} the transaction to be mined.`);

for (i = 0; i < 10; i++) {
const currentResult = await aelf.chain.getTxResult(transactionId);
// console.log('transaction status: ' + currentResult.Status);

if (currentResult.Status === 'MINED')
return currentResult;

await new Promise(resolve => setTimeout(resolve, 2000))
.catch(function () {

console.log("Promise Rejected");
});;

}
}

var setAllowance = async function(tokenContract, crossChainContractAddress)
{

console.log('\n>>>> Setting allowance for the cross-chain contract.');

// set some allowance to the cross-chain contract
const approvalResult = await tokenContract.Approve({

symbol:'ELF',
spender: crossChainContractAddress,
amount: 20000

});

await pollMining(approvalResult.TransactionId);
}

var checkAllowance = async function(tokenContract, owner, spender)
{

console.log('\n>>>> Checking the cross-chain contract\'s allowance');

const checkAllowanceTx = await tokenContract.GetAllowance.call({
symbol: 'ELF',
owner: owner,
spender: spender

});

console.log(`>> allowance to the cross-chain contract: ${checkAllowanceTx.
→˓allowance} ${checkAllowanceTx.symbol}`);
}

const createSideChain = async () => {
(continues on next page)

7.1. Requesting the creation of a side chain 77

AElf, Release release/1.2.3

(continued from previous page)

// get the status of the chain in order to get the genesis contract address
console.log('Starting side chain creation script\n');

const chainStatus = await aelf.chain.getChainStatus({sync: true});
const genesisContract = await aelf.chain.contractAt(chainStatus.

→˓GenesisContractAddress, wallet)
.catch((err) => {

console.log(err);
});

// get the addresses of the contracts that we'll need to call
const tokenContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(tokenContractName));
const parliamentContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(parliamentContractName));
const crossChainContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(crossChainContractName));

// build the aelf-sdk contract object
const parliamentContract = await aelf.chain.contractAt(parliamentContractAddress,

→˓wallet);
const tokenContract = await aelf.chain.contractAt(tokenContractAddress, wallet);
const crossChainContract = await aelf.chain.contractAt(crossChainContractAddress,

→˓wallet);

// 1. set and check the allowance, spender is the cross-chain contract
await setAllowance(tokenContract, crossChainContractAddress);
await checkAllowance(tokenContract, defaultPrivateKeyAddress,

→˓crossChainContractAddress);

// 2. request the creation of the side chain with the cross=chain contract
console.log('\n>>>> Requesting the side chain creation.');
const sideChainCreationRequestTx = await crossChainContract.

→˓RequestSideChainCreation({
indexingPrice: 1,
lockedTokenAmount: '20000',
isPrivilegePreserved: true,
sideChainTokenCreationRequest: {

sideChainTokenDecimals: 8,
sideChainTokenName: 'SCATokenName',
sideChainTokenSymbol: 'SCA',
sideChainTokenTotalSupply: '100000000000000000',

},
sideChainTokenInitialIssueList: [

{
address: '28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK',
amount: '1000000000000000'

}
],
initialResourceAmount: { CPU: 2, RAM: 4, DISK: 512, NET: 1024 },

});

let sideChainCreationRequestTxResult = await
→˓pollMining(sideChainCreationRequestTx.TransactionId);

(continues on next page)

78 Chapter 7. Running a side chain

AElf, Release release/1.2.3

(continued from previous page)

// deserialize the log to get the proposal's ID.
let deserializedLogs = parliamentContract.

→˓deserializeLog(sideChainCreationRequestTxResult.Logs, 'ProposalCreated');
console.log(`>> side chain creation request proposal id ${JSON.

→˓stringify(deserializedLogs[0].proposalId)}`);

// 3. Approve the proposal
console.log('\n>>>> Approving the proposal.');

var proposalApproveTx = await parliamentContract.Approve(deserializedLogs[0].
→˓proposalId);

await pollMining(proposalApproveTx.TransactionId);

// 3. Release the side chain
console.log('\n>>>> Release the side chain.');

var releaseResult = await crossChainContract.ReleaseSideChainCreation({
proposalId: deserializedLogs[0].proposalId

});

let releaseTxResult = await pollMining(releaseResult.TransactionId);

// Parse the logs to get the chain id.
let sideChainCreationEvent = crossChainContract.deserializeLog(releaseTxResult.

→˓Logs, 'SideChainCreatedEvent');
console.log('Chain chain created : ');
console.log(sideChainCreationEvent);

};

createSideChain().then(() => {console.log('Done.')});

7.2 Running a side chain (after its release)

This tutorial will explain how to run a side chain node after it has been approved by the producers and released by the
creator. After the creation of the side chain, the producers need to run a side chain node.

A side chain node is usually very similar to a main-chain node because both are based on AElf software and have
common modules. The main difference is the configuration which varies depending on if the node is a side chain or
not.

Note: this tutorial assumes the following:

• you already have a main-chain node running.

• the creation of the side chain has already been approved and released.

It’s also important to know that the key-pair (account) used for mining on the side chain must be the same as the one
you use for on the main-chain node. Said in another way both production nodes need to be launched with the same
key-pair.

Note: for more information about the side chain creation, refer to the document in the request-side-chain section.

7.2. Running a side chain (after its release) 79

AElf, Release release/1.2.3

7.2.1 Side chain configuration

Two configuration files must be placed in the configuration folder of the side chain, this is also the folder from which
you will launch the node:

• appsettings.json

• appsettings.SideChain.MainNet.json

After the release of the side chain creation request, the ChainId of the new side chain will be accessible in the
SideChainCreatedEvent logged by the transaction that released.

In this example, we will set up the side chain node with tDVV (1866392 converted to base58) as it’s chain id, con-
necting to Redis’ db2. The web API port is 1235. Don’t forget to change the account, password and initial miner.

If at the time of launching the side chain the P2P addresses of the other peers is known, they should be added to the
bootnodes in the configuration of the side chain.

In appsettings.json change the following configuration sections:

{
"ChainId":"tDVV",
"ChainType":"SideChain",
"NetType": "MainNet",
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=2",
"StateDb": "redis://localhost:6379?db=2"

},
"Account": {
"NodeAccount": "YOUR PRODUCER ACCOUNT",
"NodeAccountPassword": "YOUR PRODUCER PASSWORD"

},
"Kestrel": {
"EndPoints": {

"Http": {
"Url": "http://*:1235/"

}
}

},
"Consensus": {
"MiningInterval": 4000,
"StartTimestamp": 0

},
}

In appsettings.SideChain.MainNet.json change the following configuration sections:

{
"CrossChain": {
"Grpc": {

"ParentChainServerPort": 5010,
"ListeningPort": 5000,
"ParentChainServerIp": "127.0.0.1"

},
"ParentChainId": "AELF",

}
}

Change ParentChainServerIp and ParentChainServerPort depending on the listening address of your mainchain
node.

80 Chapter 7. Running a side chain

AElf, Release release/1.2.3

7.2.2 Launch the side chain node

Open a terminal and navigate to the folder where you created the configuration for the side chain.

dotnet ../AElf.Launcher.dll

You can try out a few commands from another terminal to check if everything is fine, for example:

aelf-command get-blk-height -e http://127.0.0.1:1235

7.2. Running a side chain (after its release) 81

AElf, Release release/1.2.3

82 Chapter 7. Running a side chain

CHAPTER 8

Running AElf on the cloud

This section provides resources for AElf on the cloud.

8.1 Getting started with Google cloud

This guide will run you through the steps required to run an AElf node on Google cloud (click the images for a more
detailed view).

First go to the Google Cloud Market Place and search for “aelf blockchain for enterprise”, find the image and select
it, this will direct you to the image’s page.

Click on the “LAUNCH ON COMPUTE ENGINE”. This should bring you to the following deployment page:

83

https://console.cloud.google.com/marketplace

AElf, Release release/1.2.3

You can keep the default settings, they are sufficient to get started. If you’re satisfied with the settings, just click
“DEPLOY” (bottom left of the page).

This will bring you to the deployment page (wait a short moment for the instance to load), when finished you should
see deployment information about the instance:

84 Chapter 8. Running AElf on the cloud

AElf, Release release/1.2.3

Next, login to the launched VM instance via SSH. To start the easiest way is to login to the instance directly from this
deployment page. To do this click the SSH drop down and select “Open in browser window”:

After loading the session, you’ll get a shell to the deployed instance where you can run the chain itself.

First you’ll need to execute sudo bash to elevate your privileges. Next, start the chain with one of the following
commands (for this tutorial we’ll use the second method): - either run it in the foreground: -bash root@test:/#
cd /opt/aelf-node && docker-compose up

• or run it in the background: -bash root@test:/# cd /opt/aelf-node && docker-compose
up -d

These commands will start redis and an AElf node (the command prints ‘done’ when finished).

8.1. Getting started with Google cloud 85

AElf, Release release/1.2.3

Finally to verify that the node is correctly working, enter the following command that will send an http request to the
node in order to get the current status of the chain:

curl -X GET "http://127.0.0.1:8001/api/blockChain/chainStatus" -H "accept: text/plain;
→˓ v=1.0"

If everything is working normally you should be able to see the chain increase by repeating the last command.

86 Chapter 8. Running AElf on the cloud

CHAPTER 9

Smart Contract Developing Demos

9.1 Bingo Game

9.1.1 Requirement Analysis

Basic Requirement

Only one ruleUsers can bet a certain amount of ELF on Bingo contract, and then users will gain more ELF or to lose
all ELF bet before in the expected time.

For users, operation steps are as follows:

1. Send an Approve transaction by Token Contract to grant Bingo Contract amount of ELF.

2. Bet by Bingo Contract, and the outcome will be unveiled in the expected time.

3. After a certain time, or after the block height is reached, the user can use the Bingo contract to query the results,
and at the same time, the Bingo contract will transfer a certain amount of ELF to the user (If the amount at this
time is greater than the bet amount, it means that the user won; vice versa).

9.1.2 API List

In summary, two basic APIs are needed:

1. Play, corresponding to step 2;

2. Bingo, corresponding to step 3.

In order to make the Bingo contract a more complete DApp contract, two additional Action methods are added:

1. Register, which creates a file for users, can save the registration time and user’s eigenvalues (these eigenvalues
participate in the calculation of the random number used in the Bingo game);

2. Quit, which deletes users’ file.

In addition, there are some View methods for querying information only:

87

AElf, Release release/1.2.3

1. GetAward, which allows users to query the award information of a bet;

2. GetPlayerInformation, used to query player’s information.

Method Parameters Return function
Register Empty Empty register player infor-

mation
Quit Empty Empty delete player informa-

tion
Play Int64Value

anount you debt
Int64Value
the resulting
block height

debt

Bingo Hash
the transaction
id of Play

Empty
True indicates
win

query the game’s re-
sult

GetAward Hash
the transaction
id of Play

Int64Value
award

query the amount of
award

GetPlayerInformationAddress
player’s address

Player-
Information

query player’s infor-
mation

9.1.3 Write Contract

Use the code generator to generate contracts and test projects

Open the AElf.Boilerplate.CodeGenerator project in the AElf.Boilerplate<https://aelf-boilerplate-
docs.readthedocs.io/en/latest/usage/setup.html#try-code-generator>, and modify the Contents node in appsetting.json
under this project:

{
"Contents": [
{
"Origin": "AElf.Contracts.HelloWorldContract",
"New": "AElf.Contracts.BingoContract"

},
{
"Origin": "HelloWorld",
"New": "Bingo"

},
{
"Origin": "hello_world",
"New": "bingo"

}
],

}

Then run the AElf.Boilerplate.CodeGenerator project. After running successfully, you will see a
AElf.Contracts.BingoContract.sln in the same directory as the AElf.Boilerplate.sln is in. After opening the sln, you
will see that the contract project and test case project of the Bingo contract have been generated and are included in
the new solution.

Define Proto

Based on the API list in the requirements analysis, the bingo_contract.proto file is as follows:

88 Chapter 9. Smart Contract Developing Demos

AElf, Release release/1.2.3

syntax = "proto3";
import "aelf/core.proto";
import "aelf/options.proto";
import "google/protobuf/empty.proto";
import "google/protobuf/wrappers.proto";
import "google/protobuf/timestamp.proto";
option csharp_namespace = "AElf.Contracts.BingoContract";
service BingoContract {

option (aelf.csharp_state) = "AElf.Contracts.BingoContract.BingoContractState";

// Actions
rpc Register (google.protobuf.Empty) returns (google.protobuf.Empty) {
}
rpc Play (google.protobuf.Int64Value) returns (google.protobuf.Int64Value) {
}
rpc Bingo (aelf.Hash) returns (google.protobuf.BoolValue) {
}
rpc Quit (google.protobuf.Empty) returns (google.protobuf.Empty) {
}

// Views
rpc GetAward (aelf.Hash) returns (google.protobuf.Int64Value) {

option (aelf.is_view) = true;
}
rpc GetPlayerInformation (aelf.Address) returns (PlayerInformation) {

option (aelf.is_view) = true;
}

}
message PlayerInformation {

aelf.Hash seed = 1;
repeated BoutInformation bouts = 2;
google.protobuf.Timestamp register_time = 3;

}
message BoutInformation {

int64 play_block_height = 1;
int64 amount = 2;
int64 award = 3;
bool is_complete = 4;
aelf.Hash play_id = 5;
int64 bingo_block_height = 6;

}

Contract Implementation

Here only talk about the general idea of the Action method, specifically need to turn the code:

https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/
BingoGameContract.cs

Register & Quit

Register

• Determine the Seed of the user, Seed is a hash value, participating in the calculation of the random number, each
user is different, so as to ensure that different users get different results on the same height;

9.1. Bingo Game 89

https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs
https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs

AElf, Release release/1.2.3

• Record the user’s registration time.

QuitJust delete the user’s information.

Play & Bingo

Play

• Use TransferFrom to deduct the user’s bet amount;

• At the same time add a round (Bount) for the user, when the Bount is initialized, record three messages 1.PlayId,
the transaction Id of this transaction, is used to uniquely identify the Bout (see BoutInformation for its data
structure in the Proto definition);

• AmountRecord the amount of the bet 3.Record the height of the block in which the Play transaction is packaged.

Bingo

• Find the corresponding Bout according to PlayId, if the current block height is greater than PlayBlock-
Height + number of nodes * 8, you can get the result that you win or lose;

• Use the current height and the user’s Seed to calculate a random number, and then treat the hash value as a
bit Array, each of which is added to get a number ranging from 0 to 256.

• Whether the number is divisible by 2 determines the user wins or loses;

• The range of this number determines the amount of win/loss for the user, see the note of GetKind method
for details.

9.1.4 Write Test

Because the token transfer is involved in this test, in addition to constructing the stub of the bingo contract, the stub of
the token contract is also required, so the code referenced in csproj for the proto file is:

<ItemGroup>
<ContractStub Include="..\..\protobuf\bingo_contract.proto">
<Link>Protobuf\Proto\bingo_contract.proto</Link>

</ContractStub>
<ContractStub Include="..\..\protobuf\token_contract.proto">
<Link>Protobuf\Proto\token_contract.proto</Link>

</ContractStub>
</ItemGroup>

Then you can write test code directly in the Test method of BingoContractTest. Prepare the two stubs mentioned
above:

// Get a stub for testing.
var keyPair = SampleECKeyPairs.KeyPairs[0];
var stub = GetBingoContractStub(keyPair);
var tokenStub =

GetTester<TokenContractContainer.TokenContractStub>(
GetAddress(TokenSmartContractAddressNameProvider.StringName), keyPair);

The stub is the stub of the bingo contract, and the tokenStub is the stub of the token contract.

In the unit test, the keyPair account is given a large amount of ELF by default, and the bingo contract needs a certain
bonus pool to run, so first let the account transfer ELF to the bingo contract:

90 Chapter 9. Smart Contract Developing Demos

AElf, Release release/1.2.3

// Prepare awards.
await tokenStub.Transfer.SendAsync(new TransferInput
{

To = DAppContractAddress,
Symbol = "ELF",
Amount = 100_00000000

});

Then you can start using the Bingo contract. Register

await stub.Register.SendAsync(new Empty());

After registration, take a look at PlayInformation:

// Now I have player information.
var address = Address.FromPublicKey(keyPair.PublicKey);
{

var playerInformation = await stub.GetPlayerInformation.CallAsync(address);
playerInformation.Seed.Value.ShouldNotBeEmpty();
playerInformation.RegisterTime.ShouldNotBeNull();

}

Bet, but before you can bet, you need to Approve the bingo contract:

// Play.
await tokenStub.Approve.SendAsync(new ApproveInput
{

Spender = DAppContractAddress,
Symbol = "ELF",
Amount = 10000

});
await stub.Play.SendAsync(new Int64Value {Value = 10000});

See if Bout is generated after betting.

Hash playId;
{

var playerInformation = await stub.GetPlayerInformation.CallAsync(address);
playerInformation.Bouts.ShouldNotBeEmpty();
playId = playerInformation.Bouts.First().PlayId;

}

Since the outcome requires eight blocks, you need send seven invalid transactions (these transactions will fail, but the
block height will increase) :

// Mine 7 more blocks.
for (var i = 0; i < 7; i++)
{

await stub.Bingo.SendWithExceptionAsync(playId);
}

Last check the award, and that the award amount is greater than 0 indicates you win.

await stub.Bingo.SendAsync(playId);
var award = await stub.GetAward.CallAsync(playId);
award.Value.ShouldNotBe(0);

9.1. Bingo Game 91

AElf, Release release/1.2.3

92 Chapter 9. Smart Contract Developing Demos

CHAPTER 10

Consensus

10.1 Overview

The process of reaching consensus is an essential part of every blockchain, since its what determines which transactions
get included in the block and in what order. A stable and efficient Block formation mechanism is the foundation of the
AElf system. The operation and maintenance of AElf is more complicated than Bitcoin and Ethereum, because AElf
Block formation requires the Main Chain to record information from Side Chains, and AElf is designed to provide
cloud-based enterprise services in a more complex structure. In addition, miners need to update information from
multiple parallel Chains. The Main Chain will adopt AEDPoS consensus to ensure high frequency and predictability
of Block formation, which will improve user experience.

In an AElf blockchain, consensus protocol is split into two parts: election and scheduling. Election is the process that
determines who gets to produce and scheduling decides on the when.

10.1.1 Core Data Center

Core Data Centers aka Miners or Block Producers, act as members of parliament in the world of AElf blockchain.

The AElf blockchain delegates 2N+1 Core Data Centers. N starts with 8 and increases by 1 every year.

These nodes in the AElf system enforce all of consensus rules of AElf. The purpose of these delegated mining nodes
is to enable transaction relay, transaction confirmation, packaging blocks and data transfer. As AElf adopts multi-Side

93

AElf, Release release/1.2.3

Chain architecture, Core Data Centers have to work as miners for some Side Chains. 2N+1 nodes will go through a
randomized order calculation each week.

All the Core Data Centers are elected by the ELF token hodlers. Electors can lock their ELF tokens to vote to one
Validate Data Center, thus enhance the competitiveness of certain Validate Data Center in the election process.

10.1.2 Validate Data Center

In the AElf blockchain, everyone can lock an amount of ELF tokens to announce himself joining the election. Among
all the nodes who announced joining election, top (2N+1)*5 nodes will become Validate Data Center. N starts with 8
and increases by 1 every year.

10.2 AEDPoS Process

10.2.1 Round

The AElf blockchain is running along the timeline within processing units we call a “round”.

In a round, one node (Core Data Center) will produce one block each time, while one node will have one extra
transaction at the end of the round.

Each mining node has three main properties in a specific round t:

• Private key, in_node(t), which is a value inputted from the mining node and kept privately by the mining node
itself in round t. It will become public after all block generations in round t are completed;

• Public key, out_node(t), which is the hash value of in_node(t). Every node in the aelf network can look up this
value at any time;

• Signature, sig_node(t), which is a value generated by the mining node itself in the first round. After the first
round, it can only be calculated once the previous round is completed. It is used as the signature of this mining
node in this round and it is also opened to public at all times like the out_node(t).

10.2.2 Main Processes

Pre-Verification

Before a node starts its block generation in round (t+1), it has to have its status verified in round t. In round (t+1),
in_node(t) is already published as public, and out_node(t) can be queried at any time. So to verify the status of in

94 Chapter 10. Consensus

AElf, Release release/1.2.3

round , other nodes can check hash(in_node(t)) = out_node(t).

Order Calculation

In each round N, Core Data Centers have (N+1) block generation time slots, each time slot have 1 to 8 blocks genera-
tion based on current running status in the AElf blockchain.

In the first round, the ordering of block generations as well as the signature (sig) for each node are totally arbitrary.

In the second round, the block generations are again arbitrarily ordered. However, from the second round, the sig-

nature will be calculated by sig_node(t+1) = hash(in_node(t) + all_t) where here
node[i][t], means the node is processing the i-th transaction in round t.

From round 3, the ordering within a round is generated from the ordering and the node signature from the previous
round.

In round (t+1), we traverse the signature of nodes at round t in order. The ordering of a node in (t+1) is calculated by

For cases of conflict, i.e. results pointed to places which are not empty, we point the node to the next available place.
If the node conflict is at the n-th place, we will find the available place from the first place.

10.2. AEDPoS Process 95

AElf, Release release/1.2.3

The node that processes the one extra transaction is calculated from the signature of the node in first place of the
previous round.

sig_node[0][t] is decided by:

• all the signatures from previous round (t-1);

• the in value of itself in round (t-1);

• which node generate the extra block.

So it can only be calculated after the previous round (t-1) completed. Moreover, as it needs all the signatures from the
previous round and the in value is input by each node independently, there is no way to control the ordering. The extra
block generation is used to increase the randomness. In general, we create a random system that relies on extra inputs
from outside. Based on the assumption that no node can know all other nodes’ inputs in a specific round, no one node
could control the ordering.

If one node cannot generate a block in round t, it also cannot input in its for this round. In such a case, the previous in
will be used. Since all mining nodes are voted to be reliable nodes, such a situation should not happen often. Even if
this situation does happen, the above-mentioned strategy is more than sufficient at dealing with it.

Every node only has a certain time T seconds to process transactions. Under the present network condition, T=4 is
a reasonable time consideration, meaning that every node only has 4 seconds to process transactions and submit the
result to the network. Any delegate who fails to submit within 4 seconds is considered to be abandoning the block. If
a delegate failed two times consecutively, there will be a window period calculated as W hours (W=2^N, N stands for
the number of failure) for that node.

In the systematic design, aelf defines that only one node generates blocks within a certain period. Therefore, it is
unlikely for a fork to happen in an environment where mining nodes are working under good connectivity. If multiple
orphan node groups occur due to network problems, the system will adopt the longest chain since that is 19 the chain
that most likely comes from the orphan node group with largest number of mining nodes. If a vicious node mines in
two forked Blockchains simultaneously to attack the network, that node would be voted out of the entire network.

AEDPoS mining nodes are elected in a way that resembles representative democracy. The elected nodes decide how
to hand out bonuses to the other mining nodes and stakeholders.

10.3 Irreversible Block

Which means there’re always some block links (a block height to its hash value) can never be reversible.

The block link currently is double confirmed by the AEDPoS mechanism during the Round changes.

96 Chapter 10. Consensus

CHAPTER 11

Network

11.1 Introduction

The role that the network layer plays in AElf is very important, it maintains active and healthy connections to other
peers of the network and is of course the medium through which nodes communicate and follow the chain protocol.
The network layer also implements interfaces for higher-level logic like the synchronization code and also exposes
some functionality for the node operator to administer and monitor network operations.

The design goals when designing AElf’s network layer was to avoid “reinventing the wheel” and keep things as
simply possible, we ended up choosing gRPC to implement the connections in AElf. Also, it was important to isolate
the actual implementation (the framework used) from the contract (the interfaces exposed to the higher-level layers)
to make it possible to switch implementation in the future without breaking anything.

11.2 Architecture

This section will present a summary of the different layers that are involved in network interactions.

The network is split into 3 different layers/projects, namely:

• AElf.OS

– Defines event handles related to the network.

– Defines background workers related to the network.

• AElf.OS.Core.Network

– Defines service layer exposed to higher levels.

– Contains the definitions of the infrastructure layer.

– Defines the component, types.

• AElf.OS.Network.Grpc

– The implementation of the infrastructure layer.

97

AElf, Release release/1.2.3

– Launches events defined in the core

– Low-level functionality: serialization, buffering, retrying. . .

11.2.1 AElf.OS

At the AElf.OS layer, the network monitors events of interest to the network through event handlers, such as kernel
layer transaction verification, block packaging, block execution success, and discovery of new libs. The handler will
call NetworkService to broadcast this information to its connected peer. And it will run background workers to process
network tasks regularly.

Currently, the AElf.OS layer handles those events related to the network:

• Transaction Accepted Eventthe event that the transaction pool receives the transaction and passes verification

• Block Mined Eventwhen the current node is BP, the event that the block packaging is completed.

• Block Accepted Eventthe event that the node successfully executes the block.

• New Irreversible Block Found Eventthe event that the chain found the new irreversible block.

Currently, the AElf.OS layer will periodically process the following tasks.

• Peer health check: regularly check whether the connected peer is healthy and remove the abnormally connected
peer.

• Peer retry connection: peer with abnormal connection will try to reconnect.

• Network node discovery: regularly discover more available nodes through the network.

11.2.2 AElf.OS.Core.Network

AElf.OS.Core.Network is the core module of the networkcontains services(service layer exposed to higher levels (OS))
and definitions (abstraction of the Infrastructure layer).

• Application layer implementation:

– NetworkService: this service exposes and implements functionality that is used by higher layers like the
sync and RPC modules. It takes care of the following:

* sending/receiving: it implements the functionality to request a block(s) or broadcast items to peers
by using an IPeerPool to select peers. This pool contains references to all the peers that are currently
connected.

* handling network exceptions: the lower-level library that implements the Network layer is expected
to throw a NetworkException when something went wrong during a request.

• Infrastructure layer implementation and definition:

– IPeerPool/PeerPool: manages active connections to peers.

– IPeer: an active connection to a peer. The interface defines the obvious request/response methods, it
exposes a method for the NetworkService to try and wait for recovery after some network failure. It
contains a method for getting metrics associated with the peer. You can also access information about the
peer itself (ready for requesting, IP, etc.).

– IAElfNetworkServer: manages the lifecycle of the network layer, implements listening for connections,
it is the component that accepts connections. For now, it is expected that this component launches Net-
workInitializationFinishedEvent when the connection to the boot nodes is finished.

• Definitions of types (network_types.proto and partial).

98 Chapter 11. Network

AElf, Release release/1.2.3

• Defines the event that should be launched from the infrastructure layer’s implementation.

11.2.3 AElf.OS.Network.Grpc

The AElf.OS.Network.Grpc layer is the network infrastructure layer that we implement using the gRPC framework.

• GrpcPeerimplemented the interface IPeer defined by the AElf.OS.Core.Network layer

• GrpcNetworkServer: implemented the interface IAElfNetworkServer defined by the AElf.OS.Core.Network
layer

• GrpcServerService: implemented network service interfaces, including interfaces between nodes and data ex-
change.

• Extra functionality:

– Serializing requests/deserializing responses (protobuf).

– Some form of request/response mechanism for peers (optionally with the timeout, retry, etc).

– Authentification.

In fact, gRPC is not the only option. Someone could if they wanted to replace the gRPC stack with a low-level
socket API (like the one provided by the dotnet framework) and re-implement the needed functionality. As long as the
contract (the interface) is respected, any suitable framework can be used if needed.

11.3 Protocol

Each node implements the network interface protocol defined by AElf to ensure normal operation and data synchro-
nization between nodes.

11.3.1 Connection

DoHandshake

When a node wants to connect with the current node, the current node receives the handshake information of the target
node through the interface DoHandshake. After the current node verifies the handshake information, it returns the
verification result and the handshake information of the current node to the target node.

The handshake information, in addition to being used in the verification of the connection process, will also record the
status of the other party’s chain after the connection is successful, such as the current height, Lib height, etc.

rpc DoHandshake (HandshakeRequest) returns (HandshakeReply) {}

• Handshake Message

message Handshake {
HandshakeData handshake_data = 1;
bytes signature = 2;
bytes session_id = 3;

}

– handshake_data: the data of handshake.

– signature: the signatrue of handshake data.

– session_id: randomly generated ids when nodes connect.

11.3. Protocol 99

AElf, Release release/1.2.3

• HandshakeData Message

message HandshakeData {
int32 chain_id = 1;
int32 version = 2;
int32 listening_port = 3;
bytes pubkey = 4;
aelf.Hash best_chain_hash = 5;
int64 best_chain_height = 6;
aelf.Hash last_irreversible_block_hash = 7;
int64 last_irreversible_block_height = 8;
google.protobuf.Timestamp time = 9;

}

– chain_id: the id of current chain.

– version: current version of the network.

– listening_port: the port number at which the current node network is listening.

– pubkey: the public key of the current node used by the receiver to verify the data signature.

– best_chain_hash: the lastest block hash of the best branch.

– best_chain_height: the lastest block height of the best branch.

– last_irreversible_block_hash: the hash of the last irreversible block.

– last_irreversible_block_height: the height of the last irreversible block.

– time: the time of handshake.

• HandshakeRequest Message

message HandshakeRequest {
Handshake handshake = 1;

}

– handshake: complete handshake information, including handshake data and signature.

• HandshakeReply Message

message HandshakeReply {
Handshake handshake = 1;
HandshakeError error = 2;

}

– handshake: complete handshake information, including handshake data and signature.

– error: handshake error enum.

• HandshakeError Enum

enum HandshakeError {
HANDSHAKE_OK = 0;
CHAIN_MISMATCH = 1;
PROTOCOL_MISMATCH = 2;
WRONG_SIGNATURE = 3;
REPEATED_CONNECTION = 4;
CONNECTION_REFUSED = 5;
INVALID_CONNECTION = 6;
SIGNATURE_TIMEOUT = 7;

}

100 Chapter 11. Network

AElf, Release release/1.2.3

– HANDSHAKE_OK: indicate no error actually; the default value.

– CHAIN_MISMATCH: the chain ID does not match.

– PROTOCOL_MISMATCH: the network version does not match.

– WRONG_SIGNATURE: the signature cannot be verified.

– REPEATED_CONNECTION: multiple connection requests were sent by the same peer.

– CONNECTION_REFUSED: peer actively rejects the connection, either because the other party’s connec-
tion pool is slow or because you have been added to the other party’s blacklist.

– INVALID_CONNECTION: connection error, possibly due to network instability, causing the request to
fail during the connection.

– SIGNATURE_TIMEOUT: the signature data has timed out.

3.1.2 ConfirmHandshake

When the target node verifies that it has passed the current node’s handshake message, it sends the handshake confir-
mation message again.

rpc ConfirmHandshake (ConfirmHandshakeRequest) returns (VoidReply) {}

message ConfirmHandshakeRequest {
}

11.3.2 Broadcasting

BlockBroadcastStream

The interface BlockCastStream is used to receive information about the block and its complete transaction after the
BP node has packaged the block.

rpc BlockBroadcastStream (stream BlockWithTransactions) returns (VoidReply) {}

message BlockWithTransactions {
aelf.BlockHeader header = 1;
repeated aelf.Transaction transactions = 2;

}

• header:

• transactions:

TransactionBroadcastStream

TransactionBroadcastStream used to receive other nodes forward transaction information.

rpc TransactionBroadcastStream (stream aelf.Transaction) returns (VoidReply) {}

11.3. Protocol 101

AElf, Release release/1.2.3

AnnouncementBroadcastStream

Interface AnnouncementBroadcastStream used to receive other nodes perform block after block information broadcast.

rpc AnnouncementBroadcastStream (stream BlockAnnouncement) returns (VoidReply) {}

message BlockAnnouncement {
aelf.Hash block_hash = 1;
int64 block_height = 2;

}

• block_hash: the announced block hash.

• block_height: the announced block height.

LibAnnouncementBroadcastStream

Interface LibAnnouncementBroadcastStream used to receive other nodes Lib changed Lib latest information broad-
cast.

rpc LibAnnouncementBroadcastStream (stream LibAnnouncement) returns (VoidReply) {}

message LibAnnouncement{
aelf.Hash lib_hash = 1;
int64 lib_height = 2;

}

• lib_hash: the announced last irreversible block hash.

• lib_height: the announced last irreversible block height.

11.3.3 Block Request

RequestBlock

The interface RequestBlock requests a single block in response to other nodes. Normally, the node receives block
information packaged and broadcast by BP. However, if the block is not received for some other reason. The node
may also receive BlockAnnouncement messages that are broadcast after the block has been executed by other nodes,
so that the complete block information can be obtained by calling the RequestBlock interface of other peers.

rpc RequestBlock (BlockRequest) returns (BlockReply) {}

• BlockRequest Message

message BlockRequest {
aelf.Hash hash = 1;

}

– hash: the block hash that you want to request.

• BlockReply Message

102 Chapter 11. Network

AElf, Release release/1.2.3

message BlockReply {
string error = 1;
BlockWithTransactions block = 2;

}

– error: error message.

– block: the requested block, including complete block and transactions information.

RequestBlocks

The interface RequestBlock requests blocks in bulk in response to other nodes. When a node forks or falls behind, the
node synchronizes blocks by bulk fetching a specified number of blocks to the RequestBlocks interface through which
the target node is called.

rpc RequestBlocks (BlocksRequest) returns (BlockList) {}

• BlocksRequest Message

message BlocksRequest {
aelf.Hash previous_block_hash = 1;
int32 count = 2;

}

– previous_block_hash: the previous block hash of the request blocks, and the result does not contain this
block.

– count: the number of blocks you want to request.

• BlockList Message

message BlockList {
repeated BlockWithTransactions blocks = 1;

}

– blocks: the requested blocks, including complete blocks and transactions information.

11.3.4 Peer Management

Ping

Interface Ping is used between nodes to verify that each other’s network is available.

rpc Ping (PingRequest) returns (PongReply) {}

message PingRequest {
}

message PongReply {
}

11.3. Protocol 103

AElf, Release release/1.2.3

CheckHealth

The interface CheckHealth is invoked for other nodes’ health checks, and each node periodically traverses the available
peers in its own Peer Pool to send health check requests and retries or disconnects if an exception in the Peer state is
found.

rpc CheckHealth (HealthCheckRequest) returns (HealthCheckReply) {}

message HealthCheckRequest {
}

message HealthCheckReply {
}

104 Chapter 11. Network

CHAPTER 12

Address

12.1 Overview

The changes of the state of an AElf blockchain are driven by the execution of transactions. An Address can identify
one of the participants of a transaction, that is, either transaction sender or destination. The sender is marked as From
in a transaction, and the destination is marked as To.

Actually, From can be a User Address, a Contract Address, or a Virtual Address, but To can only be a Contract
Address, which means the transaction sender wants to construct a transaction to execute a certain method in that Smart
Contract.

Here are some further explanations of all kinds of Address in an AElf blockchain.

12.2 User Address

User Address is generated from one key pair instance. One key pair is possessed by a real user of this AElf blockchain.

This is the defination of interface IAElfAsymmetricCipherKeyPair.

public interface IAElfAsymmetricCipherKeyPair
{

byte[] PrivateKey { get; }
byte[] PublicKey { get; }

}

Currently, in AElf blockchain, we use ECKeyPair to implement this interface, just like most of other blockchain
systems. Users can use aelf-command tool to generate themselves a valid ECKeyPair, thus generate a unique User
Address.

User can easily create a key pair with command line tool with the create command.

aelf-command create

105

AElf, Release release/1.2.3

Creation will be successful after you provide a valid password. When creating the key-pair (that we sometimes refer
to as the “account”) it will generate a file with the “.json” extension. This file will contain the public and private key
and will be encrypted with the password you provided before.

If you are writing a dApp you can also use the following method in the js-sdk‘, it is based on bip39 for generating a
deterministic key pair with a “mnemonic sentence” :

import Aelf from 'aelf-sdk';
Aelf.wallet.createNewWallet();

This will return an object containing the mnemonic used, the key-pair and the address. In AElf we usually encode the
address in base58. This address is derived from the public, we calculate it as the first 30 bytes of the double sha256
hash. The AElf js-sdk provides the following, that returns the address:

import Aelf from 'aelf-sdk';
const address = aelf.wallet.getAddressFromPubKey(pubKey);

Finally here is the Protobuf message we use for representing an address, it is often used by other types to represent
addresses:

option csharp_namespace = "AElf.Types";
message Address
{

bytes value = 1;
}

Also, the structure of Hash is very similar to Address.

12.3 Contract Address

Contract Address can identify a Smart Contract in an AElf blockchain. The Contract Address is calculated with chain
id and a serial number during the deployment of related Smart Contract.

private static Address BuildContractAddress(Hash chainId, long serialNumber)
{

var hash = HashHelper.ConcatAndCompute(chainId, HashHelper.
→˓ComputeFrom(serialNumber));

return Address.FromBytes(hash.ToByteArray());
}
public static Address BuildContractAddress(int chainId, long serialNumber)
{

return BuildContractAddress(HashHelper.ComputeFrom(chainId), serialNumber);
}

12.4 Contract Virtual Address

As an extended function, every contract can be added with a Hash value based on its Address, then it can obtain
unlimited virtual Addresses, this newly created address is called Virtual Address.

For example, the account transfer in AEif blockchain is to send the Transfer transaction to the MultiToken contract
along with the parameters of the recipient, transfer currency and amount, etc. One account transfer involves the sender
and recipient, and both parties are identified by the Address. In this situation, the Virtual Address, which is created
by Address and Hash algorithm, can be either party of the account transfer like the normal Address for the user or

106 Chapter 12. Address

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

AElf, Release release/1.2.3

contract. What’s more, Virtual Address can only be controlled by the primary contract, this enables the contract to
custody transactions or fundings independently for every user.

In essence, the characteristic of Virtual Address is a unique identification. As a result, the Virtual Address, which is
generated by a business action on this contract, is reliable to be used for token transferring.

12.4. Contract Virtual Address 107

AElf, Release release/1.2.3

108 Chapter 12. Address

CHAPTER 13

Overview

Transactions ultimately are what will change the state of the blockchain by calling methods on smart contracts. A
transaction is either sent to the node via RPC or received from the network. When broadcasting a transaction and if
valid it will be eventually included in a block. When this block is received and executed by the node, it will potential
change the state of contracts.

13.1 Smart Contract

In AElf blockchain, smart contracts contains a set of state definitions and a set of methods which aiming at modifing
these states.

13.2 Action & View

In AElf blockchain, there are two types of smart contract methods, actions and views. Action methods will actually
modify the state of one contract if a related transaction has included in a block and executed successfully. View
methods cannot modify the state of this contract in any case.

Developers can claim a action method in proto file like this:

rpc Vote (VoteInput) returns (google.protobuf.Empty) {
}

And claim a view method like this:

rpc GetVotingResult (GetVotingResultInput) returns (VotingResult) {
option (aelf.is_view) = true;

}

109

AElf, Release release/1.2.3

13.3 Transaction Instance

Here’s the defination of the Transaction.

option csharp_namespace = "AElf.Types";

message Transaction {
Address from = 1;
Address to = 2;
int64 ref_block_number = 3;
bytes ref_block_prefix = 4;
string method_name = 5;
bytes params = 6;
bytes signature = 10000;

}

In the js sdk, there are multiple methods to work with transactions. One important method is the getTransaction
method that will build a transaction object for you:

import Aelf from 'aelf-sdk';
var rawTxn = proto.getTransaction('65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9'
→˓'65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9', 'SomeMethod', encodedParams);

This will build the transaction to the contract at address “65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9”
that will call SomeMethod with encoded params.

13.3.1 From

The address of the sender of a transaction.

Note that the From is not currently useful because we derive it from the signature.

13.3.2 To

The address of the contract when calling a contract.

13.3.3 MethodName

The name of a method in the smart contract at the To address.

13.3.4 Params

The parameters to pass to the aforementioned method.

13.3.5 Signature

When signing a transaction it’s actually a subset of the fields: from/to and the target method as well as the parameter
that were given. It also contains the reference block number and prefix.

You can use the js-sdk to sign the transaction with the following method:

110 Chapter 13. Overview

AElf, Release release/1.2.3

import Aelf from 'aelf-sdk';
var txn = Aelf.wallet.signTransaction(rawTxn, wallet.keyPair);

13.3.6 RefBlockNumber & RefBlockPrefix

These two fields measure whether this transaction has expired. The transaction will be discarded if it is too old.

13.4 Transaction Id

The unique identity of a transaction. Transaction Id consists of a cryptographic hash of the instance basic fields,
excluding signature.

Note that the Transaction Id of transactions will be the same if the sender broadcasted several transactions with the
same origin data, and then these transactions will be regarded as one transaction even though broadcasting several
times.

13.4.1 Verify

One transaction now is verified by the node before forwarding this transaction to other nodes. If the transaction
execution is failed, the node won’t forward this transaction nor package this transaction to the producing block.

We have several transaction validationi providers such as:

• BasicTransactionValidationProvider. To verify the transaction signature and size.

• TransactionExecutionValidationProvider. To pre-execute this transaction before forwarding this transaction or
really packaging this transaction to new block.

• TransactionMethodValidationProvider. To prevent transaction which call view-only contract method from pack-
aging to new block.

13.4.2 Execution

In AElf, the transaction is executed via .net reflection mechanism.

Besides, we have some transaction execution plugins in AElf main net. The execution plugins contain pre-execution
plugins and post-execution plugins.

• FeeChargePreExecutionPlugin. This plugin is for charging method fees from transaction sender.

• MethodCallingThresholdPreExecutionPlugin. This plugin is for checking the calling threshold of a specific
contract or contract method.

• ResourceConsumptionPostExecutionPlugin. This plugin is for charging resource tokens from called contract
after transaction execution (thus we can know how much resource tokens are cost during the execution.)

13.4.3 TransactionResult

Data structure of TransactionResult:

13.4. Transaction Id 111

AElf, Release release/1.2.3

message TransactionResourceInfo {
repeated aelf.ScopedStatePath write_paths = 1;
repeated aelf.ScopedStatePath read_paths = 2;
ParallelType parallel_type = 3;
aelf.Hash transaction_id = 4;
aelf.Hash contract_hash = 5;
bool is_nonparallel_contract_code = 6;

}

112 Chapter 13. Overview

CHAPTER 14

Core

14.1 Application pattern

We follow generally accepted good practices when it comes to programming, especially those practices that make
sense to our project. Some practices are related to C# and others are more general to OOP principles (like SOLID,
DRY. . .).

Even though it’s unusual for blockchain projects, we follow a domain driven design (DDD) approach to our devel-
opment style. Part of the reason for this is that one of our main frameworks follows this approach and since the
framework is a good fit for our needs, it’s natural that we take the same design philosophy.

A few key points concerning DDD:

• traditionally, four layers: presentation, application, domain and infrastructure.

• presentation for us corresponds to any type of dApp.

• application represents exposed services mapped to the different domains.

• domain represents the specific events related to our blockchain system and also domain objects.

• finally infra are the third party libraries we use for database, networking. . .

We also have a Github issue where we list some of the coding standards that we follow while developing AElf.

14.1.1 Frameworks and libraries:

The main programming language used to code and build AElf is C# and is built with the dotnet core framework. It’s
a choice that was made due to the excellent performances observed with the framework. Dotnet core also comes with
the benefit of being cross platform, at least for the three main ones that are Windows, MacOS and Linux. Dotnet
core also is a dynamic and open source framework and comes with many advantages of current modern development
patterns and is backed by big actors in the IT space.

At a higher level we use an application framework named ABP. From a functional point of view, a blockchain node is
a set of endpoints, like RPC, P2P and cross-chain and some higher level protocol on top of this. So ABP is a natural
fit for this, because it offers a framework for building these types of applications.

113

https://github.com/AElfProject/AElf/issues/1040
https://abp.io/documents/abp/latest/Index

AElf, Release release/1.2.3

We use the XUnit framework for our unit tests. We also have some custom made frameworks for testing smart
contracts.

For lower level, we use gRPC for the cross-chain and p2p network communication. Besides for gRPC, we also use
Protobuf for serialization purposes.

14.2 Design principles:

The above diagram shows the conceptual structure of the node and the separation between OS and Kernel.

14.2.1 OS

The OS layer implements the application and infrastructure layer for the network. It also implements the high level
handlers for network events and job, like for example synchronizing the chain in reaction to a block announcement.
The OS layer also contains the RPC implementation for the exposed API.

Kernel

The kernel contains the smart contract and execution primitives and definitions. The kernel also defines the components
necessary for accessing the blockchain’s data. Various managers will use the storage layer to access the underlying
database.

The kernel also defines the notion of plugins. The diagram show that the side chain modules are implemented as
plugins.

114 Chapter 14. Core

AElf, Release release/1.2.3

Structure of the project:

To help follow AElf’s structure this section will present you with an overview of the solution.

Conceptually, AElf is built on two main layers: OS and Kernel. The OS contains the high level definition for a node
and the endpoints like RPC and p2p, whereas the kernel mainly contains logic and definitions for smart contracts and
consensus.

AElf has a native runtime for smart contracts which is implemented in C# and for contracts written in C#. The
implementation is the AElf.Runtime.CSharp.* projects.

A big part of AElf is the side chain framework. It is mainly implemented in the AElf.CrossChain namespace and
defines the main abstractions in the core project and an implementation with grpc in the AElf.Crosschain.Grpc project.

The AElf.Test solution folder contains all the tests, coverage of the main functional aspects must be at a maximum to
ensure the quality of our system.

Finally there are other projects that implement either libraries we use, like the crypto library and others for infrastruc-
ture like the database library, that are not as important but are still worth looking into.

14.2.2 Jobs and event handlers

Event handlers implement the logic that reacts to external in internal events. They are in a certain sense the higher
levels of the application (they are called by the framework in purely domain agnostic way). An event handler, mostly
using other services will influence the state of the chain.

14.2.3 Modules

We currently base our architecture on modules that get wired together at runtime. Any new module must inherit
AElfModule.

Give the need to implement a new module, it usually follows the following steps: 1. Write the event handler or the
job. 2. implement the interface and create manager or infrastructure layer interface that is needed. 3. implement the
infrastructure layer interface in the same project in it do not need add dependency. 4. implement the infrastructure
layer interface in another project, if it need third party dependency, for example, you can add GRPC / MongoDB /
MySQL in the new project.

Example: the p2p network module.

The networking code is defined amongst 2 modules: CoreOSAElfModule and GrpcNetworkModule. The OS core
defines the application service (used by other components of the node) and also implements it since it is applica-
tion/domain logic. Whereas the infrastructure layer (like the server endpoint), is defined in the OS core modules but is
implemented in another project that relies on a third party - gRPC in this case.

14.2.4 Testing

When writing a new component, event handler, method. . . It’s important for AElf’s quality to consider the correspond-
ing unit test. As said previously we have a solution-wide test folder where we place all the tests.

14.2. Design principles: 115

AElf, Release release/1.2.3

116 Chapter 14. Core

CHAPTER 15

Cross Chain

15.1 Introduction

One of the major issues with current blockchain systems is scalability. Mainly because of congestion problems of
current blockchains, the problem is that when a single chain needs to sequentially order and process transactions, in
the event of a popular dApp taking up a lot of resources, it has negative side effects on other dApps.

This is why AElf side chains were introduced in the initial design. It’s envisioned that one side-chain is responsible
for handling one or more similar business scenarios, distributing different tasks on multiple chains and improving the
overall processing efficiency.

The main idea is that the side-chains are independent and specialized to ensure that the dapps running on them can
perform efficiently and smoothly. A network link will exist between main-chain node and side-chain nodes, but the
communication is indirectly done through what’s called a Merkle root.

117

AElf, Release release/1.2.3

The diagram above illustrates the conceptual idea behind side chains.

Side chains are isolated but still need a way to interact with each other for this AElf introduces a communication
mechanism through merkle roots and indexing to enable cross chain verification scenarios.

The following sections of this documentation will give you an overview of the architecture of AElf’s side chains.
There will also be a guide explaining how to set up a main-chain and a side chain node.

15.2 Overview

Conceptually a side chain node and main chain node are similar, they are both independent blockchains, with their
own peer-to-peer network and possibly their own ecosystem. It is even possible to have this setup on multiple levels.
In terms of peer-to-peer networks, all side chains work in parallel to each other but they are linked to a main chain
node through a cross-chain communication mechanism.

Through this link, messages are exchanged and indexing is performed to ensure that transactions from the main-chain
or other side chains are verifiable in the side chain. Implementers can use AElf libraries and frameworks to build
chains.

One important aspect is the key role that the main chain plays, because its main purpose is to index the side chains.
Only the main chain indexes data about all the side chains. Side chains are independent and do not have knowledge
about each other. This means that when they need to verify what happened in other chains, they need the main chain
as a bridge to provide the cross chain verification information.

15.2.1 Node level architecture

In the current architecture, both the side chain node and the main chain node has one server and exactly one client.
This is the base for AElf’s two-way communication between main chain and side chains. Both the server and the client
are implemented as a node plugins (a node has a collection of plugins). Interaction (listening and requesting) can start
when both the nodes have started.

118 Chapter 15. Cross Chain

AElf, Release release/1.2.3

The diagram above illustrates two nodes run by an entity: one main chain node and one side chain node. Note that the
nodes don’t have to be in the same physical location.

Side chain lifetime

Side chain lifetime involves the following steps.

• Request side chain creation.

• Wait for accept on main chain.

• Start and initialize side chain and it will be indexed by main chain automatically.

• It is allowed to do cross chain verification iff side chain is indexed correctly.

Communication

When the side chain node starts it will initiate a number of different communications, here are the main points of the
protocol:

• When the side chain node is started for the first time it will request the main chain node for a chain initialization
context.

• After initialization the side chain is launched and will perform a handshake with main chain node to signal that
it is ready to be indexed.

15.2. Overview 119

AElf, Release release/1.2.3

• During the indexing process, the information of irreversible blocks will be exchanged between side chain and
main chain. The main chain will write the final result in block which is calculated with the cross chain data from
all side chains. Side chain is also recording the data in contract from main chain.

AElf provides the cross chain communication implementation with grpc.

rpc RequestIndexingFromParentChain (CrossChainRequest) returns (stream acs7.
→˓ParentChainBlockData) {}

rpc RequestIndexingFromSideChain (CrossChainRequest) returns (stream acs7.
→˓SideChainBlockData) {}

Cache

For effective indexing, a cache layer is used to store cross chain data received from remote nodes, and make it available
and correct. Cross chain data is cached by chain id and block height with a count limit. The cache layer can give the
data if cached when the node needs it. So cache layer decouples the communication part and node running logic.

Cross chain contract

Apart from the data in block, most cross chain data will be stored by the cross chain contract. Cross chain data cached
by the node is packed in transaction during the mining process and the calculated result is stored by the contract.
Actually, the cross chain data in the block is the side chain indexing result of calculations in this contract. Only with
data in this contract can cross chain verification work correctly.

Data flow

Conceptually the node is like described in the following diagram. Main/Side chain node gets the cross chain data from
the other side and put it in the local memory. Indexing transaction will be packed by miner and cross chain data would
go into State through Crosschain Contract.

15.3 Cross chain verification

Verification is the key feature that enables side chains. Because side chains do not have direct knowledge about other
side chains, they need a way to verify information from other chains. Side chains need the ability to verify that a
transaction was included in another side chains block.

120 Chapter 15. Cross Chain

AElf, Release release/1.2.3

15.3.1 Indexing

The role of the main chain node is to index all the side chains blocks. This way it knows exactly the current state of all
the side chains. Side chains also index main chain blocks and this is how they can gain knowledge about the inclusion
of transactions in other chains.

Indexing is a continuous process, the main chain is permanently gathering information from the side chains and the
side chains are permanently getting information from the main chain. When a side chain wants to verify a transaction
from another side chain it must wait until the correct main chain block has been indexed.

15.3.2 Merkle tree

Merkle tree is a basic binary tree structure. For cross-chain in AElf, leaf value is the hash from transaction data. Node
value (which is not a leaf node) is the hash calculated from its children values until to the tree root.

15.3.3 Merkle root

When a transaction gets included in a side chain’s block the block will also include a merkle root of the transactions
of this block. This root is local to this side chain’s blockchain and by itself of little value to other side chains because
they follow a different protocol. So communication between side chains goes through the main chain in the form of a
merkle path. During indexing process, main chain is going to calculate the root with the data from side chains, and side
chains in turn get the root in future indexing. This root is used for final check in cross chain transaction verification.

15.3.4 Merkle path

Merkle path is the node collection for one leaf node to calculate with to the root. Correct merkle path is necessary to
complete any work related to cross chain verification. For the transaction tx from chain A, you need the whole merkle
path root for tx to calculate the final root if you want to verify the existence of this transaction on other chains, and
verify the root by checking whether it is equal to the one obtained from indexing before.

15.3. Cross chain verification 121

AElf, Release release/1.2.3

15.4 Cross chain verify

This section will explain how to verify a transaction across chains. It assumes a side chain is already deployed and
been indexed by the main-chain.

15.4.1 Send a transaction

Any transaction with status Mined can be verified, the only pre-condition is that the transaction was indexed.

15.4.2 Verify the transaction

There’s basically two scenarios that can be considered:

• verifying a main-chain transaction.

• verifying a side-chain transaction.

rpc VerifyTransaction (VerifyTransactionInput) returns (google.protobuf.BoolValue) {
option (aelf.is_view) = true;

}

message VerifyTransactionInput {
aelf.Hash transaction_id = 1;
aelf.MerklePath path = 2;
int64 parent_chain_height = 3;
int32 verified_chain_id = 4;

}

VerifyTransaction is the view method of the cross-chain contract and that will be used to perform the verification.
It returns whether the transaction was mined and indexed by the destination chain. This method will be used in both
scenarios, what differs is the input:

122 Chapter 15. Cross Chain

AElf, Release release/1.2.3

Verify a main-chain tx

Verifying a main-chain transaction on a side chain, you can call VerifyTransaction on the side-chain with the follow-
ing input values:

• parent_chain_height - the height of the block, on the main-chain, in which the transaction was packed.

• transaction_id - the ID of the transaction that you want to verify.

• path - the merkle path from the main-chain’s web api with the GetMerklePathByTransactionIdAsync with
the ID of the transaction.

• verified_chain_id - the source chainId, here the main chain’s.

You can get the MerklePath of transaction in one block which packed it by chain’s web api with the Get-
MerklePathByTransactionIdAsync (See web api reference).

Verify a side-chain tx

First, you also need the query result of GetMerklePathByTransactionIdAsync, just like verification for a main-chain
tx.

And then if you want to verify a a side-chain transaction, you need to get the CrossChainMerkleProofContext
of this tx from the source chain. You can try the GetBoundParentChainHeightAndMerklePathByHeight method
of Crosschain contract.

The input of this api is the height of block which packed the transaction. And it will return merkle proof context

rpc GetBoundParentChainHeightAndMerklePathByHeight (google.protobuf.Int64Value)
→˓returns (CrossChainMerkleProofContext) {

option (aelf.is_view) = true;
}

message CrossChainMerkleProofContext {
int64 bound_parent_chain_height = 1;
aelf.MerklePath merkle_path_from_parent_chain = 2;

}

With the result returned by above api, you can call VerifyTransaction on the target chain with the following input
values:

• transaction_id - the ID of the transaction that you want to verify.

• parent_chain_height - use the bound_parent_chain_height field of CrossChainMerkleProofContext .

• path - the concatenation of 2 merkle paths, in order:

– the merkle path of the transaction, use the web api method GetMerklePathByTransactionIdAsync.

– use the merkle_path_from_parent_chain field from the CrossChainMerkleProofContext object.

• verified_chain_id - the source chainId, here the side chain on which the transaction was mined.

15.5 Cross chain transfer

Cross chain transfer is one of mostly used cases when it comes to cross chain verification. AElf already supports cross
chain transfer functionality in contract. This section will explain how to transfer tokens across chains. It assumes a
side chain is already deployed and been indexed by the main chain.

15.5. Cross chain transfer 123

AElf, Release release/1.2.3

The transfer will always use the same contract methods and the following two steps: - initiate the transfer - receive the
tokens

15.5.1 Prepare

Few preparing steps are required before cross chain transfer, which is to be done only once for one chain. Just ignore
this preparing part if already completed.

Let’s say that you want to transfer token FOO from chain A to chain B. Note that please make sure you are already
clear about how cross chain transaction verification works before you start. Any input containsMerklePath in the
following steps means the cross chain verification processing is needed. See cross chain verification for more details.

• Validate Token Contract address on chain A.

Send transaction tx_1 to Genesis Contract with method ValidateSystemContractAddress. You should
provide system_contract_hash_name and address of Token Contract . tx_1 would be packed in block
successfully.

rpc ValidateSystemContractAddress(ValidateSystemContractAddressInput) returns
→˓(google.protobuf.Empty){}

message ValidateSystemContractAddressInput {
aelf.Hash system_contract_hash_name = 1;
aelf.Address address = 2;

}

• Register token contract address of chain A on chain B.

Create a proposal, which is proposed to RegisterCrossChainTokenContractAddress, for the de-
fault parliament organization (check Parliament contract for more details) on chain B. Apart from cross chain
verification context, you should also provide the origin data of tx_1 and Token Contract address on chain
A.

rpc RegisterCrossChainTokenContractAddress
→˓(RegisterCrossChainTokenContractAddressInput) returns (google.protobuf.Empty) {}

message RegisterCrossChainTokenContractAddressInput{
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;
aelf.Address token_contract_address = 5;

}

• Validate TokenInfo of FOO on chain A.

Send transaction tx_2 to Token Contract with method ValidateTokenInfoExists on chain A. You
should provide TokenInfo of FOO. tx_2 would be packed in block successfully.

rpc ValidateTokenInfoExists(ValidateTokenInfoExistsInput) returns (google.
→˓protobuf.Empty){}

message ValidateTokenInfoExistsInput{
string symbol = 1;
string token_name = 2;
int64 total_supply = 3;
int32 decimals = 4;

(continues on next page)

124 Chapter 15. Cross Chain

AElf, Release release/1.2.3

(continued from previous page)

aelf.Address issuer = 5;
bool is_burnable = 6;
int32 issue_chain_id = 7;

}

• Create token FOO on chain B.

Send transaction tx_3 to Token Contract with method CrossChainCreateToken on chain B. You should
provide the origin data of tx_2 and cross chain verification context of tx_2.

rpc CrossChainCreateToken(CrossChainCreateTokenInput) returns (google.protobuf.
→˓Empty) {}

message CrossChainCreateTokenInput {
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

}

15.5.2 Initiate the transfer

On the token contract of source chain, it’s the CrossChainTransfer method that is used to trigger the transfer:

rpc CrossChainTransfer (CrossChainTransferInput) returns (google.protobuf.Empty) { }

message CrossChainTransferInput {
aelf.Address to = 1;
string symbol = 2;
sint64 amount = 3;
string memo = 4;
int32 to_chain_id = 5;
int32 issue_chain_id = 6;

}

The fields of the input:

• to - the target address to receive token

• symbol - symbol of token to be transferred

• amount - amount of token to be transferred

• memo - memo field in this transfer

• to_chain_id - destination chain id on which the tokens will be received

• issue_chain_id - the chain on which the token was issued

15.5.3 Receive on the destination chain

On the destination chain tokens need to be received, it’s the CrossChainReceiveToken method that is used to
trigger the reception:

15.5. Cross chain transfer 125

AElf, Release release/1.2.3

rpc CrossChainReceiveToken (CrossChainReceiveTokenInput) returns (google.protobuf.
→˓Empty) { }

message CrossChainReceiveTokenInput {
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transfer_transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

}

rpc GetBoundParentChainHeightAndMerklePathByHeight (aelf.Int64Value) returns
→˓(CrossChainMerkleProofContext) {

option (aelf.is_view) = true;
}

message CrossChainMerkleProofContext {
int64 bound_parent_chain_height = 1;
aelf.MerklePath merkle_path_from_parent_chain = 2;

}

Let’s review the fields of the input

• from_chain_id

the source chain id on which cross chain transfer launched

• parent_chain_height

– for the case of transfer from main chain to side chain: this parent_chain_height is the height of the block
on the main chain that contains the CrossChainTransfer transaction.

– for the case of transfer from side chain to side chain or side chain to main-chain: this parent_chain_height
is the result of GetBoundParentChainHeightAndMerklePathByHeight (input is the height of the Cross-
ChainTransfer, see cross chain verification) - accessible in the bound_parent_chain_height field.

• transfer_transaction_bytes

the serialized form of the CrossChainTransfer transaction.

• merkle_path

You should get this from the source chain but merkle path data construction differs among cases.

– for the case of transfer from main chain to side chain

* only need the merkle path from the main chain’s web api
GetMerklePathByTransactionIdAsync (CrossChainTransfer transaction ID as
input).

– for the case of transfer from side chain to side chain or from side chain to main chain

* the merkle path from the source chain’s web api GetMerklePathByTransactionIdAsync
(CrossChainTransfer transaction ID as input).

* the output of GetBoundParentChainHeightAndMerklePathByHeight method in Cross
chain Contract (CrossChainTransfer transaction’s block height as input). The path nodes
are in the merkle_path_from_parent_chain field of the CrossChainMerkleProofContext
object.

* Concat above two merkle path.

126 Chapter 15. Cross Chain

CHAPTER 16

Smart contract

16.1 Smart contract architecture

At its core, a blockchain platform can be viewed as a distributed multi-tenant database that holds the state of all the
smart contracts deployed on it. After deployment, each smart contract will have a unique address. The address is used
to scope the state and as the identifier for state queries and updates. The methods defined in the smart contract code
provides the permission checks and logics for queries and updates.

In aelf, a smart contract essentially has three parts: the interface, the state, and the business logic.

1. the interface - aelf supports smart contracts coded in multiple languages. Protobuf format is adopted as the
cross-language definition of the contract.

2. the state - the language specific SDK provides some prototypes for the state of different types, after the defi-
nation of properties of certain prototype, developers could query and update state database via accessing the
properties directly.

3. the business logic - aelf provides protobuf plugins to generate the smart contract skeleton from the contract’s
proto definition. Developers just need to fill the logics for each method by override.

Smart contracts in AElf are spread across the Kernel, the runtime and the SDK. The kernel defines the fundamental
components and infrastructure associated with smart contracts. It also defines the abstractions for execution. Smart
contract also heavily rely on the runtime modules and the sdk project.

Smart contracts, along with the blockchain’s data, form the heart of a blockchain system. They define through some
predefined logic how and according to what rules the state of the blockchain is modified.

A smart contract is a collection of methods that each act upon a particular set of state variables.

Transactions trigger the logic contained in smart contracts. If a user of the blockchain wants to modify some state, he
needs to build a transaction that will call a specific method on some contract. When the transaction is included in a
block and this block is executed, the modifications will be executed.

Smart contracts are a part of what makes dApps possible. They implement a part of the business layer: the part that
gets included in the blockchain.

127

AElf, Release release/1.2.3

What follows in this section will give you a general overview of how AElf implements smart contracts. The other
sections will walk you through different notions more specifically.

16.1.1 Architecture overview

In AElf, Smart Contracts are defined like micro-services. This makes Smart Contracts independent of specific pro-
gramming languages. This implies, for example, that our Consensus Protocol essentially becomes a service because it
is defined through Smart Contract.

As showed in the diagram above, smart contracts functionality is defined within the kernel. The kernel defines the
fundamental components and infrastructure associated with establishing smart contracts as a service: * SDK abstracts
- high-level entities that provide a hook for smart contract services to interact with the chain. * Execution - high-level
primitives defined for execution

16.1.2 Chain interactions

Smart contract need to interact with the chain and have access to contextual information. For this AElf defines a bridge
and a bridge host. Usually the programming SDK corresponding to the specific language will implement features to
communicate with/through the bridge.

One of the major functionalities provided by the bridge is the ability to provide contextual information to the smart
contract being executed. Here are a few: the Self field represents the address of the current contract being called. the
Sender is the address that sent the transaction that executed the contract, and Origin is the address that signed the
transaction. Sometimes Sender and Origin are equal.the OriginTransactionId is the ID of the transaction fetch from
transaction pool or generated by the current miner, and TransactionId is the Id of the transaction is executing, which
means this transaction could be an inline one.

The bridge also exposes extra functionality: contracts can fire Events, which are in a way similar to logging. contracts
can call a method on another contract in a read-only manner. Any state change will not be persisted to the blockchain.
Send inline - this actually creates a transaction to call another method. As opposed to calling the changes to the state -
if any - will be persisted.

State

The main point of a smart contract is to read and/or modify state. The language SDK’s implement state helpers and
through the bridge’s StateProvider.

128 Chapter 16. Smart contract

AElf, Release release/1.2.3

16.1.3 Runtime and execution

When a block’s transactions are executed, every transaction will generate a trace. Amongst other things, it contains:
the return value of the called method, this can be anything defined in protobuf format and is defined in the service
definition. error outputs, if execution encountered a problem. the results from inner calls in InlineTraces field. the
Logs field will contain the events launched from the called method.

16.1.4 Sdk

AElf comes with a native C# SDK that gives smart contract developers the necessary tools to develop smart contracts
in C#. It contains helpers to communicate with the bridge. By using the SDK, you can also take advantage of the
type infrastructure defined in the library: ContractState: an interface that is implemented by a class that is destined
to be containers for the state field. MappedState: a base type that defines collections a key-value mapping, generic
subclasses are available to enable multi-key scenarios. SingletonState: this defines non-collection types with a

Any developer or company can develop an sdk and a runtime for a specific language by creating an adapter to com-
municate with the bridge through gRPC.

16.2 Smart contract service

When writing a smart contract in AElf the first thing that need to be done is to define it so it can then be generate by
our tools. AElf contracts are defined as services that are currently defined and generated with gRPC and protobuf.

As an example, here is part of the definition of our multi-token contract. Each functionality will be explained more in
detail in their respective sections. Note that for simplicity, the contract has been simplified to show only the essential.

syntax = "proto3";

package token;
option csharp_namespace = "AElf.Contracts.MultiToken.Messages";

service TokenContract {
option (aelf.csharp_state) = "AElf.Contracts.MultiToken.TokenContractState";

// Actions
rpc Create (CreateInput) returns (google.protobuf.Empty) { }
rpc Transfer (TransferInput) returns (google.protobuf.Empty) { }

// Views
rpc GetBalance (GetBalanceInput) returns (GetBalanceOutput) {

option (aelf.is_view) = true;
}

}

For the service we have two different types of methods:

• Actions - these are normal smart contract methods that take input and output and usually modify the state of the
chain.

• Views - these methods are special in the sense that they do not modify the state of the chain. They are usually
used in some way to query the value of the contracts state.

rpc Create (CreateInput) returns (google.protobuf.Empty) { }

16.2. Smart contract service 129

AElf, Release release/1.2.3

The services takes a protobuf message as input and also returns a protobuf message as output. Note that here it returns
a special message - google.protobuf.Empty - that signifies returning nothing. As a convention we append Input to any
protobuf type that is destined to be a parameter to a service.

16.2.1 View option

rpc GetBalance (GetBalanceInput) returns (GetBalanceOutput) {
option (aelf.is_view) = true;

}

This service is annotated with a view option. This signifies that this is a readonly method and will not modify the state.

16.3 Smart contract events

16.3.1 Event option

During the execution, Events are used internally to represent events that have happened during the execution of a smart
contract. The event will be logged in the transaction traces logs (a collection of LogEvents).

message Transferred {
option (aelf.is_event) = true;
aelf.Address from = 1 [(aelf.is_indexed) = true];
aelf.Address to = 2 [(aelf.is_indexed) = true];
string symbol = 3 [(aelf.is_indexed) = true];
sint64 amount = 4;
string memo = 5;

}

Notice the option (aelf.is_event) = true; line which indicates that the Transferred message is destined
to be an event.

The following code demonstrates how to fire the event in a contract:

Context.Fire(new Transferred()
{

From = from,
To = to,
...

});

External code to the contract can monitor this after the execution of the transaction.

16.4 Smart contract messages

Here we define the concept of the message as defined by the protobuf language. We heavily use these messages to call
smart contracts and serializing their state. The following is the definition of a simple message:

message CreateInput {
string symbol = 1;
sint64 totalSupply = 2;
sint32 decimals = 3;

}

130 Chapter 16. Smart contract

AElf, Release release/1.2.3

Here we see a message with three fields of type string, sint64 and sint32. In the message, you can use any type
supported by protobuf, including composite messages, where one of your messages contains another message.

For message and service definitions, we use the proto3 version of the protobuf language. You probably won’t need to
use most of the features that are provided, but here’s the full reference for the language.

16.5 Development Requirements and Restrictions

There are several requirements and restrictions for a contract to be deployable that are classified into below categories:

16.5.1 Contract Project Requirements

Project Properties

• It is required to add ContractCode property in your contract project, so that the contract’s DLL will be post
processed by AElf’s contract patcher to perform necessary injections that are required by code checks during
deployment. Otherwise, deployment will fail.

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>
<RootNamespace>AElf.Contracts.MyContract</RootNamespace>
<GeneratePackageOnBuild>true</GeneratePackageOnBuild>

</PropertyGroup>

<PropertyGroup>
<ContractCode Include="..\..\protobuf\my_contract.proto">

<Link>Protobuf\Proto\my_contract.proto</Link>
</ContractCode>

</PropertyGroup>

• It is required to enable CheckForOverflowUnderflow for both Release and Debug mode so that your
contract will use arithmetic operators that will throw OverflowException if there is any overflow. This is
to ensure that execution will not continue in case of an overflow in your contract and result with unpredictable
output.

<PropertyGroup Condition=" '$(Configuration)' == 'Debug' ">
<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>

</PropertyGroup>

<PropertyGroup Condition=" '$(Configuration)' == 'Release' ">
<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>

</PropertyGroup>

If your contract contains any unchecked arithmetic operators, deployment will fail.

16.5.2 Contract Class Structure

Below restrictions are put in place to simplify code checks during deployment:

• Only 1 inheritance is allowed from ContractBase which is generated by the contract plugin as a nested type
in ContractContainer and only 1 inheritance will be allowed from CSharpSmartContract. If there
are multiple inheritances from ContractBase or CSharpSmartContract, code deployment will fail.

16.5. Development Requirements and Restrictions 131

https://developers.google.com/protocol-buffers/docs/proto3

AElf, Release release/1.2.3

• Only 1 inheritance will be allowed from ContractState. Similar to above, if there are multiple inheritance
from AElf.Sdk.ContractState, code check will fail.

• The type inherited from ContractState should be the element type of CSharpSmartContract generic
instance type, otherwise code check will fail.

Fig. 1: Contract Class Structure

Limitations on Field Usage

In Contract Implementation Class

• Initial value for non-readonly, non-constant fields is not allowed. (Applied to all static / non-static fields) The
reason is, their value will be reset to 0 or null after first execution and their initial value will be lost.

Allowed:

class MyContract : MyContractBase
{

int test;
static const int test = 2;

}

Not Allowed:

class MyContract : MyContractBase
{
! int test = 2;
}

class MyContract : MyContractBase
{

int test;

public MyContract

(continues on next page)

132 Chapter 16. Smart contract

AElf, Release release/1.2.3

(continued from previous page)

{
! test = 2;

}
}

• Only primitive types, or one of below types are allowed for readonly / constant fields:

Type
All Primitive Types
Marshaller<T>
Method<T, T>
MessageParser<T>
FieldCodec<T>
MapField<T, T>
ReadonlyCollection<T>
ReadonlyDictionary<T, T>

* T can only be primitive type

In Non-Contract Classes (For classes that don’t inherit from ContractBase<T>)

• Initial value for non-readonly, non-constant fields is not allowed for static fields. The reason is, their value will
be reset to 0 or null after first execution and their initial value will be lost.

Allowed:

class AnyClass
{

static int test;
}

Not Allowed:

class AnyClass
{
! static int test = 2;
}

class AnyClass
{

static int test;

public AnyClass
{

! test = 2;
}

}

Exception Case: Fields with FileDescriptor types. This is due to protobuf generated code. There are static fields
FileDescriptor type fields generated by protobuf code and these fields don’t have readonly modifier. We allow
such fields only if they are FileDescriptor type and write access to these fields are only allowed from the constructor
of the type where descriptor field is declared.

Allowed:

16.5. Development Requirements and Restrictions 133

AElf, Release release/1.2.3

public class TestType
{

private static FileDescriptor test;

public class TestType
{
test = ...

}
}

Not Allowed:

public class TestType
{

private static FileDescriptor test;

public TestType
{
test = ...

}

! public void SetFromSomeWhereElse(FileDescriptor input)
! {
! test = input;
! }
}

Accessing to set test field is restricted to its declaring type’s constructor only.

• Only below types are allowed for readonly / constant static fields:

Type
All Primitive Types
Marshaller<T>
Method<T, T>
MessageParser<T>
FieldCodec<T>
MapField<T, T>
ReadonlyCollection<T>
ReadonlyDictionary<T, T>

* T can only be primitive type

Exception Case: If a type has a readonly field same type as itself, it is only allowed if the type has no instance
field.

This is to support Linq related generated types.

Allowed:

public class TestType
{

private static readonly TestType test;

private static int i;
}

Not Allowed:

134 Chapter 16. Smart contract

AElf, Release release/1.2.3

public class TestType
{

private static readonly TestType test;

! private int i;
}

In Contract State

In contract state, only below types are allowed:

Primitive Types
BoolState
Int32State
UInt32State
Int64State
UInt64State
StringState
BytesState

Complex Types
SingletonState<T>
ReadonlyState<T>
MappedState<T, T>
MappedState<T, T, T>
MappedState<T, T, T, T>
MappedState<T, T, T, T, T>
MethodReference<T, T>
ProtobufState<T>
ContractReferenceState

16.5.3 Type and Namespace Restrictions

Nodes checks new contract code against below whitelist and if there is a usage of any type that is not covered in the
whitelist, or the method access or type name is denied in below whitelist, the deployment will fail.

16.5. Development Requirements and Restrictions 135

AElf, Release release/1.2.3

Assembly Dependencies

Assembly Trust
netstandard.dll Partial
System.Runtime.dll Partial
System.Runtime.Extensions.dll Partial
System.Private.CoreLib.dll Partial
System.ObjectModel.dll Partial
System.Linq.dll Full
System.Collections Full
Google.Protobuf.dll Full
AElf.Sdk.CSharp.dll Full
AElf.Types.dll Full
AElf.CSharp.Core.dll Full
AElf.Cryptography.dll Full

Types and Members Whitelist in System Namespace

Type Member (Field / Method) Allowed
Array AsReadOnly Allowed
Func<T> ALL Allowed
Func<T,T> ALL Allowed
Func<T,T,T> ALL Allowed
Nullable<T> ALL Allowed
Environment CurrentManagedThreadId Allowed
BitConverter GetBytes Allowed
NotImplementedException ALL Allowed
NotSupportedException ALL Allowed
ArgumentOutOfRangeException ALL Allowed
DateTime Partially Allowed
DateTime Now, UtcNow, Today Denied
Uri TryCreate Allowed
Uri Scheme Allowed
Uri UriSchemeHttp Allowed
Uri UriSchemeHttps Allowed
void ALL Allowed
object ALL Allowed
Type ALL Allowed
IDisposable ALL Allowed
Convert ALL Allowed
Math ALL Allowed
bool ALL Allowed
byte ALL Allowed
sbyte ALL Allowed
char ALL Allowed
int ALL Allowed
uint ALL Allowed
long ALL Allowed
ulong ALL Allowed

Continued on next page

136 Chapter 16. Smart contract

AElf, Release release/1.2.3

Table 1 – continued from previous page
Type Member (Field / Method) Allowed
decimal ALL Allowed
string ALL Allowed
string Constructor Denied
Byte[] ALL Allowed

Types and Members Whitelist in System.Reflection Namespace

Type Member (Field / Method) Allowed
AssemblyCompanyAttribute ALL Allowed
AssemblyConfigurationAttribute ALL Allowed
AssemblyFileVersionAttribute ALL Allowed
AssemblyInformationalVersionAttribute ALL Allowed
AssemblyProductAttribute ALL Allowed
AssemblyTitleAttribute ALL Allowed

Other Whitelisted Namespaces

Namespace Type Member Allowed
System.Linq ALL ALL Allowed
System.Collections ALL ALL Allowed
System.Collections.Generic ALL ALL Allowed
System.Collections.ObjectModel ALL ALL Allowed
System.Globalization CultureInfo InvariantCulture Allowed
System.Runtime.CompilerServices RuntimeHelpers InitializeArray Allowed
System.Text Encoding UTF8,GetByteCount Allowed

Allowed Types for Arrays

Type Array Size Limit
byte 40960
short 20480
int 10240
long 5120
ushort 20480
uint 10240
ulong 5120
decimal 2560
char 20480
string 320
Type 5
Object 5
FileDescriptor 10
GeneratedClrTypeInfo 100

16.5.4 Other Restrictions

16.5. Development Requirements and Restrictions 137

AElf, Release release/1.2.3

GetHashCode Usage

• GetHashCode method is only allowed to be called within GetHashCode methods. Calling GetHashCode meth-
ods from other methods is not allowed. This allows developers to implement their custom GetHashCode meth-
ods for their self defined types if required, and also allows protobuf generated message types.

• It is not allowed to set any field within GetHashCode methods.

Execution observer

• AElf’s contract patcher will patch method call count observer for your contract. This is used to prevent infinitely
method call like recursion. The number of method called in your contract will be counted during transaction
execution. The observer will pause transaction execution if the number exceeds 15,000. The limit adjustment is
governed by Parliament.

• AElf’s contract patcher will patch method branch count observer for your contract. This is used to prevent
infinitely loop case. The number of code control transfer in your contract will be counted during transaction
execution. The observer will pause transaction execution if the number exceeds 15,000. The limit adjustment is
governed by Parliament. The control transfer opcodes in C# contract are shown as below.

Opcode
OpCodes.Beq
OpCodes.Beq_S
OpCodes.Bge
OpCodes.Bge_S
OpCodes.Bge_Un
OpCodes.Bge_Un_S
OpCodes.Bgt
OpCodes.Bgt_S
OpCodes.Ble
OpCodes.Ble_S
OpCodes.Ble_Un
OpCodes.Blt
OpCodes.Bne_Un
OpCodes.Bne_Un_S
OpCodes.Br
OpCodes.Brfalse
OpCodes.Brfalse_S
OpCodes.Brtrue
OpCodes.Brtrue
OpCodes.Brtrue_S
OpCodes.Br_S

State size limit

• The size of data written to State would be limited every time. AElf’s contract patcher is going to patch the
code to validate your contract. As a result, you cannot write too big thing to contract and the limit is 128k by
default. The limit adjustment is governed by Parliament.

138 Chapter 16. Smart contract

CHAPTER 17

AELF API 1.0

17.1 Chain API

17.1.1 Get information about a given block by block hash. Optionally with the list
of its transactions.

GET /api/blockChain/block

Parameters

Type Name Description Schema Default
Query blockHash

optional
block hash string

Query include Transactions
optional

include transactions or not boolean "false"

Responses

HTTP Code Description Schema
200 Success BlockDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

139

AElf, Release release/1.2.3

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.2 Get information about a given block by block height. Optionally with the list
of its transactions.

GET /api/blockChain/blockByHeight

Parameters

Type Name Description Schema Default
Query blockHeight

optional

block height integer (int64)

Query include Transac-
tions

optional

include transactions
or not

boolean "false"

Responses

HTTP Code Description Schema
200 Success BlockDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.3 Get the height of the current chain.

GET /api/blockChain/blockHeight

140 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

Responses

HTTP Code Description Schema
200 Success integer (int64)

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.4 Get the current state about a given block

GET /api/blockChain/blockState

Parameters

Type Name Description Schema
Query blockHash optional block hash string

Responses

HTTP Code Description Schema
200 Success BlockStateDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1. Chain API 141

AElf, Release release/1.2.3

17.1.5 Get the current status of the block chain.

GET /api/blockChain/chainStatus

Responses

HTTP Code Description Schema
200 Success ChainStatusDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.6 Get the protobuf definitions related to a contract

GET /api/blockChain/contractFileDescriptorSet

Parameters

Type Name Description Schema
Query address optional contract address string

Responses

HTTP Code Description Schema
200 Success string (byte)

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

142 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

Tags

• BlockChain

17.1.7 POST /api/blockChain/executeRawTransaction

Parameters

Type Name Schema
Body input optional ExecuteRawTransactionDto

Responses

HTTP Code Description Schema
200 Success string

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.8 Call a read-only method on a contract.

POST /api/blockChain/executeTransaction

17.1. Chain API 143

AElf, Release release/1.2.3

Parameters

Type Name Schema
Body input optional ExecuteTransactionDto

Responses

HTTP Code Description Schema
200 Success string

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.9 Get the merkle path of a transaction.

GET /api/blockChain/merklePathByTransactionId

Parameters

Type Name Schema
Query transactionId optional string

144 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

Responses

HTTP Code Description Schema
200 Success MerklePathDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.10 Creates an unsigned serialized transaction

POST /api/blockChain/rawTransaction

Parameters

Type Name Schema
Body input optional CreateRawTransactionInput

Responses

HTTP Code Description Schema
200 Success CreateRawTransactionOutput

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

17.1. Chain API 145

AElf, Release release/1.2.3

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.11 send a transaction

POST /api/blockChain/sendRawTransaction

Parameters

Type Name Schema
Body input optional SendRawTransactionInput

Responses

HTTP Code Description Schema
200 Success SendRawTransactionOutput

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

146 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

Tags

• BlockChain

17.1.12 Broadcast a transaction

POST /api/blockChain/sendTransaction

Parameters

Type Name Schema
Body input optional SendTransactionInput

Responses

HTTP Code Description Schema
200 Success SendTransactionOutput

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.13 Broadcast multiple transactions

POST /api/blockChain/sendTransactions

17.1. Chain API 147

AElf, Release release/1.2.3

Parameters

Type Name Schema
Body input optional SendTransactionsInput

Responses

HTTP Code Description Schema
200 Success < string > array

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.14 Estimate transaction fee

POST /api/blockChain/calculateTransactionFee

Parameters

Type Name Schema Default
Body Input optional CalculateTransactionFeeInput

148 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

Responses

HTTP Code Description Schema
200 Success CalculateTransactionFeeOutput

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.15 GET /api/blockChain/taskQueueStatus

Responses

HTTP Code Description Schema
200 Success < TaskQueueInfoDto > array

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1. Chain API 149

AElf, Release release/1.2.3

17.1.16 Get the transaction pool status.

GET /api/blockChain/transactionPoolStatus

Responses

HTTP Code Description Schema
200 Success GetTransactionPoolStatusOutput

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.17 Get the current status of a transaction

GET /api/blockChain/transactionResult

Parameters

Type Name Description Schema
Query transactionId optional transaction id string

Responses

HTTP Code Description Schema
200 Success TransactionResultDto

The transaction result DTO object returned contains the transaction that contains the parameter values used for the
call. The node will return the byte array as a base64 encoded string if it can’t decode it.

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

150 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.1.18 Get multiple transaction results.

GET /api/blockChain/transactionResults

Parameters

Type Name Description Schema Default
Query blockHash optional block hash string
Query limit optional limit integer (int32) 10
Query offset optional offset integer (int32) 0

Responses

HTTP Code Description Schema
200 Success < TransactionResultDto > array

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.2 Net API

17.2.1 Get information about the node’s connection to the network.

GET /api/net/networkInfo

17.2. Net API 151

AElf, Release release/1.2.3

Responses

HTTP Code Description Schema
200 Success GetNetworkInfoOutput

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• Net

17.2.2 Attempts to add a node to the connected network nodes

POST /api/net/peer

Parameters

Type Name Schema
Body input optional AddPeerInput

Responses

HTTP Code Description Schema
200 Success boolean
401 Unauthorized

Security

• Basic Authentication

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

152 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• Net

17.2.3 Attempts to remove a node from the connected network nodes

DELETE /api/net/peer

Parameters

Type Name Description Schema
Query address optional ip address string

Responses

HTTP Code Description Schema
200 Success boolean
401 Unauthorized

Security

• Basic Authentication

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• Net

17.2. Net API 153

AElf, Release release/1.2.3

17.2.4 Get peer info about the connected network nodes

GET /api/net/peers

Parameters

Type Name Schema Default
Query withMetrics optional boolean "false"

Responses

HTTP Code Description Schema
200 Success < PeerDto > array

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

17.2.5 Definitions

AddPeerInput

Name Description Schema
Address optional ip address string

BlockBodyDto

Name Schema
Transactions optional < string > array
TransactionsCount optional integer (int32)

154 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

BlockDto

Name Schema
BlockHash optional string
Body optional BlockBodyDto
Header optional BlockHeaderDto
BlockSize optional integer (int32)

BlockHeaderDto

Name Schema
Bloom optional string
ChainId optional string
Extra optional string
Height optional integer (int64)
MerkleTreeRootOfTransactions optional string
MerkleTreeRootOfWorldState optional string
MerkleTreeRootOfTransactionState optional string
PreviousBlockHash optional string
SignerPubkey optional string
Time optional string (date-time)

BlockStateDto

Name Schema
BlockHash optional string
BlockHeight optional integer (int64)
Changes optional < string, string > map
Deletes optional < string > array
PreviousHash optional string

ChainStatusDto

Name Schema
BestChainHash optional string
BestChainHeight optional integer (int64)
Branches optional < string, integer (int64) > map
ChainId optional string
GenesisBlockHash optional string
GenesisContractAddress optional string
LastIrreversibleBlockHash optional string
LastIrreversibleBlockHeight optional integer (int64)
LongestChainHash optional string
LongestChainHeight optional integer (int64)
NotLinkedBlocks optional < string, string > map

17.2. Net API 155

AElf, Release release/1.2.3

CreateRawTransactionInput

Name Description Schema
From required from address string
MethodName required contract method name string
Params required contract method parameters string
RefBlockHash required refer block hash string
RefBlockNumber required refer block height integer (int64)
To required to address string

CreateRawTransactionOutput

Name Schema
RawTransaction optional string

ExecuteRawTransactionDto

Name Description Schema
RawTransaction optional raw transaction string
Signature optional signature string

ExecuteTransactionDto

Name Description Schema
RawTransaction optional raw transaction string

GetNetworkInfoOutput

Name Description Schema
Connections optional total number of open connections between this node and other nodes integer (int32)
ProtocolVersion optional network protocol version integer (int32)
Version optional node version string

GetTransactionPoolStatusOutput

Name Schema
Queued optional integer (int32)
Validated optional integer (int32)

156 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

LogEventDto

Name Schema
Address optional string
Indexed optional < string > array
Name optional string
NonIndexed optional string

MerklePathDto

Name Schema
MerklePathNodes optional < MerklePathNodeDto > array

MerklePathNodeDto

Name Schema
Hash optional string
IsLeftChildNode optional boolean

MinerInRoundDto

Name Schema
ActualMiningTimes optional < string (date-time) > array
ExpectedMiningTime optional string (date-time)
ImpliedIrreversibleBlockHeight optional integer (int64)
InValue optional string
MissedBlocks optional integer (int64)
Order optional integer (int32)
OutValue optional string
PreviousInValue optional string
ProducedBlocks optional integer (int64)
ProducedTinyBlocks optional integer (int32)

PeerDto

Name Schema
BufferedAnnouncementsCount optional integer (int32)
BufferedBlocksCount optional integer (int32)
BufferedTransactionsCount optional integer (int32)
ConnectionTime optional integer (int64)
Inbound optional boolean
IpAddress optional string
ProtocolVersion optional integer (int32)
RequestMetrics optional < RequestMetric > array
ConnectionStatus optional string
NodeVersion optional string

17.2. Net API 157

AElf, Release release/1.2.3

RequestMetric

Name Schema
Info optional string
MethodName optional string
RequestTime optional Timestamp
RoundTripTime optional integer (int64)

RoundDto

Name Schema
Co nfirmedIrreversibleBlockHeight optional integer (int64)
Confirm edIrreversibleBlockRoundNumber optional integer (int64)
Ext raBlockProducerOfPreviousRound optional string
IsMinerListJustChanged optional boolean
RealTimeMinerInformation optional < string, MinerInRoundDto > map
RoundId optional integer (int64)
RoundNumber optional integer (int64)
TermNumber optional integer (int64)

SendRawTransactionInput

Name Description Schema
ReturnTransaction optional return transaction detail or not boolean
Signature optional signature string
Transaction optional raw transaction string

SendRawTransactionOutput

Name Schema
Transaction optional TransactionDto
TransactionId optional string

SendTransactionInput

Name Description Schema
RawTransaction optional raw transaction string

SendTransactionOutput

Name Schema
TransactionId optional string

158 Chapter 17. AELF API 1.0

AElf, Release release/1.2.3

SendTransactionsInput

Name Description Schema
RawTransactions optional raw transactions string

TaskQueueInfoDto

Name Schema
Name optional string
Size optional integer (int32)

Timestamp

Name Schema
Nanos optional integer (int32)
Seconds optional integer (int64)

TransactionDto

Name Schema
From optional string
MethodName optional string
Params optional string
RefBlockNumber optional integer (int64)
RefBlockPrefix optional string
Signature optional string
To optional string

TransactionResultDto

Name Schema
BlockHash optional string
BlockNumber optional integer (int64)
Bloom optional string
Error optional string
Logs optional < LogEventDto > array
ReturnValue optional string
Status optional string
Transaction optional TransactionDto
TransactionId optional string
TransactionSize optional integer (int32)

17.2. Net API 159

AElf, Release release/1.2.3

CalculateTransactionFeeInput

Name Schema
RawTrasaction optional string

CalculateTransactionFeeOutput

Name Schema
Success optional bool
TransactionFee optional Dictionary<string, long>
ResourceFee optional Dictionary<string, long>

160 Chapter 17. AELF API 1.0

CHAPTER 18

Chain SDK

18.1 aelf-sdk.js - AELF JavaScript API

18.1.1 Introduction

aelf-sdk.js for aelf is like web.js for ethereum.

aelf-sdk.js is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.js, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.js

18.1.2 Adding aelf-sdk.js

First you need to get aelf-sdk.js into your project. This can be done using the following methods:

npm: npm install aelf-sdk

pure js: link dist/aelf.umd.js

After that you need to create a aelf instance and set a provider.

// in brower use: <script src="https://unpkg.com/aelf-sdk@lastest/dist/aelf.umd.js"></
→˓script>
// in node.js use: const AElf = require('aelf-sdk');
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:8000'));

18.1.3 Examples

You can also see full examples in ./examples;

161

https://github.com/AElfProject/aelf-sdk.js

AElf, Release release/1.2.3

Create instance

Create a new instance of AElf, connect to an AELF chain node.

import AElf from 'aelf-sdk';

// create a new instance of AElf
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1235'));

Create or load a wallet

Create or load a wallet with AElf.wallet

```javascript
// create a new wallet
const newWallet = AElf.wallet.createNewWallet();
// load a wallet by private key
const priviteKeyWallet = AElf.wallet.getWalletByPrivateKey('xxxxxxx');
// load a wallet by mnemonic
const mnemonicWallet = AElf.wallet.getWalletByMnemonic('set kite ...');
```

3.Get a system contract address

Get a system contract address, take AElf.ContractNames.Token as an example

const tokenContractName = 'AElf.ContractNames.Token';
let tokenContractAddress;
(async () => {
// get chain status
const chainStatus = await aelf.chain.getChainStatus();
// get genesis contract address
const GenesisContractAddress = chainStatus.GenesisContractAddress;
// get genesis contract instance
const zeroContract = await aelf.chain.contractAt(GenesisContractAddress,

→˓newWallet);
// Get contract address by the read only method `GetContractAddressByName` of

→˓genesis contract
tokenContractAddress = await zeroContract.GetContractAddressByName.call(AElf.

→˓utils.sha256(tokenContractName));
})()

4.Get a contract instance

Get a contract instance by contract address

const wallet = AElf.wallet.createNewWallet();
let tokenContract;
// Use token contract for examples to demonstrate how to get a contract instance

→˓in different ways
// in async function
(async () => {
tokenContract = await aelf.chain.contractAt(tokenContractAddress, wallet)

(continues on next page)

162 Chapter 18. Chain SDK

AElf, Release release/1.2.3

(continued from previous page)

})();

// promise way
aelf.chain.contractAt(tokenContractAddress, wallet)

.then(result => {
tokenContract = result;

});

// callback way
aelf.chain.contractAt(tokenContractAddress, wallet, (error, result) => {if

→˓(error) throw error; tokenContract = result;});

5.Use contract instance

How to use contract instance

A contract instance consists of several contract methods and methods can be called in
→˓two ways: read-only and send transaction.

(async () => {
// get the balance of an address, this would not send a transaction,
// or store any data on the chain, or required any transaction fee, only get

→˓the balance
// with `.call` method, `aelf-sdk` will only call read-only method
const result = await tokenContract.GetBalance.call({
symbol: "ELF",
owner: "7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brE1woa8vz"

});
console.log(result);
/**
{

"symbol": "ELF",
"owner": "2661mQaaPnzLCoqXPeys3Vzf2wtGM1kSrqVBgNY4JUaGBxEsX8",
"balance": "1000000000000"

}*/
// with no `.call`, `aelf-sdk` will sign and send a transaction to the chain,

→˓and return a transaction id.
// make sure you have enough transaction fee `ELF` in your wallet
const transactionId = await tokenContract.Transfer({
symbol: "ELF",
to: "7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brE1woa8vz",
amount: "1000000000",
memo: "transfer in demo"

});
console.log(transactionId);
/**
{
"TransactionId": "123123"

}

*/
})()

18.1. aelf-sdk.js - AELF JavaScript API 163

AElf, Release release/1.2.3

6.Change the node endpoint

Change the node endpoint by using aelf.setProvider

```javascript
import AElf from 'aelf-sdk';

const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1235'));
aelf.setProvider(new AElf.providers.HttpProvider('http://127.0.0.1:8000'));
```

18.1.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

parameters and returns based on the URL: https://aelf-public-node.aelf.io/swagger/index.
html

The usage of these methods is based on the AElf instance, so if you don’t have one please create it:

import AElf from 'aelf-sdk';

// create a new instance of AElf, change the URL if needed
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1235'));

1.getChainStatus

Get the current status of the block chain.

Web API path

/api/blockChain/chainStatus

Parameters

Empty

Returns

Object

• ChainId - String

• Branches - Object

• NotLinkedBlocks - Object

• LongestChainHeight - Number

• LongestChainHash - String

• GenesisBlockHash - String

• GenesisContractAddress - String

• LastIrreversibleBlockHash - String

• LastIrreversibleBlockHeight - Number

• BestChainHash - String

164 Chapter 18. Chain SDK

AElf, Release release/1.2.3

• BestChainHeight - Number

Example

aelf.chain.getChainStatus()
.then(res => {

console.log(res);
})

2.getContractFileDescriptorSet

Get the protobuf definitions related to a contract

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1. contractAddress - String address of a contract

Returns

String

Example

aelf.chain.getContractFileDescriptorSet(contractAddress)
.then(res => {
console.log(res);

})

3.getBlockHeight

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

Empty

Returns

Number

Example

aelf.chain.getBlockHeight()
.then(res => {
console.log(res);

})

4.getBlock

Get block information by block hash.

Web API path

18.1. aelf-sdk.js - AELF JavaScript API 165

AElf, Release release/1.2.3

/api/blockChain/block

Parameters

1. blockHash - String

2. includeTransactions - Boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

Object

• BlockHash - String

• Header - Object

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - Array

– Height - Number

– Time - google.protobuf.Timestamp

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - Object

– TransactionsCount - Number

– Transactions - Array

* transactionId - String

Example

aelf.chain.getBlock(blockHash, false)
.then(res => {
console.log(res);

})

5.getBlockByHeight

Web API path

/api/blockChain/blockByHeight

Get block information by block height.

Parameters

1. blockHeight - Number

2. includeTransactions - Boolean :

• true require transaction ids list in the block

166 Chapter 18. Chain SDK

AElf, Release release/1.2.3

• false Doesn’t require transaction ids list in the block

Returns

Object

• BlockHash - String

• Header - Object

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - Array

– Height - Number

– Time - google.protobuf.Timestamp

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - Object

– TransactionsCount - Number

– Transactions - Array

* transactionId - String

Example

aelf.chain.getBlockByHeight(12, false)
.then(res => {
console.log(res);

})

6.getTxResult

Get the result of a transaction

Web API path

/api/blockChain/transactionResult

Parameters

1. transactionId - String

Returns

Object

• TransactionId - String

• Status - String

• Logs - Array

– Address - String

– Name - String

18.1. aelf-sdk.js - AELF JavaScript API 167

AElf, Release release/1.2.3

– Indexed - Array

– NonIndexed - String

• Bloom - String

• BlockNumber - Number

• Transaction - Object

– From - String

– To - String

– RefBlockNumber - Number

– RefBlockPrefix - String

– MethodName - String

– Params - Object

– Signature - String

• ReadableReturnValue - Object

• Error - String

Example

aelf.chain.getTxResult(transactionId)
.then(res => {
console.log(res);

})

7.getTxResults

Get multiple transaction results in a block

Web API path

/api/blockChain/transactionResults

Parameters

1. blockHash - String

2. offset - Number

3. limit - Number

Returns Array - The array of method descriptions:

• the transaction result object

Example

aelf.chain.getTxResults(blockHash, 0, 2)
.then(res => {
console.log(res);

})

168 Chapter 18. Chain SDK

AElf, Release release/1.2.3

8.getTransactionPoolStatus

Get the transaction pool status.

Web API path

/api/blockChain/transactionPoolStatus

Parameters

Empty

9.sendTransaction

Broadcast a transaction

Web API path

/api/blockChain/sendTransaction

POST

Parameters

Object - Serialization of data into protobuf data, The object with the following structure :

• RawTransaction - String :

usually developers don’t need to use this function directly, just get a contract method and send transaction by call
contract method:

10.sendTransactions

Broadcast multiple transactions

POST

Parameters

Object - The object with the following structure :

• RawTransaction - String

11.callReadOnly

Call a read-only method on a contract.

POST

Parameters

Object - The object with the following structure :

• RawTransaction - String

18.1. aelf-sdk.js - AELF JavaScript API 169

AElf, Release release/1.2.3

12.getPeers

Get peer info about the connected network nodes

GET

Parameters

1. withMetrics - Boolean :

• true with metrics

• false without metrics

13.addPeer

Attempts to add a node to the connected network nodes

POST

Parameters

Object - The object with the following structure :

• Address - String

14.removePeer

Attempts to remove a node from the connected network nodes

DELETE

Parameters

1. address - String

15.calculateTransactionFee

Estimate transaction fee

POST

Parameters

Object - The object with the following structure :

• RawTransaction - String

16.networkInfo

Get information about the node’s connection to the network

GET

Parameters

Empty

170 Chapter 18. Chain SDK

AElf, Release release/1.2.3

18.1.5 AElf.wallet

AElf.wallet is a static property of AElf.

Use the api to see detailed results

1.createNewWallet

Returns

Object

• mnemonic - String: mnemonic

• BIP44Path - String: m/purpose’/coin_type’/account’/change/address_index

• childWallet - Object: HD Wallet

• keyPair - String: The EC key pair generated by elliptic

• privateKey - String: private Key

• address - String: address

Example

import AElf from 'aelf-sdk';
const wallet = AElf.wallet.createNewWallet();

2.getWalletByMnemonic

Parameters

1. mnemonic - String : wallet’s mnemonic

Returns

Object: Complete wallet object.

Example

const wallet = AElf.wallet.getWalletByMnemonic(mnemonic);

3.getWalletByPrivateKey

Parameters

1. privateKey: String : wallet’s private key

Returns

Object: Complete wallet object, with empty mnemonic

Example

const wallet = AElf.wallet.getWalletByPrivateKey(privateKey);

18.1. aelf-sdk.js - AELF JavaScript API 171

AElf, Release release/1.2.3

4.signTransaction

Use wallet keypair to sign a transaction

Parameters

1. rawTxn - String

2. keyPair - String

Returns

Object: The object with the following structure :

Example

const result = aelf.wallet.signTransaction(rawTxn, keyPair);

5.AESEncrypt

Encrypt a string by aes algorithm

Parameters

1. input - String

2. password - String

Returns

String

6.AESDecrypt

Decrypt by aes algorithm

Parameters

1. input - String

2. password - String

Returns

String

18.1.6 AElf.pbjs

The reference to protobuf.js, read the documentation to see how to use.

18.1.7 AElf.pbUtils

Some basic format methods of aelf.

For more information, please see the code in src/utils/proto.js. It is simple and easy to understand.

172 Chapter 18. Chain SDK

https://github.com/protobufjs/protobuf.js

AElf, Release release/1.2.3

AElf.utils

Some methods for aelf.

For more information, please see the code in src/utils/utils.js. It is simple and easy to understand.

Check address

const AElf = require('aelf-sdk');
const {base58} = AElf.utils;
base58.decode('$addresss'); // throw error if invalid

18.1.8 AElf.version

import AElf from 'aelf-sdk';
AElf.version // eg. 3.2.23

18.1.9 Requirements

• Node.js

• NPM

18.1.10 Support

18.1.11 About contributing

Read out [contributing guide]

18.1.12 About Version

https://semver.org/

18.2 aelf-sdk.cs - AELF C# API

This C# library helps in the communication with an AElf node. You can find out more here.

18.2.1 Introduction

aelf-sdk.cs is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.cs, as well as providing a API
reference documentation with examples.

18.2. aelf-sdk.cs - AELF C# API 173

https://nodejs.org
http://npmjs.com/
https://github.com/AElfProject/aelf-sdk.cs

AElf, Release release/1.2.3

If you need more information you can check out the repo : aelf-sdk.cs

18.2.2 Adding aelf-sdk.cs package

First you need to get AElf.Client package into your project. This can be done using the following methods:

Package Manager:

PM> Install-Package AElf.Client

.NET CLI

> dotnet add package AElf.Client

PackageReference

<PackageReference Include="AElf.Client" Version="X.X.X" />

18.2.3 Examples

Create instance

Create a new instance of AElfClient, and set url of an AElf chain node.

using AElf.Client.Service;

// create a new instance of AElfClient
AElfClient client = new AElfClient("http://127.0.0.1:1235");

Test connection

Check that the AElf chain node is connectable.

var isConnected = await client.IsConnectedAsync();

Initiate a transfer transaction

// Get token contract address.
var tokenContractAddress = await client.GetContractAddressByNameAsync(HashHelper.
→˓ComputeFrom("AElf.ContractNames.Token"));

var methodName = "Transfer";
var param = new TransferInput
{

To = new Address {Value = Address.FromBase58(
→˓"7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brE1woa8vz").Value},

Symbol = "ELF",
Amount = 1000000000,
Memo = "transfer in demo"

};
var ownerAddress = client.GetAddressFromPrivateKey(PrivateKey);

(continues on next page)

174 Chapter 18. Chain SDK

https://github.com/AElfProject/aelf-sdk.cs

AElf, Release release/1.2.3

(continued from previous page)

// Generate a transfer transaction.
var transaction = await client.GenerateTransaction(ownerAddress, tokenContractAddress.
→˓ToBase58(), methodName, param);
var txWithSign = client.SignTransaction(PrivateKey, transaction);

// Send the transfer transaction to AElf chain node.
var result = await client.SendTransactionAsync(new SendTransactionInput
{

RawTransaction = txWithSign.ToByteArray().ToHex()
});

await Task.Delay(4000);
// After the transaction is mined, query the execution results.
var transactionResult = await client.GetTransactionResultAsync(result.TransactionId);
Console.WriteLine(transactionResult.Status);

// Query account balance.
var paramGetBalance = new GetBalanceInput
{

Symbol = "ELF",
Owner = new Address {Value = Address.FromBase58(ownerAddress).Value}

};
var transactionGetBalance =await client.GenerateTransaction(ownerAddress,
→˓tokenContractAddress.ToBase58(), "GetBalance", paramGetBalance);
var txWithSignGetBalance = client.SignTransaction(PrivateKey, transactionGetBalance);

var transactionGetBalanceResult = await client.ExecuteTransactionAsync(new
→˓ExecuteTransactionDto
{

RawTransaction = txWithSignGetBalance.ToByteArray().ToHex()
});

var balance = GetBalanceOutput.Parser.ParseFrom(ByteArrayHelper.
→˓HexstringToByteArray(transactionGetBalanceResult));
Console.WriteLine(balance.Balance);

18.2.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AElfClient instance, so if you don’t have one please create it:

using AElf.Client.Service;

// create a new instance of AElf, change the URL if needed
AElfClient client = new AElfClient("http://127.0.0.1:1235");

GetChainStatus

Get the current status of the block chain.

Web API path

18.2. aelf-sdk.cs - AELF C# API 175

AElf, Release release/1.2.3

/api/blockChain/chainStatus

Parameters

Empty

Returns

ChainStatusDto

• ChainId - string

• Branches - Dictionary<string,long>

• NotLinkedBlocks - Dictionary<string,string>

• LongestChainHeight - long

• LongestChainHash - string

• GenesisBlockHash - string

• GenesisContractAddress - string

• LastIrreversibleBlockHash - string

• LastIrreversibleBlockHeight - long

• BestChainHash - string

• BestChainHeight - long

Example

await client.GetChainStatusAsync();

GetContractFileDescriptorSet

Get the protobuf definitions related to a contract.

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1. contractAddress - string address of a contract

Returns

byte[]

Example

await client.GetContractFileDescriptorSetAsync(address);

GetBlockHeight

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

176 Chapter 18. Chain SDK

AElf, Release release/1.2.3

Empty

Returns

long

Example

await client.GetBlockHeightAsync();

GetBlock

Get block information by block hash.

Web API path

/api/blockChain/block

Parameters

1. blockHash - string

2. includeTransactions - bool :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

BlockDto

• BlockHash - string

• Header - BlockHeaderDto

– PreviousBlockHash - string

– MerkleTreeRootOfTransactions - string

– MerkleTreeRootOfWorldState - string

– Extra - string

– Height - long

– Time - DateTime

– ChainId - string

– Bloom - string

– SignerPubkey - string

• Body - BlockBodyDto

– TransactionsCount - int

– Transactions - List<string>

Example

await client.GetBlockByHashAsync(blockHash);

18.2. aelf-sdk.cs - AELF C# API 177

AElf, Release release/1.2.3

GetBlockByHeight

Web API path

/api/blockChain/blockByHeight

Get block information by block height.

Parameters

1. blockHeight - long

2. includeTransactions - bool :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

BlockDto

• BlockHash - string

• Header - BlockHeaderDto

– PreviousBlockHash - string

– MerkleTreeRootOfTransactions - string

– MerkleTreeRootOfWorldState - string

– Extra - string

– Height - long

– Time - DateTime

– ChainId - string

– Bloom - string

– SignerPubkey - string

• Body - BlockBodyDto

– TransactionsCount - int

– Transactions - List<string>

Example

await client.GetBlockByHeightAsync(height);

GetTransactionResult

Get the result of a transaction

Web API path

/api/blockChain/transactionResult

Parameters

1. transactionId - string

178 Chapter 18. Chain SDK

AElf, Release release/1.2.3

Returns

TransactionResultDto

• TransactionId - string

• Status - string

• Logs - LogEventDto[]

– Address - string

– Name - string

– Indexed - string[]

– NonIndexed - string

• Bloom - string

• BlockNumber - long

• Transaction - TransactionDto

– From - string

– To - string

– RefBlockNumber - long

– RefBlockPrefix - string

– MethodName - string

– Params - string

– Signature - string

• Error - string

Example

await client.GetTransactionResultAsync(transactionId);

GetTransactionResults

Get multiple transaction results in a block.

Web API path

/api/blockChain/transactionResults

Parameters

1. blockHash - string

2. offset - int

3. limit - int

Returns

List<TransactionResultDto> - The array of transaction result:

• the transaction result object

Example

18.2. aelf-sdk.cs - AELF C# API 179

AElf, Release release/1.2.3

await client.GetTransactionResultsAsync(blockHash, 0, 10);

GetTransactionPoolStatus

Get the transaction pool status.

Web API path

/api/blockChain/transactionPoolStatus

Parameters

Empty

Returns

TransactionPoolStatusOutput

• Queued - int

• Validated - int

Example

await client.GetTransactionPoolStatusAsync();

SendTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendTransactionInput - Serialization of data into protobuf data:

• RawTransaction - string :

Returns

SendTransactionOutput

• TransactionId - string

Example

await client.SendTransactionAsync(input);

SendRawTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

180 Chapter 18. Chain SDK

AElf, Release release/1.2.3

Parameters

SendRawTransactionInput - Serialization of data into protobuf data:

• Transaction - string

• Signature - string

• ReturnTransaction - bool

Returns

SendRawTransactionOutput

• TransactionId - string

• Transaction - TransactionDto

Example

await client.SendRawTransactionAsync(input);

SendTransactions

Broadcast multiple transactions.

Web API path

/api/blockChain/sendTransactions

POST

Parameters

SendTransactionsInput - Serialization of data into protobuf data:

• RawTransactions - string

Returns

string[]

Example

await client.SendTransactionsAsync(input);

CreateRawTransaction

Creates an unsigned serialized transaction.

Web API path

/api/blockChain/rawTransaction

POST

Parameters

CreateRawTransactionInput

• From - string

• To - string

• RefBlockNumber - long

18.2. aelf-sdk.cs - AELF C# API 181

AElf, Release release/1.2.3

• RefBlockHash - string

• MethodName - string

• Params - string

Returns

CreateRawTransactionOutput- Serialization of data into protobuf data:

• RawTransactions - string

Example

await client.CreateRawTransactionAsync(input);

ExecuteTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeTransaction

POST

Parameters

ExecuteTransactionDto - Serialization of data into protobuf data:

• RawTransaction - string

Returns

string

Example

await client.ExecuteTransactionAsync(input);

ExecuteRawTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeRawTransaction

POST

Parameters

ExecuteRawTransactionDto - Serialization of data into protobuf data:

• RawTransaction - string

• Signature - string

Returns

string

Example

182 Chapter 18. Chain SDK

AElf, Release release/1.2.3

await client.ExecuteRawTransactionAsync(input);

GetPeers

Get peer info about the connected network nodes.

Web API path

/api/net/peers

Parameters

1. withMetrics - bool

Returns

List<PeerDto>

• IpAddress - string

• ProtocolVersion - int

• ConnectionTime - long

• ConnectionStatus - string

• Inbound - bool

• BufferedTransactionsCount - int

• BufferedBlocksCount - int

• BufferedAnnouncementsCount - int

• RequestMetrics - List<RequestMetric>

– RoundTripTime - long

– MethodName - string

– Info - string

– RequestTime - string

Example

await client.GetPeersAsync(false);

AddPeer

Attempts to add a node to the connected network nodes.

Web API path

/api/net/peer

POST

Parameters

1. ipAddress - string

18.2. aelf-sdk.cs - AELF C# API 183

AElf, Release release/1.2.3

Returns

bool

Example

await client.AddPeerAsync("127.0.0.1:7001");

RemovePeer

Attempts to remove a node from the connected network nodes.

Web API path

/api/net/peer

DELETE

Parameters

1. ipAddress - string

Returns

bool

Example

await client.RemovePeerAsync("127.0.0.1:7001");

GetNetworkInfo

Get the network information of the node.

Web API path

/api/net/networkInfo

Parameters

Empty

Returns

NetworkInfoOutput

• Version - string

• ProtocolVersion - int

• Connections - int

Example

await client.GetNetworkInfoAsync();

184 Chapter 18. Chain SDK

AElf, Release release/1.2.3

18.2.5 AElf Client

IsConnected

Verify whether this sdk successfully connects the chain.

Parameters

Empty

Returns

bool

Example

await client.IsConnectedAsync();

GetGenesisContractAddress

Get the address of genesis contract.

Parameters

Empty

Returns

string

Example

await client.GetGenesisContractAddressAsync();

GetContractAddressByName

Get address of a contract by given contractNameHash.

Parameters

1. contractNameHash - Hash

Returns

Address

Example

await client.GetContractAddressByNameAsync(contractNameHash);

GenerateTransaction

Build a transaction from the input parameters.

Parameters

1. from - string

2. to - string

18.2. aelf-sdk.cs - AELF C# API 185

AElf, Release release/1.2.3

3. methodName - string

4. input - IMessage

Returns

Transaction

Example

await client.GenerateTransactionAsync(from, to, methodName, input);

GetFormattedAddress

Convert the Address to the displayed stringsymbol_base58-string_base58-string-chain-id.

Parameters

1. address - Address

Returns

string

Example

await client.GetFormattedAddressAsync(address);

SignTransaction

Sign a transaction using private key.

Parameters

1. privateKeyHex - string

2. transaction - Transaction

Returns

Transaction

Example

client.SignTransaction(privateKeyHex, transaction);

GetAddressFromPubKey

Get the account address through the public key.

Parameters

1. pubKey - string

Returns

string

Example

186 Chapter 18. Chain SDK

AElf, Release release/1.2.3

client.GetAddressFromPubKey(pubKey);

GetAddressFromPrivateKey

Get the account address through the private key.

Parameters

1. privateKeyHex - string

Returns

string

Example

client.GetAddressFromPrivateKey(privateKeyHex);

GenerateKeyPairInfo

Generate a new account key pair.

Parameters

Empty

Returns

KeyPairInfo

• PrivateKey - string

• PublicKey - string

• Address - string

Example

client.GenerateKeyPairInfo();

18.2.6 Supports

.NET Standard 2.0

18.3 aelf-sdk.go - AELF Go API

This Go library helps in the communication with an AElf node. You can find out more here.

18.3.1 Introduction

aelf-sdk.go is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.go, as well as providing a API
reference documentation with examples.

18.3. aelf-sdk.go - AELF Go API 187

https://github.com/AElfProject/aelf-sdk.go

AElf, Release release/1.2.3

If you need more information you can check out the repo : aelf-sdk.go

18.3.2 Adding aelf-sdk.go package

First you need to get aelf-sdk.go:

> go get -u github.com/AElfProject/aelf-sdk.go

18.3.3 Examples

Create instance

Create a new instance of AElfClient, and set url of an AElf chain node.

import ("github.com/AElfProject/aelf-sdk.go/client")

var aelf = client.AElfClient{
Host: "http://127.0.0.1:8000",
Version: "1.0",
PrivateKey: "cd86ab6347d8e52bbbe8532141fc59ce596268143a308d1d40fedf385528b458

→˓",
}

Initiate a transfer transaction

// Get token contract address.
tokenContractAddress, _ := aelf.GetContractAddressByName("AElf.ContractNames.Token")
fromAddress := aelf.GetAddressFromPrivateKey(aelf.PrivateKey)
methodName := "Transfer"
toAddress, _ := util.Base58StringToAddress(
→˓"7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brE1woa8vz")

params := &pb.TransferInput{
To: toAddress,
Symbol: "ELF",
Amount: 1000000000,
Memo: "transfer in demo",

}
paramsByte, _ := proto.Marshal(params)

// Generate a transfer transaction.
transaction, _ := aelf.CreateTransaction(fromAddress, tokenContractAddress,
→˓methodName, paramsByte)
signature, _ := aelf.SignTransaction(aelf.PrivateKey, transaction)
transaction.Signature = signature

// Send the transfer transaction to AElf chain node.
transactionByets, _ := proto.Marshal(transaction)
sendResult, _ := aelf.SendTransaction(hex.EncodeToString(transactionByets))

time.Sleep(time.Duration(4) * time.Second)
transactionResult, _ := aelf.GetTransactionResult(sendResult.TransactionID)
fmt.Println(transactionResult)

(continues on next page)

188 Chapter 18. Chain SDK

https://github.com/AElfProject/aelf-sdk.go

AElf, Release release/1.2.3

(continued from previous page)

// Query account balance.
ownerAddress, _ := util.Base58StringToAddress(fromAddress)
getBalanceInput := &pb.GetBalanceInput{

Symbol: "ELF",
Owner: ownerAddress,

}
getBalanceInputByte, _ := proto.Marshal(getBalanceInput)

getBalanceTransaction, _ := aelf.CreateTransaction(fromAddress, tokenContractAddress,
→˓"GetBalance", getBalanceInputByte)
getBalanceTransaction.Params = getBalanceInputByte
getBalanceSignature, _ := aelf.SignTransaction(aelf.PrivateKey, getBalanceTransaction)
getBalanceTransaction.Signature = getBalanceSignature

getBalanceTransactionByets, _ := proto.Marshal(getBalanceTransaction)
getBalanceResult, _ := aelf.ExecuteTransaction(hex.
→˓EncodeToString(getBalanceTransactionByets))
balance := &pb.GetBalanceOutput{}
getBalanceResultBytes, _ := hex.DecodeString(getBalanceResult)
proto.Unmarshal(getBalanceResultBytes, balance)
fmt.Println(balance)

18.3.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AElfClient instance, so if you don’t have one please create it:

import ("github.com/AElfProject/aelf-sdk.go/client")

var aelf = client.AElfClient{
Host: "http://127.0.0.1:8000",
Version: "1.0",
PrivateKey: "680afd630d82ae5c97942c4141d60b8a9fedfa5b2864fca84072c17ee1f72d9d

→˓",
}

GetChainStatus

Get the current status of the block chain.

Web API path

/api/blockChain/chainStatus

Parameters

Empty

Returns

ChainStatusDto

• ChainId - string

18.3. aelf-sdk.go - AELF Go API 189

AElf, Release release/1.2.3

• Branches - map[string]interface{}

• NotLinkedBlocks - map[string]interface{}

• LongestChainHeight - int64

• LongestChainHash - string

• GenesisBlockHash - string

• GenesisContractAddress - string

• LastIrreversibleBlockHash - string

• LastIrreversibleBlockHeight - int64

• BestChainHash - string

• BestChainHeight - int64

Example

chainStatus, err := aelf.GetChainStatus()

GetContractFileDescriptorSet

Get the protobuf definitions related to a contract.

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1. contractAddress - string address of a contract

Returns

byte[]

Example

contractFile, err := aelf.GetContractFileDescriptorSet(
→˓"pykr77ft9UUKJZLVq15wCH8PinBSjVRQ12sD1Ayq92mKFsJ1i")

GetBlockHeight

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

Empty

Returns

float64

Example

190 Chapter 18. Chain SDK

AElf, Release release/1.2.3

height, err := aelf.GetBlockHeight()

GetBlock

Get block information by block hash.

Web API path

/api/blockChain/block

Parameters

1. blockHash - string

2. includeTransactions - bool :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

BlockDto

• BlockHash - string

• Header - BlockHeaderDto

– PreviousBlockHash - string

– MerkleTreeRootOfTransactions - string

– MerkleTreeRootOfWorldState - string

– Extra - string

– Height - int64

– Time - string

– ChainId - string

– Bloom - string

– SignerPubkey - string

• Body - BlockBodyDto

– TransactionsCount - int

– Transactions - []string

Example

block, err := aelf.GetBlockByHash(blockHash, true)

GetBlockByHeight

Web API path

/api/blockChain/blockByHeight

Get block information by block height.

Parameters

18.3. aelf-sdk.go - AELF Go API 191

AElf, Release release/1.2.3

1. blockHeight - int64

2. includeTransactions - bool :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

BlockDto

• BlockHash - string

• Header - BlockHeaderDto

– PreviousBlockHash - string

– MerkleTreeRootOfTransactions - string

– MerkleTreeRootOfWorldState - string

– Extra - string

– Height - int64

– Time - string

– ChainId - string

– Bloom - string

– SignerPubkey - string

• Body - BlockBodyDto

– TransactionsCount - int

– Transactions - []string

Example

block, err := aelf.GetBlockByHeight(100, true)

GetTransactionResult

Get the result of a transaction.

Web API path

/api/blockChain/transactionResult

Parameters

1. transactionId - string

Returns

TransactionResultDto

• TransactionId - string

• Status - string

• Logs - []LogEventDto

– Address - string

192 Chapter 18. Chain SDK

AElf, Release release/1.2.3

– Name - string

– Indexed - []string

– NonIndexed - string

• Bloom - string

• BlockNumber - int64

• BlockHash - string

• Transaction - TransactionDto

– From - string

– To - string

– RefBlockNumber - int64

– RefBlockPrefix - string

– MethodName - string

– Params - string

– Signature - string

• ReturnValue - string

• Error - string

Example

transactionResult, err := aelf.GetTransactionResult(transactionID)

GetTransactionResults

Get multiple transaction results in a block.

Web API path

/api/blockChain/transactionResults

Parameters

1. blockHash - string

2. offset - int

3. limit - int

Returns

[]TransactionResultDto - The array of transaction result:

• the transaction result object

Example

transactionResults, err := aelf.GetTransactionResults(blockHash, 0, 10)

18.3. aelf-sdk.go - AELF Go API 193

AElf, Release release/1.2.3

GetTransactionPoolStatus

Get the transaction pool status.

Web API path

/api/blockChain/transactionPoolStatus

Parameters

Empty

Returns

TransactionPoolStatusOutput

• Queued - int

• Validated - int

Example

poolStatus, err := aelf.GetTransactionPoolStatus()

SendTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendTransactionInput - Serialization of data into protobuf data:

• RawTransaction - string

Returns

SendTransactionOutput

• TransactionId - string

Example

sendResult, err := aelf.SendTransaction(input)

SendRawTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendRawTransactionInput - Serialization of data into protobuf data:

• Transaction - string

194 Chapter 18. Chain SDK

AElf, Release release/1.2.3

• Signature - string

• ReturnTransaction - bool

Returns

SendRawTransactionOutput

• TransactionId - string

• Transaction - TransactionDto

Example

sendRawResult, err := aelf.SendRawTransaction(input)

SendTransactions

Broadcast multiple transactions.

Web API path

/api/blockChain/sendTransactions

POST

Parameters

rawTransactions - string - Serialization of data into protobuf data:

Returns

[]interface{}

Example

results, err := aelf.SendTransactions(transactions)

CreateRawTransaction

Creates an unsigned serialized transaction.

Web API path

/api/blockChain/rawTransaction

POST

Parameters

CreateRawTransactionInput

• From - string

• To - string

• RefBlockNumber - int64

• RefBlockHash - string

• MethodName - string

• Params - string

18.3. aelf-sdk.go - AELF Go API 195

AElf, Release release/1.2.3

Returns

CreateRawTransactionOutput- Serialization of data into protobuf data:

• RawTransactions - string

Example

result, err := aelf.CreateRawTransaction(input)

ExecuteTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeTransaction

POST

Parameters

rawTransaction - string

Returns

string

Example

executeresult, err := aelf.ExecuteTransaction(rawTransaction)

ExecuteRawTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeRawTransaction

POST

Parameters

ExecuteRawTransactionDto - Serialization of data into protobuf data:

• RawTransaction - string

• Signature - string

Returns

string

Example

executeRawresult, err := aelf.ExecuteRawTransaction(executeRawinput)

196 Chapter 18. Chain SDK

AElf, Release release/1.2.3

GetPeers

Get peer info about the connected network nodes.

Web API path

/api/net/peers

Parameters

1. withMetrics - bool

Returns

[]PeerDto

• IpAddress - string

• ProtocolVersion - int

• ConnectionTime - int64

• ConnectionStatus - string

• Inbound - bool

• BufferedTransactionsCount - int

• BufferedBlocksCount - int

• BufferedAnnouncementsCount - int

• RequestMetrics - []RequestMetric

– RoundTripTime - int64

– MethodName - string

– Info - string

– RequestTime - string

Example

peers, err := aelf.GetPeers(false);

AddPeer

Attempts to add a node to the connected network nodes.

Web API path

/api/net/peer

POST

Parameters

1. ipAddress - string

Returns

bool

Example

18.3. aelf-sdk.go - AELF Go API 197

AElf, Release release/1.2.3

addResult, err := aelf.AddPeer("127.0.0.1:7001");

RemovePeer

Attempts to remove a node from the connected network nodes.

Web API path

/api/net/peer

DELETE

Parameters

1. ipAddress - string

Returns

bool

Example

removeResult, err := aelf.RemovePeer("127.0.0.1:7001");

GetNetworkInfo

Get the network information of the node.

Web API path

/api/net/networkInfo

Parameters

Empty

Returns

NetworkInfoOutput

• Version - string

• ProtocolVersion - int

• Connections - int

Example

networkInfo, err := aelf.GetNetworkInfo()

18.3.5 AElf Client

IsConnected

Verify whether this sdk successfully connects the chain.

Parameters

Empty

Returns

198 Chapter 18. Chain SDK

AElf, Release release/1.2.3

bool

Example

isConnected := aelf.IsConnected()

GetGenesisContractAddress

Get the address of genesis contract.

Parameters

Empty

Returns

string

Example

contractAddress, err := aelf.GetGenesisContractAddress()

GetContractAddressByName

Get address of a contract by given contractNameHash.

Parameters

1. contractNameHash - string

Returns

Address

Example

contractAddress, err := aelf.GetContractAddressByName("AElf.ContractNames.Token")

CreateTransaction

Build a transaction from the input parameters.

Parameters

1. from - string

2. to - string

3. methodName - string

4. params - []byte

Returns

Transaction

Example

transaction, err := aelf.CreateTransaction(fromAddress, toAddress, methodName, param)

18.3. aelf-sdk.go - AELF Go API 199

AElf, Release release/1.2.3

GetFormattedAddress

Convert the Address to the displayed stringsymbol_base58-string_base58-string-chain-id.

Parameters

1. address - string

Returns

string

Example

formattedAddress, err := aelf.GetFormattedAddress(address);

SignTransaction

Sign a transaction using private key.

Parameters

1. privateKey - string

2. transaction - Transaction

Returns

[]byte

Example

signature, err := aelf.SignTransaction(privateKey, transaction)

GetAddressFromPubKey

Get the account address through the public key.

Parameters

1. pubKey - string

Returns

string

Example

address := aelf.GetAddressFromPubKey(pubKey);

GetAddressFromPrivateKey

Get the account address through the private key.

Parameters

1. privateKey - string

200 Chapter 18. Chain SDK

AElf, Release release/1.2.3

Returns

string

Example

address := aelf.GetAddressFromPrivateKey(privateKey)

GenerateKeyPairInfo

Generate a new account key pair.

Parameters

Empty

Returns

KeyPairInfo

• PrivateKey - string

• PublicKey - string

• Address - string

Example

keyPair := aelf.GenerateKeyPairInfo()

18.3.6 Supports

Go 1.13

18.4 aelf-sdk.java - AELF Java API

This Java library helps in the communication with an AElf node. You can find out more here.

18.4.1 Introduction

aelf-sdk.java is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.java, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.java

18.4.2 Adding aelf-sdk.java package

First you need to get elf-sdk.java package into your project: MvnRepository

Maven:

18.4. aelf-sdk.java - AELF Java API 201

https://github.com/AElfProject/aelf-sdk.java
https://github.com/AElfProject/aelf-sdk.java
https://mvnrepository.com/artifact/io.aelf/aelf-sdk

AElf, Release release/1.2.3

<!-- https://mvnrepository.com/artifact/io.aelf/aelf-sdk -->
<dependency>

<groupId>io.aelf</groupId>
<artifactId>aelf-sdk</artifactId>
<version>0.X.X</version>

</dependency>

18.4.3 Examples

Create instance

Create a new instance of AElfClient, and set url of an AElf chain node.

using AElf.Client.Service;

// create a new instance of AElf, change the URL if needed
AElfClient client = new AElfClient("http://127.0.0.1:1235");

Test connection

Check that the AElf chain node is connectable.

boolean isConnected = client.isConnected();

Initiate a transfer transaction

// Get token contract address.
String tokenContractAddress = client.getContractAddressByName(privateKey, Sha256.
→˓getBytesSha256("AElf.ContractNames.Token"));

Client.Address.Builder to = Client.Address.newBuilder();
to.setValue(ByteString.copyFrom(Base58.decodeChecked(
→˓"7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brE1woa8vz")));
Client.Address toObj = to.build();

TokenContract.TransferInput.Builder paramTransfer = TokenContract.TransferInput.
→˓newBuilder();
paramTransfer.setTo(toObj);
paramTransfer.setSymbol("ELF");
paramTransfer.setAmount(1000000000);
paramTransfer.setMemo("transfer in demo");
TokenContract.TransferInput paramTransferObj = paramTransfer.build();

String ownerAddress = client.getAddressFromPrivateKey(privateKey);

Transaction.Builder transactionTransfer = client.generateTransaction(ownerAddress,
→˓tokenContractAddress, "Transfer", paramTransferObj.toByteArray());
Transaction transactionTransferObj = transactionTransfer.build();
transactionTransfer.setSignature(ByteString.copyFrom(ByteArrayHelper.
→˓hexToByteArray(client.signTransaction(privateKey, transactionTransferObj))));
transactionTransferObj = transactionTransfer.build();

(continues on next page)

202 Chapter 18. Chain SDK

AElf, Release release/1.2.3

(continued from previous page)

// Send the transfer transaction to AElf chain node.
SendTransactionInput sendTransactionInputObj = new SendTransactionInput();
sendTransactionInputObj.setRawTransaction(Hex.toHexString(transactionTransferObj.
→˓toByteArray()));
SendTransactionOutput sendResult = client.sendTransaction(sendTransactionInputObj);

Thread.sleep(4000);
// After the transaction is mined, query the execution results.
TransactionResultDto transactionResult = client.getTransactionResult(sendResult.
→˓getTransactionId());
System.out.println(transactionResult.getStatus());

// Query account balance.
Client.Address.Builder owner = Client.Address.newBuilder();
owner.setValue(ByteString.copyFrom(Base58.decodeChecked(ownerAddress)));
Client.Address ownerObj = owner.build();

TokenContract.GetBalanceInput.Builder paramGetBalance = TokenContract.GetBalanceInput.
→˓newBuilder();
paramGetBalance.setSymbol("ELF");
paramGetBalance.setOwner(ownerObj);
TokenContract.GetBalanceInput paramGetBalanceObj = paramGetBalance.build();

Transaction.Builder transactionGetBalance = client.generateTransaction(ownerAddress,
→˓tokenContractAddress, "GetBalance", paramGetBalanceObj.toByteArray());
Transaction transactionGetBalanceObj = transactionGetBalance.build();
String signature = client.signTransaction(privateKey, transactionGetBalanceObj);
transactionGetBalance.setSignature(ByteString.copyFrom(ByteArrayHelper.
→˓hexToByteArray(signature)));
transactionGetBalanceObj = transactionGetBalance.build();

ExecuteTransactionDto executeTransactionDto = new ExecuteTransactionDto();
executeTransactionDto.setRawTransaction(Hex.toHexString(transactionGetBalanceObj.
→˓toByteArray()));
String transactionGetBalanceResult = client.executeTransaction(executeTransactionDto);

TokenContract.GetBalanceOutput balance = TokenContract.GetBalanceOutput.
→˓getDefaultInstance().parseFrom(ByteArrayHelper.
→˓hexToByteArray(transactionGetBalanceResult));
System.out.println(balance.getBalance());

18.4.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AElfClient instance, so if you don’t have one please create it:

using AElf.Client.Service;

// create a new instance of AElf, change the URL if needed
AElfClient client = new AElfClient("http://127.0.0.1:1235");

18.4. aelf-sdk.java - AELF Java API 203

AElf, Release release/1.2.3

GetChainStatus

Get the current status of the block chain.

Web API path

/api/blockChain/chainStatus

Parameters

Empty

Returns

ChainStatusDto

• ChainId - String

• Branches - HashMap<String, Long>

• NotLinkedBlocks - ashMap<String, String>

• LongestChainHeight - long

• LongestChainHash - String

• GenesisBlockHash - String

• GenesisContractAddress - String

• LastIrreversibleBlockHash - String

• LastIrreversibleBlockHeight - long

• BestChainHash - String

• BestChainHeight - long

Example

client.getChainStatus();

GetContractFileDescriptorSet

Get the protobuf definitions related to a contract.

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1. contractAddress - String address of a contract

Returns

byte[]

Example

client.getContractFileDescriptorSet(address);

204 Chapter 18. Chain SDK

AElf, Release release/1.2.3

GetBlockHeight

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

Empty

Returns

long

Example

client.getBlockHeight();

GetBlock

Get block information by block hash.

Web API path

/api/blockChain/block

Parameters

1. blockHash - String

2. includeTransactions - boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

BlockDto

• BlockHash - String

• Header - BlockHeaderDto

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - String

– Height - long

– Time - Date

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - BlockBodyDto

– TransactionsCount - int

18.4. aelf-sdk.java - AELF Java API 205

AElf, Release release/1.2.3

– Transactions - List<String>

Example

client.getBlockByHash(blockHash);

GetBlockByHeight

Web API path

/api/blockChain/blockByHeight

Get block information by block height.

Parameters

1. blockHeight - long

2. includeTransactions - boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

BlockDto

• BlockHash - String

• Header - BlockHeaderDto

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - String

– Height - long

– Time - Date

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - BlockBodyDto

– TransactionsCount - int

– Transactions - List<String>

Example

client.getBlockByHeight(height);

206 Chapter 18. Chain SDK

AElf, Release release/1.2.3

GetTransactionResult

Get the result of a transaction.

Web API path

/api/blockChain/transactionResult

Parameters

1. transactionId - String

Returns

TransactionResultDto

• TransactionId - String

• Status - String

• Logs - ist<LogEventDto>

– Address - String

– Name - String

– Indexed - List<String>

– NonIndexed - String

• Bloom - String

• BlockNumber - long

• Transaction - TransactionDto

– From - String

– To - String

– RefBlockNumber - long

– RefBlockPrefix - String

– MethodName - String

– Params - String

– Signature - String

• Error - String

Example

client.getTransactionResult(transactionId);

GetTransactionResults

Get multiple transaction results in a block.

Web API path

/api/blockChain/transactionResults

Parameters

1. blockHash - String

18.4. aelf-sdk.java - AELF Java API 207

AElf, Release release/1.2.3

2. offset - int

3. limit - int

Returns

List<TransactionResultDto> - The array of transaction result:

• the transaction result object

Example

client.getTransactionResults(blockHash, 0, 10);

GetTransactionPoolStatus

Get the transaction pool status.

Web API path

/api/blockChain/transactionPoolStatus

Parameters

Empty

Returns

TransactionPoolStatusOutput

• Queued - int

• Validated - int

Example

client.getTransactionPoolStatus();

SendTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendTransactionInput - Serialization of data into protobuf data:

• RawTransaction - String

Returns

SendTransactionOutput

• TransactionId - String

Example

client.sendTransaction(input);

208 Chapter 18. Chain SDK

AElf, Release release/1.2.3

SendRawTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendRawTransactionInput - Serialization of data into protobuf data:

• Transaction - String

• Signature - String

• ReturnTransaction - boolean

Returns

SendRawTransactionOutput

• TransactionId - String

• Transaction - TransactionDto

Example

client.sendRawTransaction(input);

SendTransactions

Broadcast multiple transactions.

Web API path

/api/blockChain/sendTransactions

POST

Parameters

SendTransactionsInput - Serialization of data into protobuf data:

• RawTransactions - String

Returns

List<String>

Example

client.sendTransactions(input);

CreateRawTransaction

Creates an unsigned serialized transaction.

Web API path

/api/blockChain/rawTransaction

POST

18.4. aelf-sdk.java - AELF Java API 209

AElf, Release release/1.2.3

Parameters

CreateRawTransactionInput

• From - String

• To - String

• RefBlockNumber - long

• RefBlockHash - String

• MethodName - String

• Params - String

Returns

CreateRawTransactionOutput- Serialization of data into protobuf data:

• RawTransaction - String

Example

client.createRawTransaction(input);

ExecuteTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeTransaction

POST

Parameters

ExecuteTransactionDto - Serialization of data into protobuf data:

• RawTransaction - String

Returns

String

Example

client.executeTransaction(input);

ExecuteRawTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeRawTransaction

POST

Parameters

ExecuteRawTransactionDto - Serialization of data into protobuf data:

• RawTransaction - String

210 Chapter 18. Chain SDK

AElf, Release release/1.2.3

• Signature - String

Returns

String

Example

client.executeRawTransaction(input);

GetPeers

Get peer info about the connected network nodes.

Web API path

/api/net/peers

Parameters

1. withMetrics - boolean

Returns

List<PeerDto>

• IpAddress - String

• ProtocolVersion - int

• ConnectionTime - long

• ConnectionStatus - String

• Inbound - boolean

• BufferedTransactionsCount - int

• BufferedBlocksCount - int

• BufferedAnnouncementsCount - int

• RequestMetrics - List<RequestMetric>

– RoundTripTime - long

– MethodName - String

– Info - String

– RequestTime - String

Example

client.getPeers(false);

AddPeer

Attempts to add a node to the connected network nodes.

Web API path

/api/net/peer

POST

18.4. aelf-sdk.java - AELF Java API 211

AElf, Release release/1.2.3

Parameters

AddPeerInput

• Address - String

Returns

boolean

Example

client.addPeer("127.0.0.1:7001");

RemovePeer

Attempts to remove a node from the connected network nodes.

Web API path

/api/net/peer

DELETE

Parameters

1. address - String

Returns

boolean

Example

client.removePeer("127.0.0.1:7001");

GetNetworkInfo

Get the network information of the node.

Web API path

/api/net/networkInfo

Parameters

Empty

Returns

NetworkInfoOutput

• Version - String

• ProtocolVersion - int

• Connections - int

Example

client.getNetworkInfo();

212 Chapter 18. Chain SDK

AElf, Release release/1.2.3

18.4.5 AElf Client

IsConnected

Verify whether this sdk successfully connects the chain.

Parameters

Empty

Returns

boolean

Example

client.isConnected();

GetGenesisContractAddress

Get the address of genesis contract.

Parameters

Empty

Returns

String

Example

client.getGenesisContractAddress();

GetContractAddressByName

Get address of a contract by given contractNameHash.

Parameters

1. privateKey - String

2. contractNameHash - byte[]

Returns

String

Example

client.getContractAddressByName(privateKey, contractNameHash);

GenerateTransaction

Build a transaction from the input parameters.

Parameters

1. from - String

18.4. aelf-sdk.java - AELF Java API 213

AElf, Release release/1.2.3

2. to - String

3. methodName - String

4. input - byte[]

Returns

Transaction

Example

client.generateTransaction(from, to, methodName, input);

GetFormattedAddress

Convert the Address to the displayed stringsymbol_base58-string_base58-String-chain-id.

Parameters

1. privateKey - String

2. address - String

Returns

String

Example

client.getFormattedAddress(privateKey, address);

SignTransaction

Sign a transaction using private key.

Parameters

1. privateKeyHex - String

2. transaction - Transaction

Returns

String

Example

client.signTransaction(privateKeyHex, transaction);

GetAddressFromPubKey

Get the account address through the public key.

Parameters

1. pubKey - String

214 Chapter 18. Chain SDK

AElf, Release release/1.2.3

Returns

String

Example

client.getAddressFromPubKey(pubKey);

GetAddressFromPrivateKey

Get the account address through the private key.

Parameters

1. privateKey - String

Returns

String

Example

client.getAddressFromPrivateKey(privateKey);

GenerateKeyPairInfo

Generate a new account key pair.

Parameters

Empty

Returns

KeyPairInfo

• PrivateKey - String

• PublicKey - String

• Address - String

Example

client.generateKeyPairInfo();

18.4.6 Supports

• JDK1.8+

• Log4j2.6.2

18.5 aelf-sdk.php - AELF PHP API

18.5.1 Introduction

aelf-sdk.php for aelf is like web.js for ethereum.

18.5. aelf-sdk.php - AELF PHP API 215

AElf, Release release/1.2.3

aelf-sdk.php is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.php, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.php)

18.5.2 Adding AElf php SDK

In order to install this library via composer run the following command in the console:

$ composer require aelf/aelf-sdk dev-dev

composer require curl/curl

If you directly clone the sdk You must install composer and execute it in the root directory

"aelf/aelf-sdk": "dev-dev"

18.5.3 Examples

You can also see full examples in ./test;

1.Create instance

Create a new instance of AElf, connect to an AELF chain node. Using this instance, you can call the APIs on AElf.

require_once 'vendor/autoload.php';
use AElf\AElf;
$url = '127.0.0.1:8000';
$aelf = new AElf($url);

2.Get a system contract address

Get a system contract address, take AElf.ContractNames.Token as an example

require_once 'vendor/autoload.php';
use AElf\AElf;
$url = '127.0.0.1:8000';
$aelf = new AElf($url);

$privateKey = 'cd86ab6347d8e52bbbe8532141fc59ce596268143a308d1d40fedf385528b458';
$bytes = new Hash();
$bytes->setValue(hex2bin(hash('sha256', 'AElf.ContractNames.Token')));
$contractAddress = $aelf->GetContractAddressByName($privateKey, $bytes);

3.Send a transaction

Get the contract address, and then send the transaction.

216 Chapter 18. Chain SDK

https://github.com/AElfProject/aelf-sdk.php

AElf, Release release/1.2.3

require_once 'vendor/autoload.php';
use AElf\AElf;
$url = '127.0.0.1:8000';
// create a new instance of AElf
$aelf = new AElf($url);

// private key
$privateKey = 'cd86ab6347d8e52bbbe8532141fc59ce596268143a308d1d40fedf385528b458';

$aelfEcdsa = new BitcoinECDSA();
$aelfEcdsa->setPrivateKey($privateKey);
$publicKey = $aelfEcdsa->getUncompressedPubKey();
$address = $aelfEcdsa->hash256(hex2bin($publicKey));
$address = $address . substr($aelfEcdsa->hash256(hex2bin($address)), 0, 8);
// sender address
$base58Address = $aelfEcdsa->base58_encode($address);

// transaction input
$params = new Hash();
$params->setValue(hex2bin(hash('sha256', 'AElf.ContractNames.Vote')));

// transaction method name
$methodName = "GetContractAddressByName";

// transaction contract address
$toAddress = $aelf->getGenesisContractAddress();

// generate a transaction
$transactionObj = aelf->generateTransaction($base58Address, $toAddress, $methodName,
→˓$params);

//signature
$signature = $aelf->signTransaction($privateKey, $transactionObj);
$transactionObj->setSignature(hex2bin($signature));

// obj Dto
$executeTransactionDtoObj = ['RawTransaction' => bin2hex($transaction->
→˓serializeToString())];

$result = $aelf->sendTransaction($executeTransactionDtoObj);
print_r($result);

18.5.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AElf instance, so if you don’t have one please create it:

require_once 'vendor/autoload.php';
use AElf\AElf;
$url = '127.0.0.1:8000';
// create a new instance of AElf
$aelf = new AElf($url);

18.5. aelf-sdk.php - AELF PHP API 217

AElf, Release release/1.2.3

1.getChainStatus

Get the current status of the block chain.

Web API path

/api/blockChain/chainStatus

Parameters

Empty

Returns

Array

• ChainId - String

• Branches - Array

• NotLinkedBlocks - Array

• LongestChainHeight - Integer

• LongestChainHash - String

• GenesisBlockHash - String

• GenesisContractAddress - String

• LastIrreversibleBlockHash - String

• LastIrreversibleBlockHeight - Integer

• BestChainHash - String

• BestChainHeight - Integer

Example

// create a new instance of AElf
$aelf = new AElf($url);

$chainStatus = $aelf->getChainStatus();
print_r($chainStatus);

2.getBlockHeight

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

Empty

Returns

Integer

Example

218 Chapter 18. Chain SDK

AElf, Release release/1.2.3

$aelf = new AElf($url);

$height = $aelfClient->GetBlockHeight();
print($height);

3.getBlock

Get block information by block hash.

Web API path

/api/blockChain/block

Parameters

1. block_hash - String

2. include_transactions - Boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

Array

• BlockHash - String

• Header - Array

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - List

– Height - Integer

– Time - String

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - Array

– TransactionsCount - Integer

– Transactions - Array

* transactionId - String

Example

$aelf = new AElf($url);

$block = $aelf->getBlockByHeight(1, true);
$block2 = $aelf->getBlockByHash($block['BlockHash'], false);
print_r($block2);

18.5. aelf-sdk.php - AELF PHP API 219

AElf, Release release/1.2.3

4.getBlockByHeight

Web API path

/api/blockChain/blockByHeight

Get block information by block height.

Parameters

1. block_height - Number

2. include_transactions - Boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

Array

• BlockHash - String

• Header - Array

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - List

– Height - Integer

– Time - String

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - Array

– TransactionsCount - Integer

– Transactions - Array

* transactionId - String

Example

$aelf = new AElf($url);

$block = $aelf->getBlockByHeight(1, true);
print_r($block);

5.getTransactionResult

Get the result of a transaction

Web API path

/api/blockChain/transactionResult

220 Chapter 18. Chain SDK

AElf, Release release/1.2.3

Parameters

1. transactionId - String

Returns

Object

• TransactionId - String

• Status - String

• Logs - Array

– Address - String

– Name - String

– Indexed - Array

– NonIndexed - String

• Bloom - String

• BlockNumber - Integer

• Transaction - Array

– From - String

– To - String

– RefBlockNumber - Integer

– RefBlockPrefix - String

– MethodName - String

– Params - json

– Signature - String

• ReadableReturnValue - String

• Error - String

Example

$aelf = new AElf($url);

$block = $aelf->getBlockByHeight(1, true);
$transactionResult = $aelf->getTransactionResult($block['Body']['Transactions'][0]);
print_r('# get_transaction_result');
print_r($transactionResult);

6.getTransactionResults

Get multiple transaction results in a block

Web API path

/api/blockChain/transactionResults

Parameters

1. blockHash - String

18.5. aelf-sdk.php - AELF PHP API 221

AElf, Release release/1.2.3

2. offset - Number

3. limit - Number

Returns

List - The array of method descriptions:

• the transaction result object

Example

$aelf = new AElf($url);

$block = $aelf->getBlockByHeight(1, true);
$transactionResults = $aelf->getTransactionResults($block['Body']);
print_r($transactionResults);

7.getTransactionPoolStatus

Get the transaction pool status.

Web API path

/api/blockChain/transactionPoolStatus

Example

$aelf = new AElf($url);

$status = $aelf->getTransactionPoolStatus();
print_r($status);

8.sendTransaction

Broadcast a transaction

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transaction - String - Serialization of data into String

Example

$aelf = new AElf($url);

$params = new Hash();
$params->setValue(hex2bin(hash('sha256', 'AElf.ContractNames.Vote')));
$transaction = buildTransaction($aelf->getGenesisContractAddress(),
→˓'GetContractAddressByName', $params);
$executeTransactionDtoObj = ['RawTransaction' => bin2hex($transaction->
→˓serializeToString())];
$result = $aelf->sendTransaction($executeTransactionDtoObj);
print_r($result);

222 Chapter 18. Chain SDK

AElf, Release release/1.2.3

9.sendTransactions

Broadcast multiple transactions

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transactions - String - Serialization of data into String

Example

$aelf = new AElf($url);

$paramsList = [$params1, $params2];
$rawTransactionsList = [];
foreach ($paramsList as $param) {

$transactionObj = buildTransaction($toAddress, $methodName, $param);
$rawTransactions = bin2hex($transactionObj->serializeToString());
array_push($rawTransactionsList, $rawTransactions);

}
$sendTransactionsInputs = ['RawTransactions' => implode(',', $rawTransactionsList)];
$listString = $this->aelf->sendTransactions($sendTransactionsInputs);
print_r($listString);

10.getPeers

Get peer info about the connected network nodes

Web API path

/api/net/peers

Example

$aelf = new AElf($url);

print_r($aelf->getPeers(true));

11.addPeer

Attempts to add a node to the connected network nodes

Web API path

/api/net/peer

POST

Parameters

peer_address - String - peer’s endpoint

Example

18.5. aelf-sdk.php - AELF PHP API 223

AElf, Release release/1.2.3

$aelf = new AElf($url);

$aelf->addPeer($url);

12.removePeer

Attempts to remove a node from the connected network nodes

Web API path

/api/net/peer?address=

POST

Parameters

peer_address - String - peer’s endpoint

Example

$aelf = new AElf($url);

$aelf->removePeer($url);

13.createRawTransaction

create a raw transaction

Web API path

/api/blockchain/rawTransaction

POST

Parameters

1. transaction - Array

Returns

Array

• RawTransaction - hex string bytes generated by transaction information

Example

$aelf = new AElf($url);

$status = $aelf->getChainStatus();
$params = base64_encode(hex2bin(hash('sha256', 'AElf.ContractNames.Consensus')));
$param = array('value' => $params);
$transaction = [

"from" => $aelf->getAddressFromPrivateKey($privateKey),
"to" => $aelf->getGenesisContractAddress(),
"refBlockNumber" => $status['BestChainHeight'],
"refBlockHash" => $status['BestChainHash'],
"methodName" => "GetContractAddressByName",
"params" => json_encode($param)

];

(continues on next page)

224 Chapter 18. Chain SDK

AElf, Release release/1.2.3

(continued from previous page)

$rawTransaction = $aelf->createRawTransaction($transaction);
print_r($rawTransaction);

14.sendRawTransaction

send raw transactions

Web API path

/api/blockchain/sendRawTransaction

Parameters

1. Transaction - raw transaction

2. Signature - signature

3. ReturnTransaction - indicates whether to return transaction

Example

$aelf = new AElf($url);

$rawTransaction = $aelf->createRawTransaction($transaction);
$transactionId = hash('sha256', hex2bin($rawTransaction['RawTransaction']));
$sign = $aelf->getSignatureWithPrivateKey($privateKey, $transactionId);
$transaction = array('Transaction' => $rawTransaction['RawTransaction'], 'signature'
→˓=> $sign, 'returnTransaction' => true);
$execute = $aelf->sendRawTransaction($transaction);
print_r($execute);

15.executeRawTransaction

execute raw transactions

Web API path

/api/blockchain/executeRawTransaction

Post

Parameters

1. RawTransaction - raw transaction

2. Signature - signature

Example

$aelf = new AElf($url);

$rawTransaction = $aelf->createRawTransaction($transaction);
$transactionId = hash('sha256', hex2bin($rawTransaction['RawTransaction']));
$sign = $aelf->getSignatureWithPrivateKey($privateKey, $transactionId);
$transaction = array('RawTransaction' => $rawTransaction['RawTransaction'], 'signature
→˓' => $sign);
$execute = $aelf->executeRawTransaction($transaction);
print_r($execute);

18.5. aelf-sdk.php - AELF PHP API 225

AElf, Release release/1.2.3

16.getMerklePathByTransactionId

get merkle path

Web API path

/api/blockchain/merklePathByTransactionId?transactionId=

Parameters

1. transactionId - String

Example

$aelf = new AElf($url);

$block = $aelf->getBlockByHeight(1, true);
$merklePath = $aelf->getMerklePathByTransactionId($block['Body']['Transactions'][0]);

17.getNetworkInfo

get network information

Web API path

/api/net/networkInfo

Example

$aelf = new AElf($url);

print_r($aelf->getNetworkInfo());

18.getContractFileDescriptorSet

get contract file descriptor set

Web API path

/api/blockChain/contractFileDescriptorSet

Example

$aelf = new AElf($url);

$blockDto = $aelf->getBlockByHeight($blockHeight, false);
$transactionResultDtoList = $aelf->getTransactionResults($blockDto['BlockHash'], 0,
→˓10);
foreach ($transactionResultDtoList as $v) {

$request = $aelf->getContractFileDescriptorSet($v['Transaction']['To']);
print_r($request);

}

19.getTaskQueueStatus

get task queue status

Web API path

226 Chapter 18. Chain SDK

AElf, Release release/1.2.3

/api/blockChain/taskQueueStatus

Example

$aelf = new AElf($url);

$taskQueueStatus = $aelf->getTaskQueueStatus();
print_r($taskQueueStatus);

20.executeTransaction

execute transaction

Web API path

Post

/api/blockChain/executeTransaction

Example

$aelf = new AElf($url);

$methodName = "GetNativeTokenInfo";
$bytes = new Hash();
$bytes->setValue(hex2bin(hash('sha256', 'AElf.ContractNames.Token')));
$toAddress = $aelf->GetContractAddressByName($privateKey, $bytes);
$param = new Hash();
$param->setValue('');
$transaction = $aelf->generateTransaction($fromAddress, $toAddress, $methodName,
→˓$param);
$signature = $aelf->signTransaction($privateKey, $transaction);
$transaction->setSignature(hex2bin($signature));
$executeTransactionDtoObj = ['RawTransaction' => bin2hex($transaction->
→˓serializeToString())];
$response = $aelf->executeTransaction($executeTransactionDtoObj);
$tokenInfo = new TokenInfo();
$tokenInfo->mergeFromString(hex2bin($response));

18.5.5 Other Tool Kit

AElf supply some APIs to simplify developing.

1.getChainId

get chain id

$aelf = new AElf($url);

$chainId = $aelf->getChainId();
print_r($chainId);

2.generateTransaction

generate a transaction object

18.5. aelf-sdk.php - AELF PHP API 227

AElf, Release release/1.2.3

$aelf = new AElf($url);

$param = new Hash();
$param->setValue('');
$transaction = $aelf->generateTransaction($fromAddress, $toAddress, $methodName,
→˓$param);

3.signTransaction

sign a transaction

$aelf = new AElf($url);

$transaction = $aelf->generateTransaction($fromAddress, $toAddress, $methodName,
→˓$param);
$signature = $aelf->signTransaction($privateKey, $transaction);

4.getGenesisContractAddress

get the genesis contract’s address

$aelf = new AElf($url);

$genesisContractAddress = $aelf->getGenesisContractAddress();
print_r($genesisContractAddress);

4.getAddressFromPubKey

calculate the account address accoriding to the public key

$aelf = new AElf($url);

$pubKeyAddress = $aelf->getAddressFromPubKey(
→˓'04166cf4be901dee1c21f3d97b9e4818f229bec72a5ecd56b5c4d6ce7abfc3c87e25c36fd279db721acf4258fb489b4a4406e6e6e467935d06990be9d134e5741c
→˓');
print_r($pubKeyAddress);

5.getFormattedAddress

convert the Address to the displayed stringsymbol_base58-string_base58-string-chain-id.

$aelf = new AElf($url);

$addressVal = $aelf->getFormattedAddress($privateKey, $base58Address);
print_r($addressVal);

6.generateKeyPairInfo

generate a new key pair using ECDSA

228 Chapter 18. Chain SDK

AElf, Release release/1.2.3

$aelf = new AElf($url);

$pairInfo = $aelf->generateKeyPairInfo();
print_r($pairInfo);

7.getContractAddressByName

get contract’s address from its name

$aelf = new AElf($url);

$bytes = new Hash();
$bytes->setValue(hex2bin(hash('sha256', 'AElf.ContractNames.Token')));
$contractAddress = $aelf->GetContractAddressByName($privateKey, $bytes);
print_r($contractAddress);

8.getAddressFromPrivateKey

get address from a private key

$aelf = new AElf($url);

$address = $aelf->getAddressFromPrivateKey($privateKey);
print_r($address);

9.getSignatureWithPrivateKey

given a private key, get the signature

$aelf = new AElf($url);

$sign = $aelf->getSignatureWithPrivateKey($privateKey, $transactionId);
print_r($sign);

10.isConnected

check if it connects the chain

$aelf = new AElf($url);

$isConnected = $this->aelf->isConnected();
print_r($isConnected);

11.getTransactionFees

get the transaction fee from transaction result

18.5. aelf-sdk.php - AELF PHP API 229

AElf, Release release/1.2.3

$aelf = new AElf($url);

$block = $aelf->getBlockByHeight(1, true);
$transactionResult = $aelf->getTransactionResult($block['Body']['Transactions'][0]);
$transactionFees = $aelf->getTransactionFees($transactionResult);
print_r($transactionFees);

18.5.6 AElf.version

$aelf = new AElf($url);

$version = $aelf->version;

18.5.7 Requirements

• php

18.5.8 About contributing

Read out [contributing guide]

18.5.9 About Version

https://semver.org/

18.6 aelf-sdk.py - AELF Python API

18.6.1 Introduction

aelf-sdk.py for aelf is like web.js for ethereum.

aelf-sdk.py is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.py, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.py

18.6.2 Adding aelf-sdk.js

First you need to get aelf-sdk package into your project. This can be done using the following methods:

pip: pip install aelf-sdk

After that you need to create a aelf instance by a node’s URL.

chain = AElf('http://127.0.0.1:8000')

230 Chapter 18. Chain SDK

https://www.php.org
https://github.com/AElfProject/aelf-sdk.py

AElf, Release release/1.2.3

18.6.3 Examples

You can also see full examples in ./test;

1.Create instance

Create a new instance of AElf, connect to an AELF chain node. Using this instance, you can call the APIs on AElf.

from aelf import AElf

// create a new instance of AElf
aelf = AElf('http://127.0.0.1:8000')

2.Get a system contract address

Get a system contract address, take AElf.ContractNames.Token as an example

from aelf import AElf

aelf = AElf('http://127.0.0.1:8000')
// get genesis contract address
genesis_contract_address = aelf.get_genesis_contract_address_string()

// get contract address
// in fact, get_system_contract_address call the method 'GetContractAddressByName' in
→˓the genesis contract to get other contracts' address
multi_token_contract_address = aelf.get_system_contract_address('AElf.ContractNames.
→˓Token')

3.Send a transaction

Get the contract address, and then send the transaction.

from aelf import AElf

url = 'http://127.0.0.1:8000'
// create a new instance of AElf
aelf = AElf(url)

// generate the private key
private_key_string = 'b344570eb80043d7c5ae9800c813b8842660898bf03cbd41e583b4e54af4e7fa
→˓'
private_key = PrivateKey(bytes(bytearray.fromhex(private_key_string)))

// create input, the type is generated by protoc
cross_chain_transfer_input = CrossChainTransferInput()

// generate the transaction
transaction = aelf.create_transaction(to_address, method_name, params.
→˓SerializeToString())

// sign the transaction by user's private key
aelf.sign_transaction(private_key, transaction)

(continues on next page)

18.6. aelf-sdk.py - AELF Python API 231

AElf, Release release/1.2.3

(continued from previous page)

// execute the transaction
aelf.execute_transaction(transaction)

18.6.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AElf instance, so if you don’t have one please create it:

from aelf import AElf

// create a new instance of AElf, change the URL if needed
aelf = AElf('http://127.0.0.1:8000')

1.get_chain_status

Get the current status of the block chain.

Web API path

/api/blockChain/chainStatus

Parameters

Empty

Returns

json

• ChainId - String

• Branches - json

• NotLinkedBlocks - json

• LongestChainHeight - Number

• LongestChainHash - String

• GenesisBlockHash - String

• GenesisContractAddress - String

• LastIrreversibleBlockHash - String

• LastIrreversibleBlockHeight - Number

• BestChainHash - String

• BestChainHeight - Number

Example

aelf = AElf(url)

chain_status = aelf.get_chain_status()
print('# get_chain_status', chain_status)

232 Chapter 18. Chain SDK

AElf, Release release/1.2.3

2.get_block_height

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

Empty

Returns

Number

Example

aelf = AElf(url)

block_height = aelf.get_block_height()
print('# get_block_height', block_height)

3.get_block

Get block information by block hash.

Web API path

/api/blockChain/block

Parameters

1. block_hash - String

2. include_transactions - Boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

json

• BlockHash - String

• Header - json

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - List

– Height - Number

– Time - json

– ChainId - String

– Bloom - String

– SignerPubkey - String

18.6. aelf-sdk.py - AELF Python API 233

AElf, Release release/1.2.3

• Body - json

– TransactionsCount - Number

– Transactions - List

* transactionId - String

Example

aelf = AElf(url)

block = aelf.get_block(blockHash)
print('# get_block', block)

4.get_block_by_height

Web API path

/api/blockChain/blockByHeight

Get block information by block height.

Parameters

1. block_height - Number

2. include_transactions - Boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

json

• BlockHash - String

• Header - json

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - List

– Height - Number

– Time - json

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - json

– TransactionsCount - Number

– Transactions - List

* transactionId - String

Example

234 Chapter 18. Chain SDK

AElf, Release release/1.2.3

aelf = AElf(url)

block_by_height = aelf.get_block_by_height(12, false)
print('# get_block_by_height', block_by_height)

5.get_transaction_result

Get the result of a transaction

Web API path

/api/blockChain/transactionResult

Parameters

1. transactionId - String

Returns

json

• TransactionId - String

• Status - String

• Logs - List

– Address - String

– Name - String

– Indexed - List

– NonIndexed - String

• Bloom - String

• BlockNumber - Number

• Transaction - List

– From - String

– To - String

– RefBlockNumber - Number

– RefBlockPrefix - String

– MethodName - String

– Params - json

– Signature - String

• ReadableReturnValue - json

• Error - String

Example

aelf = AElf(url)

transaction_result = aelf.get_transaction_result(transactionId)
print('# get_transaction_results', transaction_result)

18.6. aelf-sdk.py - AELF Python API 235

AElf, Release release/1.2.3

6.get_transaction_results

Get multiple transaction results in a block

Web API path

/api/blockChain/transactionResults

Parameters

1. blockHash - String

2. offset - Number

3. limit - Number

Returns

List - The array of method descriptions:

• the transaction result object

Example

aelf = AElf(url)

transaction_results = aelf.get_transaction_results(blockHash, 0, 2)
print('# get_transaction_results', transaction_results)

7.get_transaction_pool_status

Get the transaction pool status.

Web API path

/api/blockChain/transactionPoolStatus

Example

aelf = AElf(url)

tx_pool_status = aelf.get_transaction_pool_status()
print('# get_transaction_pool_status', tx_pool_status)

8.send_transaction

Broadcast a transaction

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transaction - String - Serialization of data into String

Example

236 Chapter 18. Chain SDK

AElf, Release release/1.2.3

aelf = AElf(url)

current_height = aelf.get_block_height()
block = aelf.get_block_by_height(current_height, include_transactions=False)
transaction = Transaction()
transaction.to_address.CopyFrom(aelf.get_system_contract_address("AElf.ContractNames.
→˓Consensus"))
transaction.ref_block_number = current_height
transaction.ref_block_prefix = bytes.fromhex(block['BlockHash'])[0:4]
transaction.method_name = 'GetCurrentMinerList'
transaction = aelf.sign_transaction(private_key, transaction)
result = aelf.send_transaction(transaction.SerializePartialToString().hex())
print('# send_transaction', result)

9.send_transactions

Broadcast multiple transactions

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transactions - String - Serialization of data into String

Example

aelf = AElf(url)

current_height = aelf.get_block_height()
block = aelf.get_block_by_height(current_height, include_transactions=False)
transaction1 = Transaction().SerializePartialToString().hex()
transaction2 = Transaction().SerializePartialToString().hex()
result = aelf.send_transaction(transaction1 + ',' + transaction2)
print('# send_transactions', result)

10.get_peers

Get peer info about the connected network nodes

Web API path

/api/net/peers

Example

aelf = AElf(url)

peers = aelf.get_peers()
print('# get_peers', peers)

11.add_peer

Attempts to add a node to the connected network nodes

18.6. aelf-sdk.py - AELF Python API 237

AElf, Release release/1.2.3

Web API path

/api/net/peer

POST

Parameters

peer_address - String - peer’s endpoint

Example

aelf = AElf(url)

add_peer = aelf.add_peer(endpoint)
print('# add_peers', add_peer)

12.remove_peer

Attempts to remove a node from the connected network nodes

Web API path

/api/net/peer?address=

POST

Parameters

peer_address - String - peer’s endpoint

Example

aelf = AElf(url)

remove_peer = aelf.remove_peer(address)
print('# remove_peer', remove_peer)

13.create_raw_transaction

create a raw transaction

Web API path

/api/blockchain/rawTransaction

POST

Parameters

1. transaction - the json format transaction

Returns

json

• RawTransaction - hex string bytes generated by transaction information

Example

238 Chapter 18. Chain SDK

AElf, Release release/1.2.3

aelf = AElf(url)

transaction = {
"From": aelf.get_address_string_from_public_key(public_key),
"To": aelf.get_system_contract_address_string("AElf.ContractNames.Consensus"),
"RefBlockNumber": 0,
"RefBlockHash": "b344570eb80043d7c5ae9800c813b8842660898bf03cbd41e583b4e54af4e7fa

→˓",
"MethodName": "GetCurrentMinerList",
"Params": '{}'

}
raw_transaction = aelf.create_raw_transaction(transaction)

14.send_raw_transaction

send raw transactions

Web API path

/api/blockchain/sendRawTransaction

Parameters

1. Transaction - raw transaction

2. Signature - signature

3. ReturnTransaction - indicates whether to return transaction

Example

aelf = AElf(url)

raw_transaction = aelf.create_raw_transaction(transaction)
signature = private_key.sign_recoverable(bytes.fromhex(raw_transaction['RawTransaction
→˓']))
transaction_2 = {

"Transaction": raw_transaction['RawTransaction'],
'Signature': signature.hex(),
'ReturnTransaction': True

}
print('# send_raw_transaction', aelf.send_raw_transaction(transaction_2))

15.execute_raw_transaction

execute raw transactions

Web API path

/api/blockchain/executeRawTransaction

Post

Parameters

1. RawTransaction - raw transaction

2. Signature - signature

Example

18.6. aelf-sdk.py - AELF Python API 239

AElf, Release release/1.2.3

aelf = AElf(url)

raw_transaction = aelf.create_raw_transaction(transaction)
signature = private_key.sign_recoverable(bytes.fromhex(raw_transaction['RawTransaction
→˓']))
transaction_1 = {

"RawTransaction": raw_transaction['RawTransaction'],
"Signature": signature.hex()

}
print('# execute_raw_transaction', aelf.execute_raw_transaction(transaction_1))

16.get_merkle_path

get merkle path

Web API path

/api/blockchain/merklePathByTransactionId?transactionId=

Parameters

1. transactionId - String

Example

aelf = AElf(url)

transaction_results = aelf.get_transaction_results(transactionId)
print('# get_transaction_results', transaction_results)

17.get_network_info

get network information

Web API path

/api/net/networkInfo

Example

aelf = AElf(url)

print('# get_network_info', aelf.get_network_info())

18.6.5 AElf.client

Use the api to see detailed results

1.get_genesis_contract_address_string

Returns

String: zero contract address

Example

240 Chapter 18. Chain SDK

AElf, Release release/1.2.3

aelf = AElf(url)

genesis_contract_address = aelf.get_genesis_contract_address_string()

2.get_system_contract_address

Parameters

1. contract_name - String : system Contract’s name

Returns

Address: system Contract’s address

Example

aelf = AElf(url)

multi_token_contract_address = aelf.get_system_contract_address('AElf.ContractNames.
→˓Token')

3.get_system_contract_address_string

Parameters

1. contract_name - String : system Contract’s name

Returns

String: system Contract’s address

Example

aelf = AElf(url)

multi_token_contract_address_string = aelf.get_system_contract_address_string('AElf.
→˓ContractNames.Token')

4.create_transaction

create a transaction

Parameters

1. to_address - Address or String : target contract’s address

2. method_name - String : method name

3. params - String : serilize paramters into String

Example

aelf = AElf(url)

params = Hash()
params.value = hashlib.sha256(contract_name.encode('utf8')).digest()
transaction = self.create_transaction(genesisContractAddress,
→˓'GetContractAddressByName', params.SerializeToString())

18.6. aelf-sdk.py - AELF Python API 241

AElf, Release release/1.2.3

5.sign_transaction

sign transaction with user’s private key

Parameters

1. private_key - String : user’s private key

2. transaction - Transaction : transaction

Example_

aelf = AElf(url)

to_address_string = aelf.get_genesis_contract_address_string()
params = Hash()
params.value = hashlib.sha256(contract_name.encode('utf8')).digest()
transaction = aelf.create_transaction(to_address_string, 'GetContractAddressByName',
→˓params.SerializeToString())
transaction = aelf.sign_transaction(private_key, transaction)

6.get_address_from_public_key

generate address from public key

Parameters

1. public_key - bytes : user’s pubilc key

Returns

Address

Example_

aelf = AElf(url)

address = aelf.get_address_from_public_key(public_key)

7.get_address_string_from_public_key

generate address string from public key

Parameters

1. public_key - bytes : user’s pubilc key

Returns

String

Example_

aelf = AElf(url)

address = aelf.get_address_string_from_public_key(public_key)

242 Chapter 18. Chain SDK

AElf, Release release/1.2.3

8.get_chain_id

get chain id

Returns

Number

Example_

aelf = AElf(url)

chain_id = aelf.get_chain_id()
print('# get_chain_id', chain_id)

9.get_formatted_address

get formatted address

Parameters

1. address Address : address

Returns

String

Example_

aelf = AElf(url)

address = aelf.chain.get_system_contract_address("AElf.ContractNames.Consensus")
formatted_address = aelf.get_formatted_address(address)
print('formatted address', formatted_address)

10.is_connected

check whether to connect the node

Example_

aelf = AElf(url)

is_connected = aelf.is_connected()

18.6.6 Tookkits.py

AElfToolkit Encapsulate AElf and user’s private key. It simplifies the procedures of sending some transactions. You
can find it in src/aelf/toolkits.py.

Create a toolKit

Create a toolKit with AElfToolkit.

18.6. aelf-sdk.py - AELF Python API 243

AElf, Release release/1.2.3

from aelf import AElfToolkit

// generate the private key
private_key_string = 'b344570eb80043d7c5ae9800c813b8842660898bf03cbd41e583b4e54af4e7fa
→˓'
private_key = PrivateKey(bytes(bytearray.fromhex(private_key_string)))
// create a toolKit
toolkit = AElfToolkit('http://127.0.0.1:8000', private_key)

Send a transaction

Send a CrossChainTransfer transaction

from aelf import AElfToolkit

// generate the private key
private_key_string = 'b344570eb80043d7c5ae9800c813b8842660898bf03cbd41e583b4e54af4e7fa
→˓'
private_key = PrivateKey(bytes(bytearray.fromhex(private_key_string)))

// create input, the type is generated by protoc
cross_chain_transfer_input = CrossChainTransferInput()

// AElfToolkit simplifies this transcation execution.
// create a toolKit
toolkit = AElfToolkit('http://127.0.0.1:8000', private_key)
toolkit.cross_chain_transfer(to_address_string, symbol, amount, memo, to_chain_id)

18.6.7 Requirements

• python

• docker

18.6.8 Support

node

18.6.9 About contributing

Read out [contributing guide]

18.6.10 About Version

https://semver.org/

244 Chapter 18. Chain SDK

https://www.python.org
https://www.docker.com
https://hub.docker.com/r/aelf/node

CHAPTER 19

C# reference

19.1 AElf.Sdk.CSharp

19.1.1 Contents

• BoolState

• BytesState

• CSharpSmartContractContext

– ChainId

– CurrentBlockTime

– CurrentHeight

– Origin

– PreviousBlockHash

– Self

– Sender

– StateProvider

– TransactionId

– Variables

– Transaction

– Call(fromAddress,toAddress,methodName,args)

– ConvertHashToInt64(hash,start,end)

– ConvertVirtualAddressToContractAddress(virtualAddress)

– ConvertVirtualAddressToContractAddress(virtualAddress,contractAddress)

245

AElf, Release release/1.2.3

– ConvertVirtualAddressToContractAddressWithContractHashName(virtualAddress)

– ConvertVirtualAddressToContractAddressWithContractHashName(virtualAddress,contractAddress)

– DeployContract(address,registration,name)

– FireLogEvent(logEvent)

– GenerateId(contractAddress,bytes)

– GetContractAddressByName(hash)

– GetPreviousBlockTransactions()

– GetRandomHash(fromHash)

– GetSystemContractNameToAddressMapping()

– GetZeroSmartContractAddress()

– GetZeroSmartContractAddress(chainId)

– LogDebug(func)

– RecoverPublicKey()

– Transaction()

– SendInline(toAddress,methodName,args)

– SendVirtualInline(fromVirtualAddress,toAddress,methodName,args)

– SendVirtualInlineBySystemContract(fromVirtualAddress,toAddress,methodName,args)

– UpdateContract(address,registration,name)

– ValidateStateSize(obj)

– VerifySignature(tx)

• CSharpSmartContract

– Context

– State

• ContractState

• Int32State

• Int64State

• MappedState

• SingletonState

• SmartContractBridgeContextExtensions

– Call(context,address,methodName,message)

– Call(context,address,methodName,message)

– Call(context,fromAddress,toAddress,methodName,message)

– Call(context,address,methodName,message)

– ConvertToByteString(message)

– ConvertVirtualAddressToContractAddress(this,virtualAddress)

– ConvertVirtualAddressToContractAddressWithContractHashName(this,virtualAddress)

246 Chapter 19. C# reference

AElf, Release release/1.2.3

– Fire(context,eventData)

– GenerateId(this,bytes)

– GenerateId(this,token)

– GenerateId(this,token)

– GenerateId(this)

– GenerateId(this,address,token)

– SendInline(context,toAddress,methodName,message)

– SendInline(context,toAddress,methodName,message)

– SendVirtualInline(context,fromVirtualAddress,toAddress,methodName,message)

• SmartContractConstants

• StringState

• UInt32State

• UInt64State

BoolState type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around boolean values for use in smart contract state.

BytesState type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around byte arrays for use in smart contract state.

CSharpSmartContractContext type

Namespace

AElf.Sdk.CSharp

19.1. AElf.Sdk.CSharp 247

AElf, Release release/1.2.3

Summary

Represents the transaction execution context in a smart contract. An instance of this class is present in the base class
for smart contracts (Context property). It provides access to properties and methods useful for implementing the logic
in smart contracts.

ChainId property

Summary

The chain id of the chain on which the contract is currently running.

CurrentBlockTime property

Summary

The time included in the current blocks header.

CurrentHeight property

Summary

The height of the block that contains the transaction currently executing.

Origin property

Summary

The address of the sender (signer) of the transaction being executed. It’s type is an AElf address. It corresponds to the
From field of the transaction. This value never changes, even for nested inline calls. This means that when you access
this property in your contract, it’s value will be the entity that created the transaction (user or smart contract through
an inline call).

PreviousBlockHash property

Summary

The hash of the block that precedes the current in the blockchain structure.

Self property

Summary

The address of the contract currently being executed. This changes for every transaction and inline transaction.

248 Chapter 19. C# reference

AElf, Release release/1.2.3

Sender property

Summary

The Sender of the transaction that is executing.

StateProvider property

Summary

Provides access to the underlying state provider.

TransactionId property

Summary

The ID of the transaction that’s currently executing.

Variables property

Summary

Provides access to variable of the bridge.

Transaction property

Summary

Including some transaction info.

Call(fromAddress,toAddress,methodName,args) method

Summary

Calls a method on another contract.

Returns

The result of the call.

19.1. AElf.Sdk.CSharp 249

AElf, Release release/1.2.3

Parameters

Name Type Description
fromAddress AElf.Types.Address The address to use as sender.
toAddress AElf.Types.Address The address of the contract you’re seeking to interact with.
methodName System.String The name of method you want to call.
args Google.Protobuf.ByteStringThe input arguments for calling that method. This is usually gener-

ated from the protobuf
definition of the in-
put type

Generic Types

Name Description
T The type of the return message.

ConvertHashToInt64(hash,start,end) method

Summary

Converts the input hash to a 64-bit signed integer.

Returns

The 64-bit signed integer.

Parameters

Name Type Description
hash AElf.Types.Hash The hash.
start System.Int64 The inclusive lower bound of the number returned.
end System.Int64 The exclusive upper bound of the number returned. endValue must be greater than or

equal to startValue.

Exceptions

Name Description
System.ArgumentException startValue is less than 0 or greater than endValue.

ConvertVirtualAddressToContractAddress(virtualAddress) method

250 Chapter 19. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.ArgumentException

AElf, Release release/1.2.3

Summary

Converts a virtual address to a contract address.

Returns

The converted address.

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.

ConvertVirtualAddressToContractAddress(virtualAddress,contractAddress) method

Summary

Converts a virtual address to a contract address with the contract address.

Returns

The converted address.

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.
contractAddress AElf.Types.Address The contract address.

ConvertVirtualAddressToContractAddressWithContractHashName(

virtualAddress) method

Summary

Converts a virtual address to a contract address with the current contract hash name.

Returns

The converted address.

19.1. AElf.Sdk.CSharp 251

AElf, Release release/1.2.3

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.

ConvertVirtualAddressToContractAddressWithContractHashName(

virtualAddress,contractAddress) method

Summary

Converts a virtual address to a contract address with the contract hash name.

Returns

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.
contractAddress AElf.Types.Address The contract address.

DeployContract(address,registration,name) method

Summary

Deploy a new smart contract (only the genesis contract can call it).

Parameters

Name Type Description
address AElf.Types.Address The address of new smart contract.
registration AElf.Types.SmartContractRegistration The registration of the new smart contract.
name AElf.Types.Hash The hash value of the smart contract name.

FireLogEvent(logEvent) method

Summary

This method is used to produce logs that can be found in the transaction result after execution.

252 Chapter 19. C# reference

AElf, Release release/1.2.3

Parameters

Name Type Description
logEvent AElf.Types.LogEvent The event to fire.

GenerateId(contractAddress,bytes) method

Summary

Generate a hash type id based on the contract address and the bytes.

Returns

The generated hash type id.

Parameters

Name Type Description
contractAd-
dress

AElf.Types.Address The contract address on which the id generation
is based.

bytes System.Collections. Generic.IEnumerable
{System.Byte}

The bytes on which the id generation is based.

GetContractAddressByName(hash) method

Summary

It’s sometimes useful to get the address of a system contract. The input is a hash of the system contracts name. These
hashes are easily accessible through the constants in the SmartContractConstants.cs file of the C# SDK.

Returns

The address of the system contract.

Parameters

Name Type Description
hash AElf.Types.Hash The hash of the name.

GetPreviousBlockTransactions() method

Summary

Returns the transaction included in the previous block (previous to the one currently executing).

19.1. AElf.Sdk.CSharp 253

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable

AElf, Release release/1.2.3

Returns

A list of transaction.

Parameters

This method has no parameters.

GetRandomHash(fromHash) method

Summary

Gets a random hash based on the input hash.

Returns

Random hash.

Parameters

Name Type Description
fromHash AElf.Types.Hash Hash.

GetSystemContractNameToAddressMapping() method

Summary

Get the mapping that associates the system contract addresses and their name’s hash.

Returns

The addresses with their hashes.

Parameters

This method has no parameters.

GetZeroSmartContractAddress() method

Summary

This method returns the address of the Genesis contract (smart contract zero) of the current chain.

254 Chapter 19. C# reference

AElf, Release release/1.2.3

Returns

The address of the genesis contract.

Parameters

This method has no parameters.

GetZeroSmartContractAddress(chainId) method

Summary

This method returns the address of the Genesis contract (smart contract zero) of the specified chain.

Returns

The address of the genesis contract, for the given chain.

Parameters

Name Type Description
chainId System.Int32 The chain’s ID.

LogDebug(func) method

Summary

Application logging - when writing a contract it is useful to be able to log some elements in the applications log file to
simplify development. Note that these logs are only visible when the node executing the transaction is build in debug
mode.

Parameters

Name Type Description
func System.Func {System.String} The logic that will be executed for logging purposes.

RecoverPublicKey() method

Summary

Recovers the public key of the transaction Sender.

19.1. AElf.Sdk.CSharp 255

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int32
https://docs.microsoft.com/en-us/dotnet/api/system.func-1?view=netcore-6.0

AElf, Release release/1.2.3

Returns

A byte array representing the public key.

Parameters

This method has no parameters.

SendInline(toAddress,methodName,args) method

Summary

Sends an inline transaction to another contract.

Parameters

Name Type Description
toAddress AElf.Types. Address The address of the contract you’re seeking to interact with.
methodName System.String The name of method you want to invoke.
args Google.Protobuf

.ByteString
The input arguments for calling that method. This is usually gen-
erated from the protobuf

definition of the in-
put type.

SendVirtualInline(fromVirtualAddress,toAddress,methodName,args) method

Summary

Sends a virtual inline transaction to another contract.

Parameters

Name Type Description
fromVirtualAddress AElf.Types.Hash The virtual address to use as sender.
toAddress AElf.Types. Address The address of the contract you’re seeking to interact with.
methodName System.String The name of method you want to invoke.
args Google.Protobuf

.ByteString
The input arguments for calling that method. This is usually gen-
erated from the protobuf

definition of the in-
put type.

SendVirtualInlineBySystemContract(fromVirtualAddress,toAddress,

methodName,args) method

256 Chapter 19. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

Summary

Like SendVirtualInline but the virtual address us a system smart contract.

Parameters

Name Type Description
fromVirtualAd-
dress

AElf.Types.Hash Sends a virtual inline transaction to another contract. This method is
only available to system smart contract.

toAddress AElf.Types. Ad-
dress

The address of the contract you’re seeking to interact with.

methodName System.String The name of method you want to invoke.
args Google.Protobuf

.ByteString
The input arguments for calling that method. This is usually generated
from the protobuf

definition of the
input type.

UpdateContract(address,registration,name) method

Summary

Update a smart contract (only the genesis contract can call it).

Parameters

Name Type Description
address AElf.Types.Address The address of smart contract to update.
registration AElf.Types.SmartContractRegistration The registration of the smart contract to update.
name AElf.Types.Hash <#T-AElf-Types-Hash> The hash value of the smart contract name to update.

ValidateStateSize(obj) method

Summary

Verify that the state size is within the valid value.

Returns

The state.

Parameters

Name Type Description
obj System.Object The state.

19.1. AElf.Sdk.CSharp 257

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Object

AElf, Release release/1.2.3

Exceptions

Name Description
AElf.Kernel.SmartContract.StateOverSizeException The state size exceeds the limit.

VerifySignature(tx) method

Summary

Returns whether or not the given transaction is well formed and the signature is correct.

Returns

The verification results.

Parameters

Name Type Description
tx AElf.Types.Transaction The transaction to verify.

CSharpSmartContract type

Namespace

AElf.Sdk.CSharp

Summary

This class represents a base class for contracts written in the C# language. The generated code from the protobuf
definitions will inherit from this class.

Generic Types

Name Description
TContractState

Context property

Summary

Represents the transaction execution context in a smart contract. It provides access inside the contract to properties
and methods useful for implementing the smart contracts action logic.

258 Chapter 19. C# reference

AElf, Release release/1.2.3

State property

Summary

Provides access to the State class instance. TContractState is the type of the state class defined by the contract author.

ContractState type

Namespace

AElf.Sdk.CSharp.State

Summary

Base class for the state class in smart contracts.

Int32State type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around 32-bit integer values for use in smart contract state.

Int64State type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around 64-bit integer values for use in smart contract state.

MappedState type

Namespace

AElf.Sdk.CSharp.State

Summary

Key-value pair data structure used for representing state in contracts.

19.1. AElf.Sdk.CSharp 259

AElf, Release release/1.2.3

Generic Types

Name Description
TKey The type of the key.
TEntity The type of the value.

SingletonState type

Namespace

AElf.Sdk.CSharp.State

Summary

Represents single values of a given type, for use in smart contract state.

SmartContractBridgeContextExtensions type

Namespace

AElf.Sdk.CSharp

Summary

Extension methods that help with the interactions with the smart contract execution context.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The return value of the call.

260 Chapter 19. C# reference

AElf, Release release/1.2.3

Parameters

Name Type Description
context AElf.Kernel.SmartContract. IS-

martContractBridgeContext
The virtual address of the system. contract to use as
sender.

address AElf.Types. Address The address of the contract you’re seeking to interact
with.

methodName System.String The name of method you want to call.
message Google.Protobuf.ByteString The input arguments for calling that method. This is

usually generated from the protobuf
definition of the
input type.

Generic Types

Name Description
T The return type of the call.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContextAn instance of ISmartContractBridgeContext
address AElf.Types. Address The address of the contract you’re seeking to interact

with.
method-
Name

System.String The name of method you want to call.

message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

Generic Types

Name Description
T The type of the return message.

19.1. AElf.Sdk.CSharp 261

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

Call(context,fromAddress,toAddress,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContextAn instance of ISmartContractBridgeContext
fromAd-
dress

AElf.Types. Address The address to use as sender.

toAd-
dressvv

AElf.Types. Address The address of the contract you’re seeking to interact
with.

method-
Name

System.String The name of method you want to call.

message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

Generic Types

Name Description
T The type of the return message.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

262 Chapter 19. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContextAn instance of ISmartContractBridgeContext
address AElf.Types. Address The address to use as sender.
method-
Name

System.String The name of method you want to call.

message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

Generic Types

Name Description
T The type of the return message.

ConvertToByteString(message) method

Summary

Serializes a protobuf message to a protobuf ByteString.

Returns

ByteString.Empty if the message is null

Parameters

Name Type Description
message Google.Protobuf.IMessage The message to serialize.

ConvertVirtualAddressToContractAddress(this,virtualAddress) method

Summary

Converts a virtual address to a contract address.

Returns

19.1. AElf.Sdk.CSharp 263

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridge-

Context
An instance of ISmartContractBridge-
Context

virtualAd-
dress

AElf.Types.Hash Address The virtual address that want to convert.

ConvertVirtualAddressToContractAddressWithContractHashName(this,

virtualAddress) method

Summary

Converts a virtual address to a contract address with the currently running contract address.

Returns

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridge-

Context
An instance of ISmartContractBridge-
Context

virtualAd-
dress

AElf.Types.Hash Address The virtual address that want to convert.

Fire(context,eventData) method

Summary

Logs an event during the execution of a transaction. The event type is defined in the AElf.CSharp.core project.

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContext An instance of ISmartContractBridgeContext
eventData The event to log.

Generic Types

Name Description
T The type of the event.

264 Chapter 19. C# reference

AElf, Release release/1.2.3

GenerateId(this,bytes) method

Summary

Generate a hash type id based on the currently running contract address and the bytes.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridgeCon-

text
An instance of ISmartContractBridgeCon-
text

bytes System.Collections.Generic .IEnumer-
able{System.Byte}

The bytes on which the id generation is
based.

GenerateId(this,token) method

Summary

Generate a hash type id based on the currently running contract address and the token.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridgeCon-

text
An instance of ISmartContractBridgeCon-
text

token System.String The token on which the id generation is
based.

GenerateId(this,token) method

Summary

Generate a hash type id based on the currently running contract address and the hash type token.

Returns

The generated hash type id.

19.1. AElf.Sdk.CSharp 265

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridge-

Context
An instance of ISmartContractBridgeContext

token AElf.Types.Hash The hash type token on which the id generation is
based.

GenerateId(this) method

Summary

Generate a hash type id based on the currently running contract address.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridgeCon-

text
An instance of ISmartContractBridgeCon-
text

GenerateId(this,address,token) method

Summary

Generate a hash type id based on the address and the bytes.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

ad-
dress

AElf.Types.Address The address on which the id generation is based.

token AElf.Types.Hash The hash type token on which the id generation is
based.

266 Chapter 19. C# reference

AElf, Release release/1.2.3

SendInline(context,toAddress,methodName,message) method

Summary

Sends an inline transaction to another contract.

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

toAddress AElf.Types.Address The address of the contract you’re seeking to in-
teract with.

method-
Name

System.String The name of method you want to invoke.

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

SendInline(context,toAddress,methodName,message) method

Summary

Sends a virtual inline transaction to another contract.

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

toAddress AElf.Types.Address The address of the contract you’re seeking to in-
teract with.

method-
Name

System.String The name of method you want to invoke.

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

SendVirtualInline(context,fromVirtualAddress,toAddress,methodName,

message) method

Summary

Sends a virtual inline transaction to another contract.

19.1. AElf.Sdk.CSharp 267

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

fromVirtualAd-
dress

AElf.Types.Hash The virtual address to use as sender.

toAddress AElf.Types.Address The address of the contract you’re seeking to
interact with.

methodName System.String The name of method you want to invoke.
message Google.Protobuf.ByteString The protobuf message that will be the input to

the call.

SendVirtualInline(context,fromVirtualAddress,toAddress,methodName,

message) method

Summary

Sends a virtual inline transaction to another contract.

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

fromVirtualAd-
dress

AElf.Types.Hash The virtual address to use as sender.

toAddress AElf.Types.Address The address of the contract you’re seeking to
interact with.

methodName System.String The name of method you want to invoke.
message Google.Protobuf.ByteString The protobuf message that will be the input to

the call.

SmartContractConstants type

Namespace

AElf.Sdk.CSharp

Summary

Static class containing the hashes built from the names of the contracts.

268 Chapter 19. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

StringState type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around string values for use in smart contract state.

UInt32State type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around unsigned 32-bit integer values for use in smart contract state.

UInt64State type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around unsigned 64-bit integer values for use in smart contract state.

19.2 AElf.CSharp.Core

19.2.1 Contents

• Builder

– ctor()

– AddMethod(method,handler)

– Build()

• EncodingHelper

– EncodeUtf8(str)

• IMethod

– FullName

– Name

19.2. AElf.CSharp.Core 269

AElf, Release release/1.2.3

– ServiceName

– Type

• Marshaller

– ctor(serializer,deserializer)

– Deserializer

– Serializer

• Marshallers

– StringMarshaller

– Create()

• MethodType

– Action

– View

• Method

– ctor(type,serviceName,name,requestMarshaller,responseMarshaller)

– FullName

– Name

– RequestMarshaller

– ResponseMarshaller

– ServiceName

– Type

– GetFullName()

• Preconditions

– CheckNotNull(reference)

– CheckNotNullreference,paramName)

• SafeMath

• ServerServiceDefinition

– BindService()

– CreateBuilder()

• ServiceBinderBase

– AddMethod(method,handler)

• TimestampExtensions

– AddDays(timestamp,days)

– AddHours(timestamp,hours)

– AddMilliseconds(timestamp,milliseconds)

– AddMinutes(timestamp,minutes)

– AddSeconds(timestamp,seconds)

270 Chapter 19. C# reference

AElf, Release release/1.2.3

– Max(timestamp1,timestamp2)

– Milliseconds(duration)

• UnaryServerMethod

Builder type

Namespace

AElf.CSharp.Core.ServerServiceDefinition

Summary

Builder class for ServerServiceDefinition.

ctor() constructor

Summary

Creates a new instance of builder.

Parameters

This constructor has no parameters.

AddMethod‘‘2(method,handler) method

Summary

Adds a definition for a single request - single response method.

Returns

This builder instance.

Parameters

Name Type Description
method AElf.CSharp.Core.Method The method.
handler AElf.CSharp.Core.UnaryServerMethod The method handler.

19.2. AElf.CSharp.Core 271

AElf, Release release/1.2.3

Generic Types

Name Description
TRequest The request message class.
TResponse The response message class.

Build() method

Summary

Creates an immutable ServerServiceDefinition from this builder.

Returns

The ServerServiceDefinition object.

Parameters

This method has no parameters.

EncodingHelper type

Namespace

AElf.CSharp.Core.Utils

Summary

Helper class for serializing strings.

EncodeUtf8(str) method

Summary

Serializes a UTF-8 string to a byte array.

Returns

the serialized string.

Parameters

Name Type Description
str System.String

272 Chapter 19. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

IMethod type

Namespace

AElf.CSharp.Core

Summary

A non-generic representation of a remote method.

FullName property

Summary

Gets the fully qualified name of the method. On the server side, methods are dispatched based on this name.

Name property

Summary

Gets the unqualified name of the method.

ServiceName property

Summary

Gets the name of the service to which this method belongs.

Type property

Summary

Gets the type of the method.

Marshaller type

Namespace

AElf.CSharp.Core

Summary

Encapsulates the logic for serializing and deserializing messages.

19.2. AElf.CSharp.Core 273

AElf, Release release/1.2.3

ctor(serializer,deserializer) constructor

Summary

Initializes a new marshaller from simple serialize/deserialize functions.

Parameters

Name Type Description
serializer System.Func Function that will be used to deserialize messages.

Deserializer property

Summary

Gets the deserializer function.

Serializer property

Summary

Gets the serializer function.

Marshallers type

Namespace

AElf.CSharp.Core

Summary

Utilities for creating marshallers.

StringMarshaller property

Summary

Returns a marshaller for string type. This is useful for testing.

Create() method

Summary

Creates a marshaller from specified serializer and deserializer.

274 Chapter 19. C# reference

https://docs.microsoft.com/en-us/dotnet/api/system.func-1?view=netcore-6.0

AElf, Release release/1.2.3

Parameters

This method has no parameters.

MethodType type

Namespace

AElf.CSharp.Core

Action constants

Summary

The method modifies the contrac state.

View constants

Summary

The method doesn’t modify the contract state.

Method type

Namespace

AElf.CSharp.Core

Summary

A description of a remote method.

Generic Types

Name Description
TRequest Request message type for this method.
TResponse Response message type for this method.

ctor(type,serviceName,name,requestMarshaller,responseMarshaller) constructor

Summary

Initializes a new instance of the Method class.

19.2. AElf.CSharp.Core 275

AElf, Release release/1.2.3

Parameters

Name Type Description
type AElf.CSharp.Core.Method Type of method.
serviceName System.String Name of service this method belongs to.
name System.String Unqualified name of the method.
request Marshaller AElf.CSharp.Core.Marshaller Marshaller used for request messages.
response Marshaller AElf.CSharp.Core.Marshaller Marshaller used for response messages.

FullName property

Summary

Gets the fully qualified name of the method. On the server side, methods are dispatched based on this name.

Name property

Summary

Gets the unqualified name of the method.

RequestMarshaller property

Summary

Gets the marshaller used for request messages.

ResponseMarshaller property

Summary

Gets the marshaller used for response messages.

ServiceName property

Summary

Gets the name of the service to which this method belongs.

Type property

Summary

Gets the type of the method.

276 Chapter 19. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

GetFullName() method

Summary

Gets full name of the method including the service name.

Parameters

This method has no parameters.

Preconditions type

Namespace

AElf.CSharp.Core.Utils

CheckNotNull(reference) method

Summary

Throws ArgumentNullException if reference is null.

Parameters

Name Type Description
reference The reference.

CheckNotNull(reference,paramName) method

Summary

Throws ArgumentNullException if reference is null.

Parameters

Name Type Description
reference The reference.
paramName System.String The parameter name.

SafeMath type

Namespace

AElf.CSharp.Core

19.2. AElf.CSharp.Core 277

https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception?redirectedfrom=MSDN&view=netframework-4.7.2
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.2.3

Summary

Helper methods for safe math operations that explicitly check for overflow.

ServerServiceDefinition type

Namespace

AElf.CSharp.Core

Summary

Stores mapping of methods to server call handlers. Normally, the ServerServiceDefinition objects will be
created by the BindService factory method that is part of the autogenerated code for a protocol buffers service
definition.

BindService() method

Summary

Forwards all the previously stored AddMethod calls to the service binder.

Parameters

This method has no parameters.

CreateBuilder() method

Summary

Creates a new builder object for ServerServiceDefinition.

Returns

The builder object.

Parameters

This method has no parameters.

ServiceBinderBase type

Namespace

AElf.CSharp.Core

278 Chapter 19. C# reference

AElf, Release release/1.2.3

Summary

Allows binding server-side method implementations in alternative serving stacks. Instances of this class are usually
populated by the BindServicemethod that is part of the autogenerated code for a protocol buffers service definition.

AddMethod(method,handler) method

Summary

Adds a definition for a single request - single response method.

Parameters

Name Type Description
method AElf.CSharp.Core.Method The method.
handler AElf.CSharp.Core.UnaryServerMethod The method handler.

Generic Types

Name Description
TRequest The request message class.
TResponse The response message class.

TimestampExtensions type

Namespace

AElf.CSharp.Core.Extension

Summary

Helper methods for dealing with protobuf timestamps.

AddDays(timestamp,days) method

Summary

Adds a given amount of days to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

19.2. AElf.CSharp.Core 279

AElf, Release release/1.2.3

Parameters

Name Type Description
timestamp Google.Protobuf.WellKnown Types.Timestamp the timestamp.
days System. Int64 the amount of days.

AddHours(timestamp,hours) method

Summary

Adds a given amount of hours to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf .WellKnownTypes.Timestamp the timestamp.
hours System.Int64 the amount of hours.

AddMilliseconds(timestamp,milliseconds) method

Summary

Adds a given amount of milliseconds to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf. WellKnownTypes.Timestamp the timestamp.
milliseconds System. Int64 the amount of milliseconds to add.

AddMinutes(timestamp,minutes) method

Summary

Adds a given amount of minutes to a timestamp. Returns a new instance.

280 Chapter 19. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

AElf, Release release/1.2.3

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf .WellKnownTypes.Timestamp the timestamp.
minutes System.Int64 the amount of minutes.

AddSeconds(timestamp,seconds) method

Summary

Adds a given amount of seconds to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf .WellKnownTypes.Timestam the timestamp.
seconds System.Int64 the amount of seconds.

Max(timestamp1,timestamp2) method

Summary

Compares two timestamps and returns the greater one.

Returns

the greater timestamp.

Parameters

Name Type Description
timestamp1 Google.Protobuf .WellKnownTypes.Timestamp the first timestamp
timestamp2 Google.Protobuf .WellKnownTypes.Timestamp the second timestamp

19.2. AElf.CSharp.Core 281

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

AElf, Release release/1.2.3

Milliseconds(duration) method

Summary

Converts a protobuf duration to long.

Returns

the duration represented with a long.

Parameters

Name Type Description
duration Google.Protobuf. WellKnownTypes.Duration the duration to convert.

UnaryServerMethod type

Namespace

AElf.CSharp.Core

Summary

Handler for a contract method.

Generic Types

Name Description
TRequest Request message type for this method.
TResponse Response message type for this method.

282 Chapter 19. C# reference

CHAPTER 20

Smart Contract APIs

This section gives an overview of some important contracts and contract methods. It’s not meant to be exhaustive.
With every method description we give the parameter message in JSON format, this can be useful when using client
(like aelf-command).

20.1 AElf.Contracts.Association

Association contract.

Organizations established to achieve specific goals can use this contract to cooperatively handle transactions within
the organization

Implement AElf Standards ACS1 and ACS3.

20.1.1 Contract Methods

Method Name Request Type Response
Type

Description

CreateOrganization Associa-
tion.CreateOrganizationInput

aelf.Address Create an organization and return its
address.

CreateOrganization-
BySystemContract

Associa-
tion.CreateOrganizationBySystemContractInput

aelf.Address Creates an organization by system
contract and return its address.

AddMember aelf.Address google.protobuf.EmptyAdd organization members.
RemoveMember aelf.Address google.protobuf.EmptyRemove organization members.
ChangeMember Associa-

tion.ChangeMemberInput
google.protobuf.EmptyReplace organization member with a

new member.
GetOrganization aelf.Address Associa-

tion.Organization
Get the organization according to the
organization address.

CalculateOrganiza-
tionAddress

Associa-
tion.CreateOrganizationInput

aelf.Address Calculate the input and return the or-
ganization address.

283

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

AElf.Standards.ACS3

Method
Name

Request
Type

Re-
sponse
Type

Description

CreatePro-
posal

acs3.CreateProposalInputaelf.Hash Create a proposal for which organization members can vote. When the
proposal is released, a transaction will be sent to the specified contract.
Return id of the newly created proposal.

Approve aelf.Hash google.protobuf.EmptyApprove a proposal according to the proposal ID.
Reject aelf.Hash google.protobuf.EmptyReject a proposal according to the proposal ID.
Abstain aelf.Hash google.protobuf.EmptyAbstain a proposal according to the proposal ID.
Release aelf.Hash google.protobuf.EmptyRelease a proposal according to the proposal ID and send a transaction

to the specified contract.
ChangeOr-
ganization-
Threshold

acs3.ProposalReleaseThresholdgoogle.protobuf.EmptyChange the thresholds associated with proposals. All fields will be
overwritten by the input value and this will affect all current propos-
als of the organization. Note: only the organization can execute this
through a proposal.

ChangeOr-
ganization-
Proposer-
WhiteList

acs3.ProposerWhiteListgoogle.protobuf.EmptyChange the white list of organization proposer. This method overrides
the list of whitelisted proposers.

CreatePro-
posal-
BySystem-
Contract

acs3.CreateProposalBySystemContractInputaelf.Hash Create a proposal by system contracts, and return id of the newly cre-
ated proposal.

ClearPro-
posal

aelf.Hash google.protobuf.EmptyRemove the specified proposal. If the proposal is in effect, the cleanup
fails.

GetProposal aelf.Hash acs3.ProposalOutputGet the proposal according to the proposal ID.
Validate-
Organiza-
tionExist

aelf.Address google.protobuf.BoolValueCheck the existence of an organization.

Vali-
datePro-
poserIn-
WhiteList

acs3.ValidateProposerInWhiteListInputgoogle.protobuf.BoolValueCheck if the proposer is whitelisted.

20.1.2 Contract Types

284 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Contracts.Association

Association.ChangeMemberInput

Field Type Description Label
old_member aelf.Address The old member address.
new_member aelf.Address The new member address.

Association.CreateOrganizationBySystemContractInput

Field Type Description La-
bel

organiza-
tion_creation_input

CreateOrgani-
zationInput

The parameters of creating organization.

organiza-
tion_address_feedback_method

string The organization address callback method which replies the
organization address to caller contract.

Association.CreateOrganizationInput

Field Type Description La-
bel

organiza-
tion_member_list

OrganizationMemberList Initial organization members.

pro-
posal_release_threshold

acs3.ProposalReleaseThresholdThe threshold for releasing the proposal.

proposer_white_list acs3.ProposerWhiteList The proposer whitelist.
creation_token aelf.Hash The creation token is for organization address

generation.

Association.MemberAdded

Field Type Description Label
member aelf.Address The added member address.
organization_address aelf.Address The organization address.

Association.MemberChanged

Field Type Description Label
old_member aelf.Address The old member address.
new_member aelf.Address The new member address.
organization_address aelf.Address The organization address.

20.1. AElf.Contracts.Association 285

AElf, Release release/1.2.3

Association.MemberRemoved

Field Type Description Label
member aelf.Address The removed member address.
organization_address aelf.Address The organization address.

Association.Organization

Field Type Description La-
bel

organiza-
tion_member_list

OrganizationMemberList The organization members.

pro-
posal_release_threshold

acs3.ProposalReleaseThresholdThe threshold for releasing the proposal.

proposer_white_list acs3.ProposerWhiteList The proposer whitelist.
organization_address aelf.Address The address of organization.
organization_hash aelf.Hash The organizations id.
creation_token aelf.Hash The creation token is for organization address

generation.

Association.OrganizationMemberList

Field Type Description Label
organization_members aelf.Address The address of organization members. repeated

Association.ProposalInfo

Field Type Description Label
proposal_id aelf.Hash The proposal ID.
con-
tract_method_name

string The method that this proposal will call when being
released.

to_address aelf.Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf.TimestampThe date at which this proposal will expire.
proposer aelf.Address The address of the proposer of this proposal.
organization_address aelf.Address The address of this proposals organization.
approvals aelf.Address Address list of approved. re-

peated
rejections aelf.Address Address list of rejected. re-

peated
abstentions aelf.Address Address list of abstained. re-

peated
pro-
posal_description_url

string Url is used for proposal describing.

286 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Standards.ACS3

acs3.CreateProposalBySystemContractInput

Field Type Description Label
proposal_input CreateProposalInput The parameters of creating proposal.
origin_proposer aelf.Address The actor that trigger the call.

acs3.CreateProposalInput

Field Type Description La-
bel

con-
tract_method_name

string The name of the method to call after release.

to_address aelf.Address The address of the contract to call after release.
params bytes The parameter of the method to be called after the release.
expired_time google.protobuf.TimestampThe timestamp at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of the organization.

pro-
posal_description_url

string Url is used for proposal describing.

token aelf.Hash The token is for proposal id generation and with this token, proposal
id can be calculated before proposing.

acs3.OrganizationCreated

Field Type Description Label
organization_address aelf.Address The address of the created organization.

20.1. AElf.Contracts.Association 287

AElf, Release release/1.2.3

acs3.OrganizationHashAddressPair

Field Type Description Label
organization_hash aelf.Hash The id of organization.
organization_address aelf.Address The address of organization.

acs3.OrganizationThresholdChanged

Field Type Description Label
organization_address aelf.Address The organization address
proposer_release_threshold ProposalReleaseThreshold The new release threshold.

acs3.OrganizationWhiteListChanged

Field Type Description Label
organization_address aelf.Address The organization address.
proposer_white_list ProposerWhiteList The new proposer whitelist.

acs3.ProposalCreated

Field Type Description Label
proposal_id aelf.Hash The id of the created proposal.
organization_address aelf.Address The organization address of the created proposal.

acs3.ProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The id of the proposal.
con-
tract_method_name

string The method that this proposal will call when being re-
leased.

to_address aelf.Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf.TimestampThe date at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of this proposals organization.

proposer aelf.Address The address of the proposer of this proposal.
to_be_released bool Indicates if this proposal is releasable.
approval_count int64 Approval count for this proposal.
rejection_count int64 Rejection count for this proposal.
abstention_count int64 Abstention count for this proposal.

288 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs3.ProposalReleaseThreshold

Field Type Description Label
minimal_approval_threshold int64 The value for the minimum approval threshold.
maximal_rejection_threshold int64 The value for the maximal rejection threshold.
maximal_abstention_threshold int64 The value for the maximal abstention threshold.
minimal_vote_threshold int64 The value for the minimal vote threshold.

acs3.ProposalReleased

Field Type Description Label
proposal_id aelf.Hash The id of the released proposal.
organization_address aelf.Address The organization address of the released proposal.

acs3.ProposerWhiteList

Field Type Description Label
proposers aelf.Address The address of the proposers repeated

acs3.ReceiptCreated

Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp The timestamp of this method call.
organization_address aelf.Address The address of the organization.

acs3.ValidateProposerInWhiteListInput

Field Type Description Label
proposer aelf.Address The address to search/check.
organization_address aelf.Address The address of the organization.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

20.1. AElf.Contracts.Association 289

AElf, Release release/1.2.3

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

290 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

20.1. AElf.Contracts.Association 291

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

292 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.2 AElf.Contracts.Referendum

Referendum contract.

Production nodes or associations cannot determine all decisions. Some extremely important decisions, especially those
involving user rights and interests, should involve all users and give full control to the user’s voting for governance.
The Referendum contract is built for this.

Implement AElf Standards ACS1 and ACS3.

20.2.1 Contract Methods

Method Name Request Type Response
Type

Description

ReclaimVoteToken aelf.Hash google.protobuf.EmptyUnlock the token used for voting ac-
cording to proposal id.

CreateOrganization Referen-
dum.CreateOrganizationInput

aelf.Address Create an organization and return its
address.

CreateOrganization-
BySystemContract

Referen-
dum.CreateOrganizationBySystemContractInput

aelf.Address Creates an organization by system
contract and return its address.

GetOrganization aelf.Address Referen-
dum.Organization

Get the organization according to the
organization address.

CalculateOrganiza-
tionAddress

Referen-
dum.CreateOrganizationInput

aelf.Address Calculate the input and return the or-
ganization address.

GetProposalVirtual-
Address

aelf.Hash aelf.Address Get the virtual address of a proposal
based on the proposal id.

20.2. AElf.Contracts.Referendum 293

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

AElf.Standards.ACS3

Method
Name

Request
Type

Re-
sponse
Type

Description

CreatePro-
posal

acs3.CreateProposalInputaelf.Hash Create a proposal for which organization members can vote. When the
proposal is released, a transaction will be sent to the specified contract.
Return id of the newly created proposal.

Approve aelf.Hash google.protobuf.EmptyApprove a proposal according to the proposal ID.
Reject aelf.Hash google.protobuf.EmptyReject a proposal according to the proposal ID.
Abstain aelf.Hash google.protobuf.EmptyAbstain a proposal according to the proposal ID.
Release aelf.Hash google.protobuf.EmptyRelease a proposal according to the proposal ID and send a transaction

to the specified contract.
ChangeOr-
ganization-
Threshold

acs3.ProposalReleaseThresholdgoogle.protobuf.EmptyChange the thresholds associated with proposals. All fields will be
overwritten by the input value and this will affect all current propos-
als of the organization. Note: only the organization can execute this
through a proposal.

ChangeOr-
ganization-
Proposer-
WhiteList

acs3.ProposerWhiteListgoogle.protobuf.EmptyChange the white list of organization proposer. This method overrides
the list of whitelisted proposers.

CreatePro-
posal-
BySystem-
Contract

acs3.CreateProposalBySystemContractInputaelf.Hash Create a proposal by system contracts, and return id of the newly cre-
ated proposal.

ClearPro-
posal

aelf.Hash google.protobuf.EmptyRemove the specified proposal. If the proposal is in effect, the cleanup
fails.

GetProposal aelf.Hash acs3.ProposalOutputGet the proposal according to the proposal ID.
Validate-
Organiza-
tionExist

aelf.Address google.protobuf.BoolValueCheck the existence of an organization.

Vali-
datePro-
poserIn-
WhiteList

acs3.ValidateProposerInWhiteListInputgoogle.protobuf.BoolValueCheck if the proposer is whitelisted.

20.2.2 Contract Types

294 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Contracts.Referendum

Referendum.CreateOrganizationBySystemContractInput

Field Type Description La-
bel

organiza-
tion_creation_input

CreateOrgani-
zationInput

The parameters of creating organization.

organiza-
tion_address_feedback_method

string The organization address callback method which replies the
organization address to caller contract.

Referendum.CreateOrganizationInput

Field Type Description La-
bel

token_symbol string The token used during proposal operations.
pro-
posal_release_threshold

acs3.ProposalReleaseThresholdThe threshold for releasing the proposal.

proposer_white_list acs3.ProposerWhiteList The proposer whitelist.
creation_token aelf.Hash The creation token is for organization address

generation.

Referendum.Organization

Field Type Description La-
bel

pro-
posal_release_threshold

acs3.ProposalReleaseThresholdThe threshold for releasing the proposal.

token_symbol string The token used during proposal operations.
organization_address aelf.Address The address of organization.
organization_hash aelf.Hash The organizations id.
proposer_white_list acs3.ProposerWhiteList The proposer whitelist.
creation_token aelf.Hash The creation token is for organization address

generation.

20.2. AElf.Contracts.Referendum 295

AElf, Release release/1.2.3

Referendum.ProposalInfo

Field Type Description La-
bel

proposal_id aelf.Hash The proposal ID.
con-
tract_method_name

string The method that this proposal will call when being
released.

to_address aelf.Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf.TimestampThe date at which this proposal will expire.
proposer aelf.Address The address of the proposer of this proposal.
organization_address aelf.Address The address of this proposals organization.
approval_count int64 The count of approved.
rejection_count int64 The count of rejected.
abstention_count int64 The count of abstained.
pro-
posal_description_url

string Url is used for proposal describing.

Referendum.Receipt

Field Type Description Label
amount int64 The amount of token locked.
token_symbol string The symbol of token locked.
lock_id aelf.Hash The lock id.

Referendum.ReferendumReceiptCreated

Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
symbol string The symbol of token locked.
amount int64 The amount of token locked.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp The timestamp of this method call.
organization_address aelf.Address The address of the organization.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

296 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Standards.ACS3

acs3.CreateProposalBySystemContractInput

Field Type Description Label
proposal_input CreateProposalInput The parameters of creating proposal.
origin_proposer aelf.Address The actor that trigger the call.

acs3.CreateProposalInput

Field Type Description La-
bel

con-
tract_method_name

string The name of the method to call after release.

to_address aelf.Address The address of the contract to call after release.
params bytes The parameter of the method to be called after the release.
expired_time google.protobuf.TimestampThe timestamp at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of the organization.

pro-
posal_description_url

string Url is used for proposal describing.

token aelf.Hash The token is for proposal id generation and with this token, proposal
id can be calculated before proposing.

acs3.OrganizationCreated

Field Type Description Label
organization_address aelf.Address The address of the created organization.

acs3.OrganizationHashAddressPair

Field Type Description Label
organization_hash aelf.Hash The id of organization.
organization_address aelf.Address The address of organization.

20.2. AElf.Contracts.Referendum 297

AElf, Release release/1.2.3

acs3.OrganizationThresholdChanged

Field Type Description Label
organization_address aelf.Address The organization address
proposer_release_threshold ProposalReleaseThreshold The new release threshold.

acs3.OrganizationWhiteListChanged

Field Type Description Label
organization_address aelf.Address The organization address.
proposer_white_list ProposerWhiteList The new proposer whitelist.

acs3.ProposalCreated

Field Type Description Label
proposal_id aelf.Hash The id of the created proposal.
organization_address aelf.Address The organization address of the created proposal.

acs3.ProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The id of the proposal.
con-
tract_method_name

string The method that this proposal will call when being re-
leased.

to_address aelf.Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf.TimestampThe date at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of this proposals organization.

proposer aelf.Address The address of the proposer of this proposal.
to_be_released bool Indicates if this proposal is releasable.
approval_count int64 Approval count for this proposal.
rejection_count int64 Rejection count for this proposal.
abstention_count int64 Abstention count for this proposal.

acs3.ProposalReleaseThreshold

Field Type Description Label
minimal_approval_threshold int64 The value for the minimum approval threshold.
maximal_rejection_threshold int64 The value for the maximal rejection threshold.
maximal_abstention_threshold int64 The value for the maximal abstention threshold.
minimal_vote_threshold int64 The value for the minimal vote threshold.

298 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs3.ProposalReleased

Field Type Description Label
proposal_id aelf.Hash The id of the released proposal.
organization_address aelf.Address The organization address of the released proposal.

acs3.ProposerWhiteList

Field Type Description Label
proposers aelf.Address The address of the proposers repeated

acs3.ReceiptCreated

Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp The timestamp of this method call.
organization_address aelf.Address The address of the organization.

acs3.ValidateProposerInWhiteListInput

Field Type Description Label
proposer aelf.Address The address to search/check.
organization_address aelf.Address The address of the organization.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

20.2. AElf.Contracts.Referendum 299

AElf, Release release/1.2.3

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

300 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

20.2. AElf.Contracts.Referendum 301

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

302 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.3 AElf.Contracts.Parliament

Parliament contract.

The production nodes use the Parliament contract to govern important matters. In the initial state, the production nodes
are members of the parliament, and only when two-thirds of the production nodes vote in favor of a given decision,
will it be executed.

Implement AElf Standards ACS1 and ACS3.

20.3.1 Contract Methods

Method Name Request Type Response
Type

Description

Initialize Parlia-
ment.InitializeInput

google.protobuf.EmptyInitialize parliament proposer whitelist and create
the first parliament organization with specific pro-
poser_authority_required.

CreateOrgani-
zation

Parlia-
ment.CreateOrganizationInput

aelf.Address Create an organization and return its address.

ApproveMulti-
Proposals

Parlia-
ment.ProposalIdList

google.protobuf.EmptyBatch approval proposal.

CreateOrgani-
zationBySys-
temContract

Parlia-
ment.CreateOrganizationBySystemContractInput

aelf.Address Creates an organization by system contract and return
its address.

GetOrganiza-
tion

aelf.Address Parlia-
ment.Organization

Get the organization according to the organization ad-
dress.

GetDefaultOr-
ganizationAd-
dress

google.protobuf.Empty aelf.Address Get the default organization address.

ValidateAddres-
sIsParliament-
Member

aelf.Address google.protobuf.BoolValueValidates if the provided address is a parliament mem-
ber.

GetProposer-
WhiteList

google.protobuf.Empty acs3.ProposerWhiteListReturns the list of whitelisted proposers.

GetNotVoted-
PendingPropos-
als

Parlia-
ment.ProposalIdList

Parlia-
ment.ProposalIdList

Filter still pending ones not yet voted by the sender
from provided proposals.

GetNotVoted-
Proposals

Parlia-
ment.ProposalIdList

Parlia-
ment.ProposalIdList

Filter not yet voted ones by the sender from provided
proposals.

CalculateOrga-
nizationAddress

Parlia-
ment.CreateOrganizationInput

aelf.Address Calculates with input and return the organization ad-
dress.

20.3. AElf.Contracts.Parliament 303

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

AElf.Standards.ACS3

Method
Name

Request
Type

Re-
sponse
Type

Description

CreatePro-
posal

acs3.CreateProposalInputaelf.Hash Create a proposal for which organization members can vote. When the
proposal is released, a transaction will be sent to the specified contract.
Return id of the newly created proposal.

Approve aelf.Hash google.protobuf.EmptyApprove a proposal according to the proposal ID.
Reject aelf.Hash google.protobuf.EmptyReject a proposal according to the proposal ID.
Abstain aelf.Hash google.protobuf.EmptyAbstain a proposal according to the proposal ID.
Release aelf.Hash google.protobuf.EmptyRelease a proposal according to the proposal ID and send a transaction

to the specified contract.
ChangeOr-
ganization-
Threshold

acs3.ProposalReleaseThresholdgoogle.protobuf.EmptyChange the thresholds associated with proposals. All fields will be
overwritten by the input value and this will affect all current propos-
als of the organization. Note: only the organization can execute this
through a proposal.

ChangeOr-
ganization-
Proposer-
WhiteList

acs3.ProposerWhiteListgoogle.protobuf.EmptyChange the white list of organization proposer. This method overrides
the list of whitelisted proposers.

CreatePro-
posal-
BySystem-
Contract

acs3.CreateProposalBySystemContractInputaelf.Hash Create a proposal by system contracts, and return id of the newly cre-
ated proposal.

ClearPro-
posal

aelf.Hash google.protobuf.EmptyRemove the specified proposal. If the proposal is in effect, the cleanup
fails.

GetProposal aelf.Hash acs3.ProposalOutputGet the proposal according to the proposal ID.
Validate-
Organiza-
tionExist

aelf.Address google.protobuf.BoolValueCheck the existence of an organization.

Vali-
datePro-
poserIn-
WhiteList

acs3.ValidateProposerInWhiteListInputgoogle.protobuf.BoolValueCheck if the proposer is whitelisted.

20.3.2 Contract Types

304 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Contracts.Parliament

Parliament.CreateOrganizationBySystemContractInput

Field Type Description La-
bel

organiza-
tion_creation_input

CreateOrgani-
zationInput

The parameters of creating organization.

organiza-
tion_address_feedback_method

string The organization address callback method which replies the
organization address to caller contract.

Parliament.CreateOrganizationInput

Field Type Description La-
bel

proposal_release_threshold acs3.ProposalReleaseThresholdThe threshold for releasing the proposal.
proposer_authority_required bool Setting this to true can allow anyone to create

proposals.
parlia-
ment_member_proposing_allowed

bool Setting this to true can allow parliament member
to create proposals.

creation_token aelf.Hash The creation token is for organization address
generation.

Parliament.InitializeInput

Field Type Description La-
bel

privileged_proposer aelf.AddressPrivileged proposer would be the first address in parliament proposer
whitelist.

pro-
poser_authority_required

bool The setting indicates if proposals need authority to be created for
first/default parliament organization.

Parliament.Organization

Field Type Description La-
bel

proposer_authority_required bool Indicates if proposals need authority to be cre-
ated.

organization_address aelf.Address The organization address.
organization_hash aelf.Hash The organization id.
proposal_release_threshold acs3.ProposalReleaseThresholdThe threshold for releasing the proposal.
parlia-
ment_member_proposing_allowed

bool Indicates if parliament member can propose to
this organization.

creation_token aelf.Hash The creation token is for organization address
generation.

20.3. AElf.Contracts.Parliament 305

AElf, Release release/1.2.3

Parliament.ProposalIdList

Field Type Description Label
proposal_ids aelf.Hash The list of proposal ids. repeated

Parliament.ProposalInfo

Field Type Description Label
proposal_id aelf.Hash The proposal ID.
con-
tract_method_name

string The method that this proposal will call when being
released.

to_address aelf.Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf.TimestampThe date at which this proposal will expire.
proposer aelf.Address The address of the proposer of this proposal.
organization_address aelf.Address The address of this proposals organization.
approvals aelf.Address Address list of approved. re-

peated
rejections aelf.Address Address list of rejected. re-

peated
abstentions aelf.Address Address list of abstained. re-

peated
pro-
posal_description_url

string Url is used for proposal describing.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Standards.ACS3

306 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs3.CreateProposalBySystemContractInput

Field Type Description Label
proposal_input CreateProposalInput The parameters of creating proposal.
origin_proposer aelf.Address The actor that trigger the call.

acs3.CreateProposalInput

Field Type Description La-
bel

con-
tract_method_name

string The name of the method to call after release.

to_address aelf.Address The address of the contract to call after release.
params bytes The parameter of the method to be called after the release.
expired_time google.protobuf.TimestampThe timestamp at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of the organization.

pro-
posal_description_url

string Url is used for proposal describing.

token aelf.Hash The token is for proposal id generation and with this token, proposal
id can be calculated before proposing.

acs3.OrganizationCreated

Field Type Description Label
organization_address aelf.Address The address of the created organization.

acs3.OrganizationHashAddressPair

Field Type Description Label
organization_hash aelf.Hash The id of organization.
organization_address aelf.Address The address of organization.

acs3.OrganizationThresholdChanged

Field Type Description Label
organization_address aelf.Address The organization address
proposer_release_threshold ProposalReleaseThreshold The new release threshold.

20.3. AElf.Contracts.Parliament 307

AElf, Release release/1.2.3

acs3.OrganizationWhiteListChanged

Field Type Description Label
organization_address aelf.Address The organization address.
proposer_white_list ProposerWhiteList The new proposer whitelist.

acs3.ProposalCreated

Field Type Description Label
proposal_id aelf.Hash The id of the created proposal.
organization_address aelf.Address The organization address of the created proposal.

acs3.ProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The id of the proposal.
con-
tract_method_name

string The method that this proposal will call when being re-
leased.

to_address aelf.Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf.TimestampThe date at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of this proposals organization.

proposer aelf.Address The address of the proposer of this proposal.
to_be_released bool Indicates if this proposal is releasable.
approval_count int64 Approval count for this proposal.
rejection_count int64 Rejection count for this proposal.
abstention_count int64 Abstention count for this proposal.

acs3.ProposalReleaseThreshold

Field Type Description Label
minimal_approval_threshold int64 The value for the minimum approval threshold.
maximal_rejection_threshold int64 The value for the maximal rejection threshold.
maximal_abstention_threshold int64 The value for the maximal abstention threshold.
minimal_vote_threshold int64 The value for the minimal vote threshold.

acs3.ProposalReleased

Field Type Description Label
proposal_id aelf.Hash The id of the released proposal.
organization_address aelf.Address The organization address of the released proposal.

308 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs3.ProposerWhiteList

Field Type Description Label
proposers aelf.Address The address of the proposers repeated

acs3.ReceiptCreated

Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp The timestamp of this method call.
organization_address aelf.Address The address of the organization.

acs3.ValidateProposerInWhiteListInput

Field Type Description Label
proposer aelf.Address The address to search/check.
organization_address aelf.Address The address of the organization.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

20.3. AElf.Contracts.Parliament 309

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

310 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

20.3. AElf.Contracts.Parliament 311

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

312 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.4 AElf.Contracts.Consensus.AEDPoS

AEDPoS contract.

Used to managing block producers and synchronizing data.

Implement AElf Standards ACS1, ACS4, ACS6, ACS10 and ACS11.

20.4.1 Contract Methods

Method Name Request Type Response Type Description
InitialAElfConsensusContract AEDPoS.InitialAElfConsensusContractInput google.protobuf.Empty Initialize the consensus contract.
FirstRound AEDPoS.Round google.protobuf.Empty Initializes the consensus information in the first round.
UpdateValue AEDPoS.UpdateValueInput google.protobuf.Empty Update consensus information.
NextRound AEDPoS.Round google.protobuf.Empty Update consensus information, create a new round.
NextTerm AEDPoS.Round google.protobuf.Empty Update consensus information, create a new term.
UpdateTinyBlockInformation AEDPoS.TinyBlockInput google.protobuf.Empty Update consensus tiny block information.
SetMaximumMinersCount google.protobuf.Int32Value google.protobuf.Empty Set the maximum count of miners, by default, is unlimited. If you want to control the count of miners, you need to set it through parliament.
ChangeMaximumMinersCountController AuthorityInfo google.protobuf.Empty The authority information for SetMaximumMinersCount, by default, is governed by parliament.
RecordCandidateReplacement AEDPoS.RecordCandidateReplacementInput google.protobuf.Empty Election Contract can notify AEDPoS Contract to aware candidate replacement happened.
GetCurrentMinerList google.protobuf.Empty AEDPoS.MinerList Get the list of current miners.
GetCurrentMinerPubkeyList google.protobuf.Empty AEDPoS.PubkeyList Get the list of current miners (hexadecimal format).
GetCurrentMinerListWithRoundNumber google.protobuf.Empty AEDPoS.MinerListWithRoundNumber Get the list of current miners and current round number.
GetRoundInformation google.protobuf.Int64Value AEDPoS.Round Get information of the round according to round number.
GetCurrentRoundNumber google.protobuf.Empty google.protobuf.Int64Value Get the current round number.
GetCurrentRoundInformation google.protobuf.Empty AEDPoS.Round Get the current round information.
GetPreviousRoundInformation google.protobuf.Empty AEDPoS.Round Get the previous round information.
GetCurrentTermNumber google.protobuf.Empty google.protobuf.Int64Value Get the current term number.
GetCurrentTermMiningReward google.protobuf.Empty google.protobuf.Int64Value Get the welfare reward the current term.
GetMinerList AEDPoS.GetMinerListInput AEDPoS.MinerList Get the list of miners according to term number.
GetPreviousMinerList google.protobuf.Empty AEDPoS.MinerList Get the list of miner in previous term.
GetMinedBlocksOfPreviousTerm google.protobuf.Empty google.protobuf.Int64Value Get the amount of mined blocks in previous term.
GetNextMinerPubkey google.protobuf.Empty google.protobuf.StringValue Get the miner that produces the next block.
IsCurrentMiner aelf.Address google.protobuf.BoolValue Check to see if the account address is on the miner list for the current round.
GetNextElectCountDown google.protobuf.Empty google.protobuf.Int64Value Query the left time before the next election takes effects (seconds).
GetPreviousTermInformation google.protobuf.Int64Value AEDPoS.Round Get term information according term number.
GetRandomHash google.protobuf.Int64Value aelf.Hash Get random hash (Keep this for compatibility).
GetMaximumBlocksCount google.protobuf.Empty google.protobuf.Int32Value Get the maximum of tiny blocks produced by a miner each round.
GetMaximumMinersCount google.protobuf.Empty google.protobuf.Int32Value Get the maximum count of miners.
GetMaximumMinersCountController google.protobuf.Empty AuthorityInfo Get the authority information for SetMaximumMinersCount.
GetMainChainCurrentMinerList google.protobuf.Empty AEDPoS.MinerList Gets the list of miners in the main chain.
GetPreviousTermMinerPubkeyList google.protobuf.Empty AEDPoS.PubkeyList Get the list of miners in the previous term.

Continued on next page

20.4. AElf.Contracts.Consensus.AEDPoS 313

AElf, Release release/1.2.3

Table 1 – continued from previous page
Method Name Request Type Response Type Description
GetCurrentMiningRewardPerBlock google.protobuf.Empty google.protobuf.Int64Value Query the current mining reward for each block.
SetMinerIncreaseInterval google.protobuf.Int64Value google.protobuf.Empty Set the current miner growth time interval.
GetMinerIncreaseInterval google.protobuf.Empty google.protobuf.Int64Value Get the current miner growth time interval.

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

AElf.Standards.ACS4

Method
Name

Request
Type

Re-
sponse
Type

Description

GetConsen-
susCom-
mand

google.protobuf.BytesValueacs4.ConsensusCommandGenerate a consensus command based on the consensus contract state
and the input public key.

GetConsen-
susExtra-
Data

google.protobuf.BytesValuegoogle.protobuf.BytesValueGenerate consensus extra data when a block is generated.

Generate-
Consensus-
Transactions

google.protobuf.BytesValueacs4.TransactionListGenerate consensus system transactions when a block is generated. Each
block will contain only one consensus transaction, which is used to write
the latest consensus information to the State database.

Validate-
Consensus-
BeforeExe-
cution

google.protobuf.BytesValueacs4.ValidationResultBefore executing the block, verify that the consensus information in the
block header is correct.

Validate-
Consen-
susAfterEx-
ecution

google.protobuf.BytesValueacs4.ValidationResultAfter executing the block, verify that the state information written to the
consensus is correct.

AElf.Standards.ACS6

Method Name Request Type Response Type Description
GetRandom-
Bytes

google.protobuf.BytesValuegoogle.protobuf.BytesValueGet random number according to block
height.

314 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Standards.ACS10

Method
Name

Request
Type

Re-
sponse
Type

Description

Donate acs10.DonateInputgoogle.protobuf.EmptyDonates tokens from the caller to the treasury. If the tokens are not
native tokens in the current chain, they will be first converted to the
native token.

Release acs10.ReleaseInputgoogle.protobuf.EmptyRelease dividend pool according the period number.
SetSymbol-
List

acs10.SymbolListgoogle.protobuf.EmptySet the token symbols dividend pool supports.

GetSymbol-
List

google.protobuf.Emptyacs10.SymbolListQuery the token symbols dividend pool supports.

GetUndis-
tributedDiv-
idends

google.protobuf.Emptyacs10.DividendsQuery the balance of undistributed tokens whose symbols are in-
cluded in the symbol list.

GetDivi-
dends

google.protobuf.Int64Valueacs10.DividendsQuery the dividend information according to the height.

AElf.Standards.ACS11

Method Name Request Type Response Type Description
UpdateInformationFrom-
CrossChain

google.protobuf.BytesValuegoogle.protobuf.EmptyUpdate the consensus information of the
side chain.

GetChainInitializationIn-
formation

google.protobuf.BytesValuegoogle.protobuf.BytesValueGet the current miner list and consensus
round information.

CheckCrossChainIndex-
ingPermission

aelf.Address google.protobuf.BoolValueVerify that the input address is the current
miner.

20.4.2 Contract Types

AElf.Contracts.Consensus.AEDPoS

AEDPoS.AElfConsensusHeaderInformation

Field Type Description Label
sender_pubkey bytes The sender public key.
round Round The round information.
behaviour AElfConsensusBehaviour The behaviour of consensus.

AEDPoS.AElfConsensusHint

Field Type Description Label
behaviour AElfConsensusBehaviour The behaviour of consensus.
round_id int64 The round id.
previous_round_id int64 The previous round id.

20.4. AElf.Contracts.Consensus.AEDPoS 315

AElf, Release release/1.2.3

AEDPoS.AElfConsensusTriggerInformation

Field Type Description Label
pubkey bytes The miner public key.
in_value aelf.Hash The InValue for current

round.
previ-
ous_in_value

aelf.Hash The InValue for previous
round.

behaviour AElfConsensusBehaviour The behaviour of consensus.
en-
crypted_pieces

AElfConsensusTriggerInforma-
tion.EncryptedPiecesEntry

The encrypted pieces of In-
Value.

re-
peated

de-
crypted_pieces

AElfConsensusTriggerInforma-
tion.DecryptedPiecesEntry

The decrypted pieces of In-
Value.

re-
peated

re-
vealed_in_values

AElfConsensusTriggerInforma-
tion.RevealedInValuesEntry

The revealed InValues. re-
peated

AEDPoS.AElfConsensusTriggerInformation.DecryptedPiecesEntry

Field Type Description Label
key string
value bytes

AEDPoS.AElfConsensusTriggerInformation.EncryptedPiecesEntry

Field Type Description Label
key string
value bytes

AEDPoS.AElfConsensusTriggerInformation.RevealedInValuesEntry

Field Type Description Label
key string
value aelf.Hash

AEDPoS.Candidates

Field Type Description Label
pubkeys bytes The candidate public keys. repeated

AEDPoS.ConsensusInformation

Field Type Description Label
value bytes

316 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AEDPoS.GetMinerListInput

Field Type Description Label
term_number int64 The term number.

AEDPoS.HashList

Field Type Description Label
values aelf.Hash repeated

AEDPoS.InitialAElfConsensusContractInput

Field Type Description Label
is_term_stay_one bool Whether not to change the term.
is_side_chain bool Is a side chain.
period_seconds int64 The number of seconds per term.
miner_increase_interval int64 The interval second that increases the number of miners.

AEDPoS.IrreversibleBlockFound

Field Type Description Label
irreversible_block_height int64 The irreversible block height found.

AEDPoS.IrreversibleBlockHeightUnacceptable

Field Type Description Label
distance_to_irreversible_block_height int64 Distance to the height of the last irreversible block.

AEDPoS.LatestPubkeyToTinyBlocksCount

Field Type Description Label
pubkey string The miner public key.
blocks_count int64 The count of blocks the miner produced.

20.4. AElf.Contracts.Consensus.AEDPoS 317

AElf, Release release/1.2.3

AEDPoS.MinerInRound

Field Type Description La-
bel

order int32 The order of the miner producing block.
is_extra_block_producerbool Is extra block producer in the current round.
in_value aelf.Hash Generated by secret sharing and used for validation

between miner.
out_value aelf.Hash Calculated from current in value.
signature aelf.Hash Calculated from current in value and signatures of pre-

vious round.
ex-
pected_mining_time

google.protobuf.TimestampThe expected mining time.

produced_blocks int64 The amount of produced blocks.
missed_time_slots int64 The amount of missed time slots.
pubkey string The public key of this miner.
previous_in_value aelf.Hash The InValue of the previous round.
sup-
posed_order_of_next_round

int32 The supposed order of mining for the next round.

fi-
nal_order_of_next_round

int32 The final order of mining for the next round.

actual_mining_times google.protobuf.TimestampThe actual mining time, miners must fill actual mining
time when they do the mining.

re-
peated

encrypted_pieces MinerIn-
Round.EncryptedPiecesEntry

The encrypted pieces of InValue. re-
peated

decrypted_pieces MinerIn-
Round.DecryptedPiecesEntry

The decrypted pieces of InValue. re-
peated

pro-
duced_tiny_blocks

int64 The amount of produced tiny blocks.

im-
plied_irreversible_block_height

int64 The irreversible block height that current miner
recorded.

AEDPoS.MinerInRound.DecryptedPiecesEntry

Field Type Description Label
key string
value bytes

AEDPoS.MinerInRound.EncryptedPiecesEntry

Field Type Description Label
key string
value bytes

318 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AEDPoS.MinerList

Field Type Description Label
pubkeys bytes The miners public key list. repeated

AEDPoS.MinerListWithRoundNumber

Field Type Description Label
miner_list MinerList The list of miners.
round_number int64 The round number.

AEDPoS.MinerReplaced

Field Type Description Label
new_miner_pubkey string The new miner public key.

AEDPoS.MiningInformationUpdated

Field Type Description Label
pubkey string The miner public key.
mining_time google.protobuf.Timestamp The current block time.
behaviour string The behaviour of consensus.
block_height int64 The current block height.
previous_block_hash aelf.Hash The previous block hash.

AEDPoS.MiningRewardGenerated

Field Type Description Label
term_number int64 The number of term the mining reward is generated.
amount int64 The amount of mining reward.

AEDPoS.PubkeyList

Field Type Description Label
pubkeys string The miners public key list. repeated

20.4. AElf.Contracts.Consensus.AEDPoS 319

AElf, Release release/1.2.3

AEDPoS.RandomNumberRequestInformation

Field Type Description Label
target_round_number int64 The random hash is likely generated during this round.
order int64
expected_block_height int64

AEDPoS.RecordCandidateReplacementInput

Field Type Description Label
old_pubkey string
new_pubkey string

AEDPoS.Round

Field Type Description La-
bel

round_number int64 The round number.
real_time_miners_informationRound.RealTimeMinersInformationEntryCurrent miner information, miner public key ->

miner information.
re-
peated

main_chain_miners_round_numberint64 The round number on the main chain
blockchain_age int64 The time from chain start to current round (sec-

onds).
ex-
tra_block_producer_of_previous_round

string The miner public key that produced the extra
block in the previous round.

term_number int64 The current term number.
con-
firmed_irreversible_block_height

int64 The height of the confirmed irreversible block.

con-
firmed_irreversible_block_round_number

int64 The round number of the confirmed irreversible
block.

is_miner_list_just_changed bool Is miner list different from the the miner list in
the previous round.

round_id_for_validation int64 The round id, calculated by summing block pro-
ducers’ expecting time (second).

AEDPoS.Round.RealTimeMinersInformationEntry

Field Type Description Label
key string
value MinerInRound

320 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AEDPoS.SecretSharingInformation

Field Type Description Label
previous_round Round The previous round information.
current_round_id int64 The current round id.
previous_round_id int64 The previous round id.

AEDPoS.TermInfo

Field Type Description Label
term_number int64
round_number int64

AEDPoS.TermNumberLookUp

Field Type Description Label
map TermNumberLookUp.MapEntry Term number -> Round number. repeated

AEDPoS.TermNumberLookUp.MapEntry

Field Type Description Label
key int64
value int64

AEDPoS.TinyBlockInput

Field Type Description Label
round_id int64 The round id.
actual_mining_time google.protobuf.Timestamp The actual mining time.
produced_blocks int64 Count of blocks currently produced

20.4. AElf.Contracts.Consensus.AEDPoS 321

AElf, Release release/1.2.3

AEDPoS.UpdateValueInput

Field Type Description La-
bel

out_value aelf.Hash Calculated from current in value.
signature aelf.Hash Calculated from current in value and signatures of

previous round.
round_id int64 To ensure the values to update will be apply to cor-

rect round by comparing round id.
previous_in_value aelf.Hash Publish previous in value for validation previous

signature and previous out value.
actual_mining_time google.protobuf.Timestamp The actual mining time, miners must fill actual

mining time when they do the mining.
sup-
posed_order_of_next_round

int32 The supposed order of mining for the next round.

tune_order_informationUpdateValueIn-
put.TuneOrderInformationEntry

The tuning order of mining for the next round,
miner public key -> order.

re-
peated

encrypted_pieces UpdateValueIn-
put.EncryptedPiecesEntry

The encrypted pieces of InValue. re-
peated

decrypted_pieces UpdateValueIn-
put.DecryptedPiecesEntry

The decrypted pieces of InValue. re-
peated

produced_blocks int64 The amount of produced blocks.
min-
ers_previous_in_values

UpdateValueIn-
put.MinersPreviousInValuesEntry

The InValue in the previous round, miner public
key -> InValue.

re-
peated

im-
plied_irreversible_block_height

int64 The irreversible block height that miner recorded.

AEDPoS.UpdateValueInput.DecryptedPiecesEntry

Field Type Description Label
key string
value bytes

AEDPoS.UpdateValueInput.EncryptedPiecesEntry

Field Type Description Label
key string
value bytes

AEDPoS.UpdateValueInput.MinersPreviousInValuesEntry

Field Type Description Label
key string
value aelf.Hash

322 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AEDPoS.UpdateValueInput.TuneOrderInformationEntry

Field Type Description Label
key string
value int32

AEDPoS.VoteMinersCountInput

Field Type Description Label
miners_count int32
amount int64

AEDPoS.AElfConsensusBehaviour

Name Number Description
UPDATE_VALUE 0
NEXT_ROUND 1
NEXT_TERM 2
NOTHING 3
TINY_BLOCK 4

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Standards.ACS4

20.4. AElf.Contracts.Consensus.AEDPoS 323

AElf, Release release/1.2.3

acs4.ConsensusCommand

Field Type Description La-
bel

limit_milliseconds_of_mining_blockint32 Time limit of mining next block.
hint bytes Context of Hint is diverse according to the consensus pro-

tocol we choose, so we use bytes.
arranged_mining_time google.protobuf.TimestampThe time of arrange mining.
mining_due_time google.protobuf.TimestampThe expiration time of mining.

acs4.TransactionList

Field Type Description Label
transactions aelf.Transaction Consensus system transactions. repeated

acs4.ValidationResult

Field Type Description Label
success bool Is successful.
message string The error message.
is_re_trigger bool Whether to trigger mining again.

AElf.Standards.ACS6

AElf.Standards.ACS10

acs10.Dividends

Field Type Description Label
value Dividends.ValueEntry The dividends, symbol -> amount. repeated

acs10.Dividends.ValueEntry

Field Type Description Label
key string
value int64

acs10.DonateInput

Field Type Description Label
symbol string The token symbol to donate.
amount int64 The amount to donate.

324 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs10.DonationReceived

Field Type Description Label
from aelf.Address The address of donors.
pool_contract aelf.Address The address of dividend pool.
symbol string The token symbol Donated.
amount int64 The amount Donated.

acs10.ReleaseInput

Field Type Description Label
period_number int64 The period number to release.

acs10.SymbolList

Field Type Description Label
value string The token symbol list. repeated

AElf.Standards.ACS11

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

20.4. AElf.Contracts.Consensus.AEDPoS 325

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

326 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

20.4. AElf.Contracts.Consensus.AEDPoS 327

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

328 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.5 AElf.Contracts.Election

Election contract.

Used for voting for Block Producers.

Implement AElf Standards ACS1.

20.5.1 Contract Methods

Method Name Request Type Response Type Description
InitialElectionContract Election.InitialElectionContractInput google.protobuf.Empty Initialize the election contract.
RegisterElectionVotingEvent google.protobuf.Empty google.protobuf.Empty Register a new voting item through vote contract.
TakeSnapshot Election.TakeElectionSnapshotInput google.protobuf.Empty Take snapshot according to term number, and distribute profits.
AnnounceElection aelf.Address google.protobuf.Empty To be a block producer, a user should first register to be a candidate and lock some token as a deposit. If the data center is not full, the user will be added in automatically and get one weight for sharing bonus in the future.
QuitElection google.protobuf.StringValue google.protobuf.Empty A candidate is able to quit the election provided he is not currently elected. If you quit successfully, the candidate will get his locked tokens back and will not receive anymore bonus.
Vote Election.VoteMinerInput aelf.Hash Used for voting for a candidate to be elected. The tokens you vote with will be locked until the end time. According to the number of token you voted and its lock time, you can get corresponding weight for sharing the bonus in the future. And return the vote id.
ChangeVotingOption Election.ChangeVotingOptionInput google.protobuf.Empty Before the end time, you are able to change your vote target to other candidates.
Withdraw aelf.Hash google.protobuf.Empty After the lock time, your locked tokens will be unlocked and you can withdraw them according to the vote id.
UpdateCandidateInformation Election.UpdateCandidateInformationInput google.protobuf.Empty Update candidate information by consensus contract.
UpdateMultipleCandidateInformation Election.UpdateMultipleCandidateInformationInput google.protobuf.Empty Batch update candidate information by consensus contract.
UpdateMinersCount Election.UpdateMinersCountInput google.protobuf.Empty Update the count of miner by consensus contract.
SetTreasurySchemeIds Election.SetTreasurySchemeIdsInput google.protobuf.Empty Set the treasury profit ids.
SetVoteWeightInterest Election.VoteWeightInterestList google.protobuf.Empty Set the weight of vote interest.
SetVoteWeightProportion Election.VoteWeightProportion google.protobuf.Empty Set the weight of lock time and votes in the calculation of voting weight.
ChangeVoteWeightInterestController AuthorityInfo google.protobuf.Empty Change the controller for the weight of vote interest.
ReplaceCandidatePubkey Election.ReplaceCandidatePubkeyInput google.protobuf.Empty Candidate admin can replace candidate pubkey with a new pubkey.
SetCandidateAdmin Election.SetCandidateAdminInput google.protobuf.Empty Set admin address of candidate (mostly supply)
GetCandidates google.protobuf.Empty Election.PubkeyList Get all candidates’ public keys.
GetVotedCandidates google.protobuf.Empty Election.PubkeyList Get all candidates whose number of votes is greater than 0.
GetCandidateInformation google.protobuf.StringValue Election.CandidateInformation Get a candidate’s information.
GetVictories google.protobuf.Empty Election.PubkeyList Get the victories of the latest term.
GetTermSnapshot Election.GetTermSnapshotInput Election.TermSnapshot Get the snapshot of term according to term number.
GetMinersCount google.protobuf.Empty google.protobuf.Int32Value Get the count of miner.
GetElectionResult Election.GetElectionResultInput Election.ElectionResult Get the election result according to term id.
GetElectorVote google.protobuf.StringValue Election.ElectorVote Get the voter information according to voter public key.
GetElectorVoteWithRecords google.protobuf.StringValue Election.ElectorVote Gets the voter information including the active voting records (excluding withdrawn voting records.).
GetElectorVoteWithAllRecords google.protobuf.StringValue Election.ElectorVote Gets the voter information including the active and withdrawn voting records.
GetCandidateVote google.protobuf.StringValue Election.CandidateVote Get voting information for candidate according to the public key of the candidate.
GetCandidateVoteWithRecords google.protobuf.StringValue Election.CandidateVote Get voting information for candidate according to the public key of the candidate.
GetCandidateVoteWithAllRecords google.protobuf.StringValue Election.CandidateVote Get voting information for candidate according to the public key of the candidate (including the active and withdrawn voting records).
GetVotersCount google.protobuf.Empty google.protobuf.Int64Value Get the total number of voters.

Continued on next page

20.5. AElf.Contracts.Election 329

AElf, Release release/1.2.3

Table 2 – continued from previous page
Method Name Request Type Response Type Description
GetVotesAmount google.protobuf.Empty google.protobuf.Int64Value Get the total number of vote token.
GetPageableCandidateInformation Election.PageInformation Election.GetPageableCandidateInformationOutput Get candidate information according to the index and length.
GetMinerElectionVotingItemId google.protobuf.Empty aelf.Hash Get the voting item id of miner election.
GetDataCenterRankingList google.protobuf.Empty Election.DataCenterRankingList Get the data center ranking list.
GetVoteWeightSetting google.protobuf.Empty Election.VoteWeightInterestList Get the weight of vote interest.
GetVoteWeightProportion google.protobuf.Empty Election.VoteWeightProportion Get the weight of lock time and votes in the calculation of voting weight.
GetCalculateVoteWeight Election.VoteInformation google.protobuf.Int64Value Used to calculate the bonus weights that users can get by voting.
GetVoteWeightInterestController google.protobuf.Empty AuthorityInfo Query the controller for the weight of vote interest.
GetMinerReplacementInformation Election.GetMinerReplacementInformationInput Election.MinerReplacementInformation Inspect the evil nodes included in the specified miners and return to the replacement node.
GetCandidateAdmin google.protobuf.StringValue aelf.Address Query candidate admin.
GetNewestPubkey google.protobuf.StringValue google.protobuf.StringValue Query the newest pubkey of an old pubkey.
GetReplacedPubkey google.protobuf.StringValue google.protobuf.StringValue Query the old pubkey.

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.5.2 Contract Types

AElf.Contracts.Election

Election.CandidateDetail

Field Type Description Label
candidate_information CandidateInformation The candidate information.
obtained_votes_amount int64 The number of votes a candidate has obtained.

330 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Election.CandidateInformation

Field Type Description Label
pubkey string Candidate’s public key.
terms int64 The number of terms that the candidate is elected. re-

peated
produced_blocks int64 The number of blocks the candidate has produced.
missed_time_slots int64 The time slot for which the candidate failed to produce

blocks.
contin-
ual_appointment_count

int64 The count of continual appointment.

announce-
ment_transaction_id

aelf.Hash The transaction id when the candidate announced.

is_current_candidate bool Indicate whether the candidate can be elected in the current
term.

Election.CandidatePubkeyReplaced

Field Type Description Label
old_pubkey string
new_pubkey string

Election.CandidateVote

Field Type Description Label
ob-
tained_active_voting_record_ids

aelf.Hash The active voting record ids obtained. re-
peated

ob-
tained_withdrawn_voting_record_ids

aelf.Hash The active voting record ids that were with-
drawn.

re-
peated

ob-
tained_active_voted_votes_amount

int64 The total number of active votes obtained.

all_obtained_voted_votes_amount int64 The total number of votes obtained.
obtained_active_voting_records ElectionVotin-

gRecord
The active voting records. re-

peated
ob-
tained_withdrawn_votes_records

ElectionVotin-
gRecord

The voting records that were withdrawn. re-
peated

pubkey bytes Public key for candidate.

Election.ChangeVotingOptionInput

Field Type Description Label
vote_id aelf.Hash The vote id to change.
candidate_pubkey string The new candidate public key.

20.5. AElf.Contracts.Election 331

AElf, Release release/1.2.3

Election.DataCenterRankingList

Field Type Description Label
data_centersDataCenterRank-

ingList.DataCentersEntry
The top n * 5 candidates with vote amount, candidate pub-
lic key -> vote amount.

re-
peated

Election.DataCenterRankingList.DataCentersEntry

Field Type Description Label
key string
value int64

Election.ElectionResult

Field Type Description Label
term_number int64 The term number
results ElectionRe-

sult.ResultsEntry
The election result, candidates’ public key -> number of
votes.

re-
peated

is_active bool Whether an election is currently being held.

Election.ElectionResult.ResultsEntry

Field Type Description Label
key string
value int64

Election.ElectionVotingRecord

Field Type Description Label
voter aelf.Address The address of voter.
candidate string The public key of candidate.
amount int64 Amount of voting.
term_number int64 The term number of voting.
vote_id aelf.Hash The vote id.
lock_time int64 Vote lock time.
unlock_timestamp google.protobuf.Timestamp The unlock timestamp.
withdraw_timestamp google.protobuf.Timestamp The withdraw timestamp.
vote_timestamp google.protobuf.Timestamp The vote timestamp.
is_withdrawn bool Indicates if the vote has been withdrawn.
weight int64 Vote weight for sharing bonus.
is_change_target bool Whether vote others.

332 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Election.ElectorVote

Field Type Description Label
ac-
tive_voting_record_ids

aelf.Hash The active voting record ids. re-
peated

with-
drawn_voting_record_ids

aelf.Hash The voting record ids that were withdrawn. re-
peated

ac-
tive_voted_votes_amount

int64 The total number of active votes.

all_voted_votes_amount int64 The total number of votes (including the number of votes
withdrawn).

active_voting_records ElectionVotin-
gRecord

The active voting records. re-
peated

with-
drawn_votes_records

ElectionVotin-
gRecord

The voting records that were withdrawn. re-
peated

pubkey bytes Public key for voter.

Election.EvilMinerDetected

Field Type Description Label
pubkey string The public key of evil miner.

Election.GetElectionResultInput

Field Type Description Label
term_number int64 The term number.

Election.GetMinerReplacementInformationInput

Field Type Description Label
current_miner_list string The current miner list to inspect. repeated

Election.GetPageableCandidateInformationOutput

Field Type Description Label
value CandidateDetail The details of the candidates. repeated

Election.GetTermSnapshotInput

Field Type Description Label
term_number int64 The term number.

20.5. AElf.Contracts.Election 333

AElf, Release release/1.2.3

Election.InitialElectionContractInput

Field Type Description Label
minimum_lock_time int64 Minimum number of seconds for locking.
maximum_lock_time int64 Maximum number of seconds for locking.
miner_list string The current miner list. repeated
time_each_term int64 The number of seconds per term.
miner_increase_interval int64 The interval second that increases the number of miners.

Election.MinerReplacementInformation

Field Type Description Label
alternative_candidate_pubkeys string The alternative candidate public keys. repeated
evil_miner_pubkeys string The evil miner public keys. repeated

Election.PageInformation

Field Type Description Label
start int32 The start index.
length int32 The number of records.

Election.PubkeyList

Field Type Description Label
value bytes Candidates’ public keys repeated

Election.ReplaceCandidatePubkeyInput

Field Type Description Label
old_pubkey string
new_pubkey string

Election.SetCandidateAdminInput

Field Type Description Label
pubkey string
admin aelf.Address

334 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Election.SetTreasurySchemeIdsInput

Field Type Description Label
treasury_hash aelf.Hash The scheme id of treasury reward.
welfare_hash aelf.Hash The scheme id of welfare reward.
subsidy_hash aelf.Hash The scheme id of subsidy reward.
votes_reward_hash aelf.Hash The scheme id of votes reward.
re_election_reward_hash aelf.Hash The scheme id of re-election reward.

Election.TakeElectionSnapshotInput

Field Type Description Label
term_number int64 The term number to take snapshot.
mined_blocks int64 The number of mined blocks of this term.
round_number int64 The end round number of this term.

Election.TermSnapshot

Field Type Description Label
end_round_numberint64 The end round number of this term.
mined_blocks int64 The number of blocks mined in this term.
election_result TermSnap-

shot.ElectionResultEntry
The election result, candidates’ public key -> num-
ber of votes.

re-
peated

Election.TermSnapshot.ElectionResultEntry

Field Type Description Label
key string
value int64

Election.UpdateCandidateInformationInput

Field Type Description Label
pubkey string The candidate public key.
recently_produced_blocks int64 The number of blocks recently produced.
recently_missed_time_slots int64 The number of time slots recently missed.
is_evil_node bool Is it a evil node. If true will remove the candidate.

Election.UpdateMinersCountInput

Field Type Description Label
miners_count int32 The count of miner.

20.5. AElf.Contracts.Election 335

AElf, Release release/1.2.3

Election.UpdateMultipleCandidateInformationInput

Field Type Description Label
value UpdateCandidateInformationInput The candidate information to update. repeated

Election.UpdateTermNumberInput

Field Type Description Label
term_number int64 The term number.

Election.VoteInformation

Field Type Description Label
amount int64 Amount of voting.
lock_time int64 Vote lock time.

Election.VoteMinerInput

Field Type Description Label
candidate_pubkey string The candidate public key.
amount int64 The amount token to vote.
end_timestamp google.protobuf.Timestamp The end timestamp of this vote.
token aelf.Hash Used to generate vote id.

Election.VoteWeightInterest

Field Type Description Label
day int32 Number of days locked.
interest int32 Locked interest.
capital int32

Election.VoteWeightInterestList

Field Type Description Label
vote_weight_interest_infos VoteWeightInterest The weight of vote interest. repeated

Election.VoteWeightProportion

Field Type Description Label
time_proportion int32 The weight of lock time.
amount_proportion int32 The weight of the votes cast.

336 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

20.5. AElf.Contracts.Election 337

AElf, Release release/1.2.3

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

338 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

20.5. AElf.Contracts.Election 339

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.6 AElf.Contracts.Genesis

Genesis contract.

Used to manage the deployment and update of contracts.

340 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Implement AElf Standards ACS0 and ACS1.

20.6.1 Contract Methods

Method Name Request Type Re-
sponse
Type

Description

Initialize Zero.InitializeInput google.protobuf.EmptyInitialize the genesis contract.
SetInitialController-
Address

aelf.Address google.protobuf.EmptySet initial controller address for CodeCheck-
Controller and ContractDeploymentController.

ChangeContractDe-
ploymentController

AuthorityInfo google.protobuf.EmptyModify the contract deployment controller au-
thority. Note: Only old controller has permis-
sion to do this.

ChangeCodeCheck-
Controller

AuthorityInfo google.protobuf.EmptyModify the contract code check controller au-
thority. Note: Only old controller has permis-
sion to do this.

GetContractDeploy-
mentController

google.protobuf.Empty Authority-
Info

Query the ContractDeploymentController au-
thority info.

GetCodeCheckCon-
troller

google.protobuf.Empty Authority-
Info

Query the CodeCheckController authority info.

SetContractProposal-
ExpirationTimePeriod

Zero.SetContractProposalExpirationTimePeriodInputgoogle.protobuf.EmptySet expiration time for contract proposals, 72
hours by default

GetCurrentCon-
tractProposalExpira-
tionTimePeriod

google.protobuf.Empty int32 get the expiration time for the current contract
proposal

20.6. AElf.Contracts.Genesis 341

AElf, Release release/1.2.3

AElf.Standards.ACS0

Method Name Request Type Response
Type

Description

DeploySystemS-
martContract

acs0.SystemContractDeploymentInputaelf.Address Deploy a system smart contract on chain and return the
address of the system contract deployed.

DeploySmartCon-
tract

acs0.ContractDeploymentInputaelf.Address Deploy a smart contract on chain and return the address
of the contract deployed.

UpdateSmartCon-
tract

acs0.ContractUpdateInputaelf.Address Update a smart contract on chain.

ProposeNewCon-
tract

acs0.ContractDeploymentInputaelf.Hash Create a proposal to deploy a new contract and returns
the id of the proposed contract.

ProposeContract-
CodeCheck

acs0.ContractCodeCheckInputaelf.Hash Create a proposal to check the code of a contract and
return the id of the proposed contract.

ProposeUpdate-
Contract

acs0.ContractUpdateInputaelf.Hash Create a proposal to update the specified contract and
return the id of the proposed contract.

ReleaseAp-
provedContract

acs0.ReleaseContractInputgoogle.protobuf.EmptyRelease the contract proposal which has been approved.

ReleaseC-
odeChecked-
Contract

acs0.ReleaseContractInputgoogle.protobuf.EmptyRelease the proposal which has passed the code check.

ValidateSystem-
ContractAddress

acs0.ValidateSystemContractAddressInputgoogle.protobuf.EmptyValidate whether the input system contract exists.

SetContractPro-
poserRequired-
State

google.protobuf.BoolValuegoogle.protobuf.EmptySet authority of contract deployment.

CurrentContract-
SerialNumber

google.protobuf.Emptygoogle.protobuf.Int64ValueGet the current serial number of genesis contract (cor-
responds to the serial number that will be given to the
next deployed contract).

GetContractInfo aelf.Address acs0.ContractInfoGet detailed information about the specified contract.
GetContractAu-
thor

aelf.Address aelf.Address Get author of the specified contract.

GetContractHash aelf.Address aelf.Hash Get the code hash of the contract about the specified
address.

GetContractAd-
dressByName

aelf.Hash aelf.Address Get the address of a system contract by its name.

GetSmartCon-
tractRegistra-
tionByAddress

aelf.Address aelf.SmartContractRegistrationGet the registration of a smart contract by its address.

GetSmartContrac-
tRegistrationBy-
CodeHash

aelf.Hash aelf.SmartContractRegistrationGet the registration of a smart contract by code hash.

342 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.6.2 Contract Types

AElf.Contracts.Genesis

Zero.ContractProposingInput

Field Type Description La-
bel

proposer aelf.Address The address of proposer for contract deployment/update.
status ContractProposingInputSta-

tus
The status of proposal.

ex-
pired_time

google.protobuf.Timestamp The expiration time of proposal.

Zero.InitializeInput

Field Type Description La-
bel

contract_deployment_authority_required bool Whether contract deployment/update requires author-
ity.

Zero.ContractProposingInputStatus

Name Number Description
PROPOSED 0 Proposal is proposed.
APPROVED 1 Proposal is approved by parliament.
CODE_CHECK_PROPOSED 2 Code check is proposed.
CODE_CHECKED 3 Passed code checks.

Zero.SetContractProposalExpirationTimePeriodInput

Field Type Description Label
expiration_time_period int32 the period of expiration time

20.6. AElf.Contracts.Genesis 343

AElf, Release release/1.2.3

AElf.Standards.ACS0

acs0.CodeCheckRequired

Field Type Description Label
code bytes The byte array of the contract code.
proposed_contract_input_hash aelf.Hash The id of the proposed contract.
category sint32 The category of contract code(0: C#).
is_system_contract bool Indicates if the contract is the system contract.

acs0.CodeUpdated

Field Type Description Label
address aelf.Address The address of the updated contract.
old_code_hash aelf.Hash The byte array of the old contract code.
new_code_hash aelf.Hash The byte array of the new contract code.
version int32 The version of the current contract.

acs0.ContractCodeCheckInput

Field Type Description La-
bel

contract_input bytes The byte array of the contract code to be checked.
is_contract_deployment bool Whether the input contract is to be deployed or updated.
code_check_release_methodstring Method to call after code check complete(DeploySmartContract or

UpdateSmartContract).
pro-
posed_contract_input_hash

aelf.Hash The id of the proposed contract.

category sint32 The category of contract code(0: C#).
is_system_contract bool Indicates if the contract is the system contract.

acs0.ContractDeployed

Field Type Description Label
author aelf.Address The author of the contract, this is the person who deployed the contract.
code_hash aelf.Hash The hash of the contract code.
address aelf.Address The address of the contract.
version int32 The version of the current contract.
Name aelf.Hash The name of the contract. It has to be unique.

344 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs0.ContractDeploymentInput

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.

acs0.ContractInfo

Field Type Description La-
bel

serial_number int64 The serial number of the contract.
author aelf.Address The author of the contract, this is the person who deployed the con-

tract.
category sint32 The category of contract code(0: C#).
code_hash aelf.Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

acs0.ContractProposed

Field Type Description Label
proposed_contract_input_hash aelf.Hash The id of the proposed contract.

acs0.ContractUpdateInput

Field Type Description Label
address aelf.Address The contract address that needs to be updated.
code bytes The byte array of the new contract code.

acs0.ReleaseContractInput

Field Type Description Label
proposal_id aelf.Hash The hash of the proposal.
proposed_contract_input_hash aelf.Hash The id of the proposed contract.

20.6. AElf.Contracts.Genesis 345

AElf, Release release/1.2.3

acs0.SystemContractDeploymentInput

Field Type Description La-
bel

category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
name aelf.Hash The name of the contract. It has to be unique.
transac-
tion_method_call_list

SystemContractDeploymentIn-
put.SystemTransactionMethodCallList

An initial list of transactions for the system contract,
which is executed in sequence when the contract is de-
ployed.

acs0.SystemContractDeploymentInput.SystemTransactionMethodCall

Field Type Description Label
method_name string The method name of system transaction.
params bytes The params of system transaction method.

acs0.SystemContractDeploymentInput.SystemTransactionMethodCallList

Field Type Description Label
value SystemContractDeploymentIn-

put.SystemTransactionMethodCall
The list of system transac-
tions.

re-
peated

acs0.ValidateSystemContractAddressInput

Field Type Description Label
system_contract_hash_name aelf.Hash The name hash of the contract.
address aelf.Address The address of the contract.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

346 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

20.6. AElf.Contracts.Genesis 347

AElf, Release release/1.2.3

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

348 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

20.6. AElf.Contracts.Genesis 349

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.7 AElf.Contracts.MultiToken

MultiToken contract.

The MultiToken contract is mainly used to manage the user’s account and transaction fees related Settings.

350 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Implement AElf Standards ACS1 and ACS2.

20.7.1 Contract Methods

Method Name Request Type Response Type Description
AdvanceResourceToken tokenimpl.AdvanceResourceTokenInput google.protobuf.Empty Transfer resource tokens to designated contract address.
TakeResourceTokenBack tokenimpl.TakeResourceTokenBackInput google.protobuf.Empty Take token from contract address.
RegisterCrossChainTokenContractAddress tokenimpl.RegisterCrossChainTokenContractAddressInput google.protobuf.Empty Register the token contract address for cross chain.
SetFeeReceiver aelf.Address google.protobuf.Empty Set the receiver address of the side chain transaction fee.
ValidateTokenInfoExists tokenimpl.ValidateTokenInfoExistsInput google.protobuf.Empty Validates if the token exist.
UpdateRental tokenimpl.UpdateRentalInput google.protobuf.Empty Update the rental unit price of the side chain.
UpdateRentedResources tokenimpl.UpdateRentedResourcesInput google.protobuf.Empty Set the amount of resources fee per minute for the side chain.
TransferToContract tokenimpl.TransferToContractInput google.protobuf.Empty Transfer Token to the specified contract.
ChangeSideChainRentalController AuthorityInfo google.protobuf.Empty Change the governance organization of side chain rental.
ChangeSymbolsToPayTXSizeFeeController AuthorityInfo google.protobuf.Empty Change the governance organization for tokens to pay transaction fees.
ChangeCrossChainTokenContractRegistrationController AuthorityInfo google.protobuf.Empty Change the governance organization for cross-chain token contract address registration.
ChangeUserFeeController AuthorityInfo google.protobuf.Empty Change the governance organization of the coefficient of the user transaction fee calculation formula.
ChangeDeveloperController AuthorityInfo google.protobuf.Empty Change the governance organization of the coefficient of the developer’s transaction resource fee calculation formula.
GetFeeReceiver google.protobuf.Empty aelf.Address Get the address of fee receiver.
GetResourceUsage google.protobuf.Empty tokenimpl.ResourceUsage Query the amount of resources usage currently.
GetSymbolsToPayTXSizeFeeController google.protobuf.Empty AuthorityInfo Query the governance organization for tokens to pay transaction fees.
GetCrossChainTokenContractRegistrationController google.protobuf.Empty AuthorityInfo Query the governance organization of the
GetUserFeeController google.protobuf.Empty tokenimpl.UserFeeController Query the governance organization that calculates the formula coefficient for the transaction cost the user sends the contract.
GetDeveloperFeeController google.protobuf.Empty tokenimpl.DeveloperFeeController Query the governing organization of the formula coefficients for calculating developer contract transaction fee.
GetSideChainRentalControllerCreateInfo google.protobuf.Empty AuthorityInfo Query the organization that governs the side chain rental fee.
GetVirtualAddressForLocking tokenimpl.GetVirtualAddressForLockingInput aelf.Address Compute the virtual address for locking.
GetOwningRental google.protobuf.Empty tokenimpl.OwningRental Query how much resource tokens should be paid currently.
GetOwningRentalUnitValue google.protobuf.Empty tokenimpl.OwningRentalUnitValue Query the unit price of the side chain resource cost, resource cost = unit price * quantity, the quantity can be queried through GetResourceUsage.
Create token.CreateInput google.protobuf.Empty Create a new token.
Issue token.IssueInput google.protobuf.Empty Issuing some amount of tokens to an address is the action of increasing that addresses balance for the given token. The total amount of issued tokens must not exceed the total supply of the token and only the issuer (creator) of the token can issue tokens. Issuing tokens effectively increases the circulating supply.
Transfer token.TransferInput google.protobuf.Empty Transferring tokens simply is the action of transferring a given amount of tokens from one address to another. The origin or source address is the signer of the transaction. The balance of the sender must be higher than the amount that is transferred.
TransferFrom token.TransferFromInput google.protobuf.Empty The TransferFrom action will transfer a specified amount of tokens from one address to another. For this operation to succeed the from address needs to have approved (see allowances) enough tokens to Sender of this transaction. If successful the amount will be removed from the allowance.
Approve token.ApproveInput google.protobuf.Empty The approve action increases the allowance from the Sender to the Spender address, enabling the Spender to call TransferFrom.
UnApprove token.UnApproveInput google.protobuf.Empty This is the reverse operation for Approve, it will decrease the allowance.
Lock token.LockInput google.protobuf.Empty This method can be used to lock tokens.
Unlock token.UnlockInput google.protobuf.Empty This is the reverse operation of locking, it un-locks some previously locked tokens.
Burn token.BurnInput google.protobuf.Empty This action will burn the specified amount of tokens, removing them from the token’s Supply.
ChangeTokenIssuer token.ChangeTokenIssuerInput google.protobuf.Empty Change the issuer of the specified token. Only the original issuer can change it.
SetPrimaryTokenSymbol token.SetPrimaryTokenSymbolInput google.protobuf.Empty Set the primary token of side chain.
CrossChainTransfer token.CrossChainTransferInput google.protobuf.Empty This interface is used for cross-chain transfer.
CrossChainReceiveToken token.CrossChainReceiveTokenInput google.protobuf.Empty This method is used to receive cross-chain transfers.
CrossChainCreateToken token.CrossChainCreateTokenInput google.protobuf.Empty The side chain creates tokens.
InitializeFromParentChain token.InitializeFromParentChainInput google.protobuf.Empty When the side chain is started, the side chain is initialized with the parent chain information.
ClaimTransactionFees token.TotalTransactionFeesMap google.protobuf.Empty Handle the transaction fees charged by ChargeTransactionFees.
ChargeTransactionFees token.ChargeTransactionFeesInput token.ChargeTransactionFeesOutput Used to collect transaction fees.
CheckThreshold token.CheckThresholdInput google.protobuf.Empty Check the token threshold.
InitialCoefficients google.protobuf.Empty google.protobuf.Empty Initialize coefficients of every type of tokens supporting charging fee.
DonateResourceToken token.TotalResourceTokensMaps google.protobuf.Empty Processing resource token received.
ChargeResourceToken token.ChargeResourceTokenInput google.protobuf.Empty A transaction resource fee is charged to implement the ACS8 standards.
CheckResourceToken google.protobuf.Empty google.protobuf.Empty Verify that the resource token are sufficient.

Continued on next page

20.7. AElf.Contracts.MultiToken 351

AElf, Release release/1.2.3

Table 3 – continued from previous page
Method Name Request Type Response Type Description
SetSymbolsToPayTxSizeFee token.SymbolListToPayTxSizeFee google.protobuf.Empty Set the list of tokens to pay transaction fees.
UpdateCoefficientsForSender token.UpdateCoefficientsInput google.protobuf.Empty Update the coefficient of the transaction fee calculation formula.
UpdateCoefficientsForContract token.UpdateCoefficientsInput google.protobuf.Empty Update the coefficient of the transaction fee calculation formula.
InitializeAuthorizedController google.protobuf.Empty google.protobuf.Empty This method is used to initialize the governance organization for some functions, including: the coefficient of the user transaction fee calculation formula, the coefficient of the contract developer resource fee calculation formula, and the side chain rental fee.
GetTokenInfo token.GetTokenInfoInput token.TokenInfo Query token information.
GetNativeTokenInfo google.protobuf.Empty token.TokenInfo Query native token information.
GetResourceTokenInfo google.protobuf.Empty token.TokenInfoList Query resource token information.
GetBalance token.GetBalanceInput token.GetBalanceOutput Query the balance at the specified address.
GetAllowance token.GetAllowanceInput token.GetAllowanceOutput Query the account’s allowance for other addresses
IsInWhiteList token.IsInWhiteListInput google.protobuf.BoolValue Check whether the token is in the whitelist of an address, which can be called TransferFrom to transfer the token under the condition of not being credited.
GetLockedAmount token.GetLockedAmountInput token.GetLockedAmountOutput Query the information for a lock.
GetCrossChainTransferTokenContractAddress token.GetCrossChainTransferTokenContractAddressInput aelf.Address Query the address of receiving token in cross-chain transfer.
GetPrimaryTokenSymbol google.protobuf.Empty google.protobuf.StringValue Query the name of the primary Token.
GetCalculateFeeCoefficientsForContract google.protobuf.Int32Value token.CalculateFeeCoefficients Query the coefficient of the transaction fee calculation formula.
GetCalculateFeeCoefficientsForSender google.protobuf.Empty token.CalculateFeeCoefficients Query the coefficient of the transaction fee calculation formula.
GetSymbolsToPayTxSizeFee google.protobuf.Empty token.SymbolListToPayTxSizeFee Query tokens that can pay transaction fees.
GetLatestTotalTransactionFeesMapHash google.protobuf.Empty aelf.Hash Query the hash of the last input of ClaimTransactionFees.
GetLatestTotalResourceTokensMapsHash google.protobuf.Empty aelf.Hash Query the hash of the last input of DonateResourceToken.
IsTokenAvailableForMethodFee google.protobuf.StringValue google.protobuf.BoolValue
ConfigMethodFeeFreeAllowances token.MethodFeeFreeAllowancesConfig google.protobuf.Empty Set allowance for transaction fee exemption
SetTransactionFeeDelegations token.SetTransactionFeeDelegationsInput token.SetTransactionFeeDelegationsOutput Set delegation of transaction fee payment
RemoveTransactionFeeDelegator token.RemoveTransactionFeeDelegatorInput google.protobuf.Empty Remove transaction fee delegator
RemoveTransactionFeeDelegatee token.RemoveTransactionFeeDelegateeInput google.protobuf.Empty Remove transaction fee delegatee
GetMethodFeeFreeAllowances aelf.Address token.MethodFeeFreeAllowances get the allowance for transaction fee exemption
GetMethodFeeFreeAllowancesConfig google.protobuf.Empty token.MethodFeeFreeAllowancesConfig Get the configure method of checking the allowancen for transaction fee
GetTransactionFeeDelegationsOfADelegatee token.GetTransactionFeeDelegationsOfADelegateeInput token.TransactionFeeDelegations get the delegation of transaction fee payment of a delegatee

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

AElf.Standards.ACS2

Method
Name

Request
Type

Response
Type

Description

GetResource-
Info

aelf.Transaction acs2.ResourceInfoGets the resource information that the transaction execution
depends on.

352 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

20.7.2 Contract Types

AElf.Contracts.MultiToken

tokenimpl.AdvanceResourceTokenInput

Field Type Description Label
contract_address aelf.Address The contract address to transfer.
resource_token_symbol string The resource token symbol to transfer.
amount int64 The amount of resource token to transfer.

tokenimpl.DeveloperFeeController

Field Type Description Label
root_controller AuthorityInfo The association that governs the organization.
parliament_controller AuthorityInfo The parliament organization of members.
developer_controller AuthorityInfo The developer organization of members.

tokenimpl.GetVirtualAddressForLockingInput

Field Type Description Label
address aelf.Address The address of the lock.
lock_id aelf.Hash The id of the lock.

tokenimpl.OwningRental

Field Type Description Label
re-
source_amount

Own-
ingRental.ResourceAmountEntry

The amount of resource tokens owed, symbol ->
amount.

re-
peated

tokenimpl.OwningRental.ResourceAmountEntry

Field Type Description Label
key string
value int64

tokenimpl.OwningRentalUnitValue

Field Type Description Label
re-
source_unit_value

OwningRentalUnit-
Value.ResourceUnitValueEntry

Resource unit price, symbol -> unit
price.

re-
peated

20.7. AElf.Contracts.MultiToken 353

AElf, Release release/1.2.3

tokenimpl.OwningRentalUnitValue.ResourceUnitValueEntry

Field Type Description Label
key string
value int64

tokenimpl.RegisterCrossChainTokenContractAddressInput

Field Type Description Label
from_chain_id int32 The source chain id.
parent_chain_height int64 The parent chain height of the transaction.
transaction_bytes bytes The raw bytes of the transfer transaction.
merkle_path aelf.MerklePath The merkle path created from the transaction.
token_contract_address aelf.Address The token contract address.

tokenimpl.ResourceUsage

Field Type Description Label
value ResourceUsage.ValueEntry The amount of resource tokens usage, symbol -> amount. repeated

tokenimpl.ResourceUsage.ValueEntry

Field Type Description Label
key string
value int32

tokenimpl.TakeResourceTokenBackInput

Field Type Description Label
contract_address aelf.Address The contract address to take back.
resource_token_symbol string The resource token symbol to take back.
amount int64 The amount of resource token to take back.

tokenimpl.TransferToContractInput

Field Type Description Label
symbol string The symbol of token.
amount int64 The amount of token.
memo string The memo.

354 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

tokenimpl.UpdateRentalInput

Field Type Description Label
rental UpdateRentalInput.RentalEntry The unit price of resource tokens, symbol -> unit price. repeated

tokenimpl.UpdateRentalInput.RentalEntry

Field Type Description Label
key string
value int64

tokenimpl.UpdateRentedResourcesInput

Field Type Description La-
bel

re-
source_amount

UpdateRentedResourcesIn-
put.ResourceAmountEntry

Amount of resource tokens consumed per minute,
symbol -> resource consumption.

re-
peated

tokenimpl.UpdateRentedResourcesInput.ResourceAmountEntry

Field Type Description Label
key string
value int32

tokenimpl.UserFeeController

Field Type Description Label
root_controller AuthorityInfo The association that governs the organization.
parliament_controller AuthorityInfo The parliament organization of members.
referendum_controller AuthorityInfo The referendum organization of members.

tokenimpl.ValidateTokenInfoExistsInput

Field Type Description Label
symbol string The symbol of the token.
token_name string The full name of the token.
total_supply int64 The total supply of the token.
decimals int32 The precision of the token.
issuer aelf.Address The address that created the token.
is_burnable bool A flag indicating if this token is burnable.
issue_chain_id int32 The chain id of the token.

20.7. AElf.Contracts.MultiToken 355

AElf, Release release/1.2.3

token.AllCalculateFeeCoefficients

Field Type Description Label
value CalculateFeeCoefficients The coefficients of fee Calculation. repeated

token.ApproveInput

Field Type Description Label
spender aelf.Address The address that allowance will be increased.
symbol string The symbol of token to approve.
amount int64 The amount of token to approve.

token.Approved

Field Type Description Label
owner aelf.Address The address of the token owner.
spender aelf.Address The address that allowance be increased.
symbol string The symbol of approved token.
amount int64 The amount of approved token.

token.BurnInput

Field Type Description Label
symbol string The symbol of token to burn.
amount int64 The amount of token to burn.

token.Burned

Field Type Description Label
burner aelf.Address The address who wants to burn token.
symbol string The symbol of burned token.
amount int64 The amount of burned token.

token.CalculateFeeAlgorithmUpdated

Field Type Description La-
bel

all_type_fee_coefficients AllCalculateFeeCoeffi-
cients

All calculate fee coefficients after modifica-
tion.

356 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

token.CalculateFeeCoefficients

Field Type Description Label
fee_token_type int32 The resource fee type, like READ, WRITE,

etc.
piece_coefficients_list CalculateFeePieceCoeffi-

cients
Coefficients of one single piece. re-

peated

token.CalculateFeePieceCoefficients

Field Type Description Label
value int32 Coefficients of one single piece. The first char is its type: liner / power. The second char

is its piece upper bound.
re-
peated

token.ChainPrimaryTokenSymbolSet

Field Type Description Label
token_symbol string The symbol of token.

token.ChangeTokenIssuerInput

Field Type Description Label
symbol string The token symbol.
new_token_Issuer aelf.Address The new token issuer for change.

token.ChargeResourceTokenInput

Field Type Description Label
cost_dic ChargeResourceTokenIn-

put.CostDicEntry
Collection of charge resource token, Symbol-
>Amount.

re-
peated

caller aelf.Address The sender of the transaction.

token.ChargeResourceTokenInput.CostDicEntry

Field Type Description Label
key string
value int64

20.7. AElf.Contracts.MultiToken 357

AElf, Release release/1.2.3

token.ChargeTransactionFeesInput

Field Type Description Label
method_name string The method name of transaction.
contract_address aelf.Address The contract address of transaction.
transaction_size_fee int64 The amount of transaction size fee.
symbols_to_pay_tx_size_fee SymbolToPayTxSizeFee Transaction fee token information. repeated

token.ChargeTransactionFeesOutput

Field Type Description Label
success bool Whether the charge was successful.
charging_information string The charging information.

token.CheckThresholdInput

Field Type Description Label
sender aelf.Address The sender of the transaction.
sym-
bol_to_threshold

CheckThresholdIn-
put.SymbolToThresholdEntry

The threshold to set, Symbol-
>Threshold.

re-
peated

is_check_allowance bool Whether to check the allowance.

token.CheckThresholdInput.SymbolToThresholdEntry

Field Type Description Label
key string
value int64

token.ContractTotalResourceTokens

Field Type Description Label
contract_address aelf.Address The contract address.
tokens_map TotalResourceTokensMap Resource tokens to charge.

358 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

token.CreateInput

Field Type Description Label
symbol string The symbol of the token.
token_name string The full name of the token.
total_supply int64 The total supply of the token.
decimals int32 The precision of the token
issuer aelf.Address The address that created the token.
is_burnable bool A flag indicating if this token is burnable.
lock_white_list aelf.Address A whitelist address list used to lock tokens. repeated
issue_chain_id int32 The chain id of the token.

token.CrossChainCreateTokenInput

Field Type Description La-
bel

from_chain_id int32 The chain id of the chain on which the token was created.
par-
ent_chain_height

int64 The height of the transaction that created the token.

transaction_bytes bytes The transaction that created the token.
merkle_path aelf.MerklePath The merkle path created from the transaction that created the trans-

action.

token.CrossChainReceiveTokenInput

Field Type Description Label
from_chain_id int32 The source chain id.
parent_chain_height int64 The height of the transfer transaction.
transfer_transaction_bytes bytes The raw bytes of the transfer transaction.
merkle_path aelf.MerklePath The merkle path created from the transfer transaction.

token.CrossChainReceived

Field Type Description Label
from aelf.Address The source address of the transferred token.
to aelf.Address The destination address of the transferred token.
symbol string The symbol of the received token.
amount int64 The amount of the received token.
memo string The memo.
from_chain_id int32 The destination chain id.
issue_chain_id int32 The chain id of the token.
parent_chain_height int64 The parent chain height of the transfer transaction.

20.7. AElf.Contracts.MultiToken 359

AElf, Release release/1.2.3

token.CrossChainTransferInput

Field Type Description Label
to aelf.Address The receiver of transfer.
symbol string The symbol of token.
amount int64 The amount of token to transfer.
memo string The memo.
to_chain_id int32 The destination chain id.
issue_chain_id int32 The chain id of the token.

token.CrossChainTransferred

Field Type Description Label
from aelf.Address The source address of the transferred token.
to aelf.Address The destination address of the transferred token.
symbol string The symbol of the transferred token.
amount int64 The amount of the transferred token.
memo string The memo.
to_chain_id int32 The destination chain id.
issue_chain_id int32 The chain id of the token.

token.ExtraTokenListModified

Field Type Description Label
symbol_list_to_pay_tx_size_fee SymbolListToPayTxSizeFee Transaction fee token information.

token.GetAllowanceInput

Field Type Description Label
symbol string The symbol of token.
owner aelf.Address The address of the token owner.
spender aelf.Address The address of the spender.

token.GetAllowanceOutput

Field Type Description Label
symbol string The symbol of token.
owner aelf.Address The address of the token owner.
spender aelf.Address The address of the spender.
allowance int64 The amount of allowance.

360 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

token.GetBalanceInput

Field Type Description Label
symbol string The symbol of token.
owner aelf.Address The target address of the query.

token.GetBalanceOutput

Field Type Description Label
symbol string The symbol of token.
owner aelf.Address The target address of the query.
balance int64 The balance of the owner.

token.GetCrossChainTransferTokenContractAddressInput

Field Type Description Label
chainId int32 The chain id.

token.GetLockedAmountInput

Field Type Description Label
address aelf.Address The address of the lock.
symbol string The token symbol.
lock_id aelf.Hash The id of the lock.

token.GetLockedAmountOutput

Field Type Description Label
address aelf.Address The address of the lock.
symbol string The token symbol.
lock_id aelf.Hash The id of the lock.
amount int64 The locked amount.

token.GetTokenInfoInput

Field Type Description Label
symbol string The symbol of token.

20.7. AElf.Contracts.MultiToken 361

AElf, Release release/1.2.3

token.InitializeFromParentChainInput

Field Type Description La-
bel

resource_amount InitializeFromParentChainIn-
put.ResourceAmountEntry

The amount of re-
source.

re-
peated

regis-
tered_other_token_contract_addresses

InitializeFromParentChainIn-
put.RegisteredOtherTokenContractAddressesEntry

The token contract
addresses.

re-
peated

creator aelf.Address The creator the
side chain.

token.InitializeFromParentChainInput.RegisteredOtherTokenContractAddressesEntry

Field Type Description Label
key int32
value aelf.Address

token.InitializeFromParentChainInput.ResourceAmountEntry

Field Type Description Label
key string
value int32

token.IsInWhiteListInput

Field Type Description Label
symbol string The symbol of token.
address aelf.Address The address to check.

token.IssueInput

Field Type Description Label
symbol string The token symbol to issue.
amount int64 The token amount to issue.
memo string The memo.
to aelf.Address The target address to issue.

362 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

token.Issued

Field Type Description Label
symbol string The symbol of issued token.
amount int64 The amount of issued token.
memo string The memo.
to aelf.Address The issued target address.

token.LockInput

Field Type Description Label
address aelf.Address The one want to lock his token.
lock_id aelf.Hash Id of the lock.
symbol string The symbol of the token to lock.
usage string a memo.
amount int64 The amount of tokens to lock.

token.RentalAccountBalanceInsufficient

Field Type Description Label
symbol string The symbol of insufficient rental account balance.
amount int64 The balance of the account.

token.RentalCharged

Field Type Description Label
symbol string The symbol of rental fee charged.
amount int64 The amount of rental fee charged.

token.SetPrimaryTokenSymbolInput

Field Type Description Label
symbol string The symbol of the token.

token.SymbolListToPayTxSizeFee

Field Type Description Label
symbols_to_pay_tx_size_fee SymbolToPayTxSizeFee Transaction fee token information. repeated

20.7. AElf.Contracts.MultiToken 363

AElf, Release release/1.2.3

token.SymbolToPayTxSizeFee

Field Type Description La-
bel

to-
ken_symbol

string The symbol of token.

base_token_weightint32 The charge weight of primary token.
added_token_weightint32 The new added token charge weight. For example, the charge weight of primary Token is

set to 1. The newly added token charge weight is set to 10. If the transaction requires 1
unit of primary token, the user can also pay for 10 newly added tokens.

token.TokenCreated

Field Type Description Label
symbol string The symbol of the token.
token_name string The full name of the token.
total_supply int64 The total supply of the token.
decimals int32 The precision of the token.
issuer aelf.Address The address that created the token.
is_burnable bool A flag indicating if this token is burnable.
issue_chain_id int32 The chain id of the token.

token.TokenInfo

Field Type Description Label
symbol string The symbol of the token.f
token_name string The full name of the token.
supply int64 The current supply of the token.
total_supply int64 The total supply of the token.
decimals int32 The precision of the token.
issuer aelf.Address The address that created the token.
is_burnable bool A flag indicating if this token is burnable.
issue_chain_id int32 The chain id of the token.
issued int64 The amount of issued tokens.

token.TokenInfoList

Field Type Description Label
value TokenInfo List of token information. repeated

token.TotalResourceTokensMap

Field Type Description Label
value TotalResourceTokensMap.ValueEntry Resource token dictionary, Symbol->Amount. repeated

364 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

token.TotalResourceTokensMap.ValueEntry

Field Type Description Label
key string
value int64

token.TotalResourceTokensMaps

Field Type Description Label
value ContractTotalResourceTokens Resource tokens to charge. repeated
block_hash aelf.Hash The hash of the block processing the transaction.
block_height int64 The height of the block processing the transaction.

token.TotalTransactionFeesMap

Field Type Description Label
value TotalTransaction-

FeesMap.ValueEntry
Token dictionary that charge transaction fee, Symbol-
>Amount.

re-
peated

block_hash aelf.Hash The hash of the block processing the transaction.
block_height int64 The height of the block processing the transaction.

token.TotalTransactionFeesMap.ValueEntry

Field Type Description Label
key string
value int64

token.TransactionFeeBill

Field Type Description Label
fees_map TransactionFeeBill.FeesMapEntry The transaction fee dictionary, Symbol->fee. repeated

token.TransactionFeeBill.FeesMapEntry

Field Type Description Label
key string
value int64

20.7. AElf.Contracts.MultiToken 365

AElf, Release release/1.2.3

token.TransferFromInput

Field Type Description Label
from aelf.Address The source address of the token.
to aelf.Address The destination address of the token.
symbol string The symbol of the token to transfer.
amount int64 The amount to transfer.
memo string The memo.

token.TransferInput

Field Type Description Label
to aelf.Address The receiver of the token.
symbol string The token symbol to transfer.
amount int64 The amount to to transfer.
memo string The memo.

token.Transferred

Field Type Description Label
from aelf.Address The source address of the transferred token.
to aelf.Address The destination address of the transferred token.
symbol string The symbol of the transferred token.
amount int64 The amount of the transferred token.
memo string The memo.

token.UnApproveInput

Field Type Description Label
spender aelf.Address The address that allowance will be decreased.
symbol string The symbol of token to un-approve.
amount int64 The amount of token to un-approve.

token.UnApproved

Field Type Description Label
owner aelf.Address The address of the token owner.
spender aelf.Address The address that allowance be decreased.
symbol string The symbol of un-approved token.
amount int64 The amount of un-approved token.

366 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

token.UnlockInput

Field Type Description Label
address aelf.Address The one want to un-lock his token.
lock_id aelf.Hash Id of the lock.
symbol string The symbol of the token to un-lock.
usage string a memo.
amount int64 The amount of tokens to un-lock.

token.UpdateCoefficientsInput

Field Type Description Label
piece_numbers int32 The specify pieces gonna update. repeated
coefficients CalculateFeeCoefficients Coefficients of one single type.

token.FeeTypeEnum

Name Number Description
READ 0
STORAGE 1
WRITE 2
TRAFFIC 3
TX 4

token.MethodFeeFreeAllowancesConfig

Field Type Description La-
bel

free_allowancesto-
ken.MethodFeeFreeAllowances

The allowance of each token when a user gets his allowance of the
full amount.

re-
fresh_seconds

int64 The time needed for a user’s allowance to be refreshed back to the
full amount. Unit: second

threshold int64 The required amount of ELF in possession for a user to be eligible
for transaction fee exemption.

token.SetTransactionFeeDelegationsInput

Field Type Description Label
delegator_address aelf.Addresss The address of delegator.
delegations map<string, int64> <token symbol, delegation>

20.7. AElf.Contracts.MultiToken 367

AElf, Release release/1.2.3

token.SetTransactionFeeDelegationsOutput

Field Type Description Label
success bool Whether set delegation success.

token.RemoveTransactionFeeDelegatorInput

Field Type Description Label
delegator_address aelf.Addresss The address of delegator

token.RemoveTransactionFeeDelegateeInput

Field Type Description Label
delegatee_address aelf.Addresss The address of delegatee

token.MethodFeeFreeAllowances

Field Type Description Label
value token.MethodFeeFreeAllowance repeated

token.MethodFeeFreeAllowance

Field Type Description Label
symbol string Token symbol
amount int64 The amount of fee free allowance

token.GetTransactionFeeDelegationsOfADelegateeInput

Field Type Description Label
delegatee_address aelf.Addresss The address of delegatee
delegator_address aelf.Addresss The address of delegator

token.TransactionFeeDelegations

Field Type Description Label
delegations map<string, int64> The number of tokens allowed to be delegated
block_height int64 The block height when the information of delegation is added

368 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Standards.ACS2

acs2.ResourceInfo

Field Type Description Label
write_paths aelf.ScopedStatePath The state path that depends on when writing. repeated
read_paths aelf.ScopedStatePath The state path that depends on when reading. repeated
non_parallelizable bool Whether the transaction is not executed in parallel.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

20.7. AElf.Contracts.MultiToken 369

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

370 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

20.7. AElf.Contracts.MultiToken 371

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

372 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.8 AElf.Contracts.Profit

Profit contract.

The Profit contract is an abstract layer for creating scheme to share bonus. Developers can build a system to distribute
bonus by call this contract.

Implement AElf Standards ACS1.

20.8. AElf.Contracts.Profit 373

AElf, Release release/1.2.3

20.8.1 Contract Methods

Method
Name

Request Type Response
Type

Description

Cre-
ateScheme

Profit.CreateSchemeInputaelf.Hash Create a scheme for profit distribution, and return the created
scheme id.

AddBenefi-
ciary

Profit.AddBeneficiaryInputgoogle.protobuf.EmptyAdd beneficiary to scheme.

Re-
moveBene-
ficiary

Profit.RemoveBeneficiaryInputgoogle.protobuf.EmptyRemove beneficiary from scheme.

AddBenefi-
ciaries

Profit.AddBeneficiariesInputgoogle.protobuf.EmptyBatch add beneficiary to scheme.

Re-
moveBene-
ficiaries

Profit.RemoveBeneficiariesInputgoogle.protobuf.EmptyBatch remove beneficiary from scheme.

Con-
tributeProf-
its

Profit.ContributeProfitsInputgoogle.protobuf.EmptyContribute profit to a scheme.

ClaimProf-
its

Profit.ClaimProfitsInputgoogle.protobuf.EmptyThe beneficiary draws tokens from the scheme.

Dis-
tributeProf-
its

Profit.DistributeProfitsInputgoogle.protobuf.EmptyDistribute profits to schemes, including its sub scheme ac-
cording to period and token symbol, should be called by the
manager.

AddSub-
Scheme

Profit.AddSubSchemeInputgoogle.protobuf.EmptyAdd sub scheme to a scheme. This will effectively add the
specified sub-scheme as a beneficiary of the parent scheme.

Re-
moveSub-
Scheme

Profit.RemoveSubSchemeInputgoogle.protobuf.EmptyRemove sub scheme from a scheme.

ResetMan-
ager

Profit.ResetManagerInputgoogle.protobuf.EmptyReset the manager of a scheme.

GetManag-
ingSchemeIds

Profit.GetManagingSchemeIdsInputProfit.CreatedSchemeIdsGet all schemes managed by the specified manager.

GetScheme aelf.Hash Profit.Scheme Get scheme according to scheme id.
GetSchemeAd-
dress

Profit.SchemePeriodaelf.Address Get the virtual address of the number of period of the scheme.

GetDis-
tributed-
ProfitsInfo

Profit.SchemePeriodProfit.DistributedProfitsInfoQuery the distributed profit information for the specified pe-
riod.

GetProfit-
Details

Profit.GetProfitDetailsInputProfit.ProfitDetailsQuery the beneficiary’s profit information on the scheme.

GetProfitA-
mount

Profit.GetProfitAmountInputgoogle.protobuf.Int64ValueQuery the amount of profit according to token symbol. (up to
10 periods).

GetProf-
itsMap

Profit.ClaimProfitsInputProfit.ReceivedProfitsMapQuery all profit (up to 10 periods).

374 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.8.2 Contract Types

AElf.Contracts.Profit

Profit.AddBeneficiariesInput

Field Type Description Label
scheme_id aelf.Hash The scheme id.
beneficiary_shares BeneficiaryShare The beneficiary information. repeated
end_period int64 The end period which the beneficiary receives the profit.

Profit.AddBeneficiaryInput

Field Type Description Label
scheme_id aelf.Hash The scheme id.
beneficiary_share BeneficiaryShare The beneficiary information.
end_period int64 The end period which the beneficiary receives the profit.

Profit.AddSubSchemeInput

Field Type Description Label
scheme_id aelf.Hash The parent scheme id.
sub_scheme_id aelf.Hash The sub scheme id.
sub_scheme_shares int64 The profit weight of sub scheme.

Profit.BeneficiaryShare

Field Type Description Label
beneficiary aelf.Address The address of beneficiary.
shares int64 The profit weight of the beneficiary in the scheme.

20.8. AElf.Contracts.Profit 375

AElf, Release release/1.2.3

Profit.ClaimProfitsInput

Field Type Description Label
scheme_id aelf.Hash The scheme id.
beneficiary aelf.Address The address of beneficiary.

Profit.ContributeProfitsInput

Field Type Description Label
scheme_id aelf.Hash The scheme id to contribute.
amount int64 The amount to contribute.
period int64 The number of periods in which the income is used for dividends.
symbol string The token symbol to contribute.

Profit.CreateSchemeInput

Field Type Description La-
bel

profit_receiving_due_period_count int64 Period of profit distribution.
is_release_all_balance_every_time_by_defaultbool Whether all the schemes balance will be distributed during

distribution each period.
delay_distribute_period_count int32 Delay distribute period.
manager aelf.AddressThe manager of this scheme, the default is the creator.
can_remove_beneficiary_directly bool Whether you can directly remove the beneficiary.
token aelf.Hash Use to generate scheme id.

Profit.CreatedSchemeIds

Field Type Description Label
scheme_ids aelf.Hash The scheme ids. repeated

Profit.DistributeProfitsInput

Field Type Description Label
scheme_id aelf.Hash The scheme id to distribute.
period int64 The period number to distribute, should be the cur-

rent period.
amounts_map DistributeProfitsIn-

put.AmountsMapEntry
The amount to distribute, symbol -> amount. re-

peated

376 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Profit.DistributeProfitsInput.AmountsMapEntry

Field Type Description Label
key string
value int64

Profit.DistributedProfitsInfo

Field Type Description Label
to-
tal_shares

int64 The total amount of shares in this scheme at the cur-
rent period.

amounts_map DistributedProf-
itsInfo.AmountsMapEntry

The contributed amount in this scheme at the current
period.

re-
peated

is_released bool Whether released.

Profit.DistributedProfitsInfo.AmountsMapEntry

Field Type Description Label
key string
value sint64

Profit.GetManagingSchemeIdsInput

Field Type Description Label
manager aelf.Address The manager address.

Profit.GetProfitAmountInput

Field Type Description Label
scheme_id aelf.Hash The scheme id.
symbol string The token symbol.
beneficiary aelf.Address The beneficiary’s address.

Profit.GetProfitDetailsInput

Field Type Description Label
scheme_id aelf.Hash The scheme id.
beneficiary aelf.Address The address of beneficiary.

20.8. AElf.Contracts.Profit 377

AElf, Release release/1.2.3

Profit.ProfitDetail

Field Type Description Label
start_period int64 The start period number.
end_period int64 The end period number.
shares int64 The weight of the proceeds on the current period of the scheme.
last_profit_period int64 The last period number that the beneficiary received the profit.
is_weight_removed bool Whether the weight has been removed.

Profit.ProfitDetails

Field Type Description Label
details ProfitDetail The profit information. repeated

Profit.ProfitsClaimed

Field Type Description Label
beneficiary aelf.Address The beneficiary’s address claimed.
symbol string The token symbol claimed.
amount int64 The amount claimed.
period int64 The period number claimed.
claimer_shares int64 The shares of the claimer.
total_shares int64 The total shares at the current period.

Profit.ReceivedProfitsMap

Field Type Description Label
value ReceivedProf-

itsMap.ValueEntry
The collection of profits received, token symbol -> amount. re-

peated

Profit.ReceivedProfitsMap.ValueEntry

Field Type Description Label
key string
value int64

Profit.RemoveBeneficiariesInput

Field Type Description Label
beneficiaries aelf.Address The addresses of beneficiary. repeated
scheme_id aelf.Hash The scheme id.

378 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Profit.RemoveBeneficiaryInput

Field Type Description Label
beneficiary aelf.Address The address of beneficiary.
scheme_id aelf.Hash The scheme id.

Profit.RemoveSubSchemeInput

Field Type Description Label
scheme_id aelf.Hash The parent scheme id.
sub_scheme_id aelf.Hash The sub scheme id.

Profit.ResetManagerInput

Field Type Description Label
scheme_id aelf.Hash The scheme id.
new_manager aelf.Address The address of new manager.

Profit.Scheme

Field Type Description La-
bel

virtual_address aelf.Address The virtual address of the scheme.
total_shares int64 The total weight of the scheme.
manager aelf.Address The manager of the scheme.
current_period int64 The current period.
sub_schemes SchemeBeneficia-

ryShare
Sub schemes information. re-

peated
can_remove_beneficiary_directlybool Whether you can directly remove the beneficiary.
profit_receiving_due_period_countint64 Period of profit distribution.
is_release_all_balance_every_time_by_defaultbool Whether all the schemes balance will be distributed

during distribution each period.
scheme_id aelf.Hash The is of the scheme.
de-
lay_distribute_period_count

int32 Delay distribute period.

cached_delay_total_shares Scheme.CachedDelayTotalSharesEntryRecord the scheme’s current total share for deferred
distribution of benefits, period -> total shares.

re-
peated

received_token_symbols string The received token symbols. re-
peated

20.8. AElf.Contracts.Profit 379

AElf, Release release/1.2.3

Profit.Scheme.CachedDelayTotalSharesEntry

Field Type Description Label
key int64
value int64

Profit.SchemeBeneficiaryShare

Field Type Description Label
scheme_id aelf.Hash The id of the sub scheme.
shares int64 The weight of the sub scheme.

Profit.SchemeCreated

Field Type Description La-
bel

virtual_address aelf.AddressThe virtual address of the created scheme.
manager aelf.AddressThe manager of the created scheme.
profit_receiving_due_period_count int64 Period of profit distribution.
is_release_all_balance_every_time_by_defaultbool Whether all the schemes balance will be distributed during

distribution each period.
scheme_id aelf.Hash The id of the created scheme.

Profit.SchemePeriod

Field Type Description Label
scheme_id aelf.Hash The scheme id.
period int64 The period number.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

380 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

20.8. AElf.Contracts.Profit 381

AElf, Release release/1.2.3

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

382 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

20.8. AElf.Contracts.Profit 383

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.9 AElf.Contracts.CrossChain

Cross-Chain contract.

Implement AElf Standards ACS1 and ACS7.

384 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

20.9.1 Contract Methods

Method Name Request Type Response Type Description
Initialize Cross-

Chain.InitializeInput
google.protobuf.EmptyPropose once cross chain indexing.

SetInitial-
SideChainLife-
timeControllerAd-
dress

aelf.Address google.protobuf.EmptySet the initial SideChainLifetimeController
address which should be parliament organi-
zation by default.

SetInitialIndexing-
ControllerAddress

aelf.Address google.protobuf.EmptySet the initial CrossChainIndexingCon-
troller address which should be parliament
organization by default.

ChangeCross-
ChainIndexing-
Controller

AuthorityInfo google.protobuf.EmptyChange the cross chain indexing controller.

ChangeSideChain-
LifetimeController

AuthorityInfo google.protobuf.EmptyChange the lifetime controller of the side
chain.

ChangeSideChain-
IndexingFeeCon-
troller

Cross-
Chain.ChangeSideChainIndexingFeeControllerInput

google.protobuf.EmptyChange indexing fee adjustment controller
for specific side chain.

AcceptCross-
ChainIndexing-
Proposal

Cross-
Chain.AcceptCrossChainIndexingProposalInput

google.protobuf.EmptyWhen the indexing proposal is released,
clean up the pending proposal.

GetSideChainCre-
ator

google.protobuf.Int32Valueaelf.Address Get the side chain creator address accord-
ing to side chain id.

GetChainStatus google.protobuf.Int32ValueCross-
Chain.GetChainStatusOutput

Get the current status of side chain accord-
ing to side chain id.

GetSideChain-
Height

google.protobuf.Int32Valuegoogle.protobuf.Int64ValueGet the side chain height according to side
chain id.

GetParentChain-
Height

google.protobuf.Empty google.protobuf.Int64ValueGet the height of parent chain.

GetParentChainId google.protobuf.Empty google.protobuf.Int32ValueGet the chain id of parent chain.
GetSideChainBal-
ance

google.protobuf.Int32Valuegoogle.protobuf.Int64ValueGet the balance of side chain indexing ac-
cording to side chain id.

GetSideChainIn-
dexingFeeDebt

google.protobuf.Int32Valuegoogle.protobuf.Int64ValueGet the fee debt of side chain indexing ac-
cording to side chain id.

GetIndexingPro-
posalStatus

google.protobuf.Empty Cross-
Chain.GetIndexingProposalStatusOutput

Get the status of the current indexing pro-
posal.

GetSideChainIn-
dexingFeePrice

google.protobuf.Int32Valuegoogle.protobuf.Int64ValueGet the side chain indexing fee price ac-
cording to side chain id.

GetSideChainLife-
timeController

google.protobuf.Empty AuthorityInfo Get the lifetime controller of the side chain.

GetCrossChainIn-
dexingController

google.protobuf.Empty AuthorityInfo Get the cross chain indexing controller.

GetSideChainIn-
dexingFeeCon-
troller

google.protobuf.Int32ValueAuthorityInfo Get the indexing fee controller of side
chain according to side chain id.

20.9. AElf.Contracts.CrossChain 385

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

386 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AElf.Standards.ACS7

Method Name Request Type Response
Type

Description

ProposeCrossChain-
Indexing

acs7.CrossChainBlockDatagoogle.protobuf.EmptyPropose once cross chain indexing.

ReleaseCrossChain-
IndexingProposal

acs7.ReleaseCrossChainIndexingProposalInputgoogle.protobuf.EmptyRelease the proposed indexing if already approved.

RequestSideChain-
Creation

acs7.SideChainCreationRequestgoogle.protobuf.EmptyRequest side chain creation.

ReleaseSideChain-
Creation

acs7.ReleaseSideChainCreationInputgoogle.protobuf.EmptyRelease the side chain creation request if al-
ready approved and it will call the method Cre-
ateSideChain.

CreateSideChain acs7.CreateSideChainInputgoogle.protobuf.Int32ValueCreate the side chain and returns the newly created
side chain ID. Only SideChainLifetimeController is
permitted to invoke this method.

Recharge acs7.RechargeInput google.protobuf.EmptyRecharge for the specified side chain.
DisposeSideChain google.protobuf.Int32Valuegoogle.protobuf.Int32ValueDispose a side chain according to side chain id.

Only SideChainLifetimeController is permitted to
invoke this method.

AdjustIndex-
ingFeePrice

acs7.AdjustIndexingFeeInputgoogle.protobuf.EmptyAdjust side chain indexing fee. Only In-
dexingFeeController is permitted to invoke this
method.

VerifyTransaction acs7.VerifyTransactionInputgoogle.protobuf.BoolValueVerify cross chain transaction.
Get-
SideChainIdAnd-
Height

google.protobuf.Emptyacs7.ChainIdAndHeightDictGets all the side chain id and height of the current
chain.

GetSideChainIn-
dexingInformation-
List

google.protobuf.Emptyacs7.SideChainIndexingInformationListGet indexing information of side chains.

GetAllChainsI-
dAndHeight

google.protobuf.Emptyacs7.ChainIdAndHeightDictGet id and recorded height of all chains.

GetIndexed-
SideChainBlock-
DataByHeight

google.protobuf.Int64Valueacs7.IndexedSideChainBlockDataGet block data of indexed side chain according to
height.

GetBoundPar-
entChainHeigh-
tAndMerklePathBy-
Height

google.protobuf.Int64Valueacs7.CrossChainMerkleProofContextGet merkle path bound up with side chain according
to height.

GetChainInitializa-
tionData

google.protobuf.Int32Valueacs7.ChainInitializationDataGet initialization data for specified side chain.

20.9.2 Contract Types

AElf.Contracts.CrossChain

CrossChain.AcceptCrossChainIndexingProposalInput

Field Type Description Label
chain_id int32 The chain id of accepted indexing.

20.9. AElf.Contracts.CrossChain 387

AElf, Release release/1.2.3

CrossChain.ChainIndexingProposal

Field Type Description La-
bel

proposal_id aelf.Hash The id of cross chain indexing proposal.
proposer aelf.Address The proposer of cross chain indexing.
pro-
posed_cross_chain_block_data

acs7.CrossChainBlockData The cross chain data proposed.

status CrossChainIndexingProposal-
Status

The status of of cross chain indexing
proposal.

chain_id int32 The chain id of the indexing.

CrossChain.ChangeSideChainIndexingFeeControllerInput

Field Type Description Label
chain_id int32 The side chain id.
authority_info AuthorityInfo The changed controller of indexing fee.

CrossChain.CrossChainIndexingControllerChanged

Field Type Description Label
authority_info AuthorityInfo The changed controller of indexing.

CrossChain.Disposed

Field Type Description Label
chain_id int32 The disposed side chain id.

CrossChain.GetChainStatusOutput

Field Type Description Label
status SideChainStatus The status of side chain.

CrossChain.GetIndexingProposalStatusOutput

Field Type Description La-
bel

chain_indexing_proposal_statusGetIndexingProposalStatusOut-
put.ChainIndexingProposalStatusEntry

The collection of pending indexing
proposal, the key is chain id.

re-
peated

388 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

CrossChain.GetIndexingProposalStatusOutput.ChainIndexingProposalStatusEntry

Field Type Description Label
key int32
value PendingChainIndexingProposalStatus

CrossChain.GetPendingCrossChainIndexingProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The proposal id of cross chain indexing.
proposer aelf.Address The proposer of cross chain indexing pro-

posal.
to_be_released bool True if the proposal can be released, otherwise

false.
pro-
posed_cross_chain_block_data

acs7.CrossChainBlockDataThe cross chain data proposed.

expired_time google.protobuf.TimestampThe proposal expiration time.

CrossChain.InitializeInput

Field Type Description Label
parent_chain_id int32 The id of parent chain.
creation_height_on_parent_chain int64 The height of side chain created on parent chain.
is_privilege_preserved bool True if chain privilege needed, otherwise false.

CrossChain.PendingChainIndexingProposalStatus

Field Type Description La-
bel

proposal_id aelf.Hash The id of cross chain indexing proposal.
proposer aelf.Address The proposer of cross chain indexing.
to_be_released bool True if the proposal can be released, otherwise

false.
pro-
posed_cross_chain_block_data

acs7.CrossChainBlockDataThe cross chain data proposed.

expired_time google.protobuf.TimestampThe proposal expiration time.

CrossChain.ProposedCrossChainIndexing

Field Type Description La-
bel

chain_indexing_proposal_collectionsProposedCrossChainIndex-
ing.ChainIndexingProposalCollectionsEntry

The collection of chain indexing
proposal, the key is chain id.

re-
peated

20.9. AElf.Contracts.CrossChain 389

AElf, Release release/1.2.3

CrossChain.ProposedCrossChainIndexing.ChainIndexingProposalCollectionsEntry

Field Type Description Label
key int32
value ChainIndexingProposal

CrossChain.SideChainCreatedEvent

Field Type Description Label
creator aelf.Address The proposer who propose to create the side chain.
chainId int32 The created side chain id.

CrossChain.SideChainCreationRequestState

Field Type Description La-
bel

side_chain_creation_requestacs7.SideChainCreationRequestThe parameters of creating side chain.
expired_time google.protobuf.Timestamp The expiration date of the proposal.
proposer aelf.Address The proposer who proposed to create the side

chain.

CrossChain.SideChainIndexingFeeControllerChanged

Field Type Description Label
chain_id int32 The side chain id.
authority_info AuthorityInfo The changed controller of side chain indexing fee.

CrossChain.SideChainInfo

Field Type Description Label
proposer aelf.Address The proposer who propose to create the side

chain.
side_chain_status SideChainStatus The status of side chain.
side_chain_id int32 The side chain id.
creation_timestamp google.protobuf.Timestamp The time of side chain created.
cre-
ation_height_on_parent_chain

int64 The height of side chain created on parent
chain.

indexing_price int64 The price of indexing fee.
is_privilege_preserved bool True if chain privilege needed, otherwise

false.
arrears_info SideChain-

Info.ArrearsInfoEntry
creditor and amounts for the chain indexing
fee debt

re-
peated

indexing_fee_controller AuthorityInfo The controller of indexing fee.

390 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

CrossChain.SideChainInfo.ArrearsInfoEntry

Field Type Description Label
key string
value int64

CrossChain.SideChainLifetimeControllerChanged

Field Type Description Label
authority_info AuthorityInfo The changed controller of side chain lifetime.

CrossChain.CrossChainIndexingProposalStatus

Name Number Description
NON_PROPOSED 0
PENDING 1 The proposal is pending.
ACCEPTED 2 The proposal has been released.

CrossChain.SideChainStatus

Name Number Description
FATAL 0 Currently no meaning.
ACTIVE 1 The side chain is being indexed.
INDEXING_FEE_DEBT 2 The side chain is in debt for indexing fee.
TERMINATED 3 The side chain is disposed.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

20.9. AElf.Contracts.CrossChain 391

AElf, Release release/1.2.3

AElf.Standards.ACS7

acs7.AdjustIndexingFeeInput

Field Type Description Label
side_chain_id int32 The side chain id to adjust.
indexing_fee int64 The new price of indexing fee.

acs7.ChainIdAndHeightDict

Field Type Description La-
bel

id_height_dictChainIdAndHeight-
Dict.IdHeightDictEntry

A collection of chain ids and heights, where the key is the
chain id and the value is the height.

re-
peated

acs7.ChainIdAndHeightDict.IdHeightDictEntry

Field Type Description Label
key int32
value int64

acs7.ChainInitializationConsensusInfo

Field Type Description Label
initial_consensus_data bytes Initial consensus data.

acs7.ChainInitializationData

Field Type Description La-
bel

chain_id int32 The id of side chain.
creator aelf.Address The side chain creator.
creation_timestamp google.protobuf.TimestampThe timestamp for side chain creation.
cre-
ation_height_on_parent_chain

int64 The height of side chain creation on parent chain.

chain_creator_privilege_preservedbool Creator privilege boolean flag: True if chain creator
privilege preserved, otherwise false.

par-
ent_chain_token_contract_address

aelf.Address Parent chain token contract address.

chain_initialization_consensus_infoChainInitialization-
ConsensusInfo

Initial consensus information.

native_token_info_data bytes The native token info.
resource_token_info ResourceTokenInfo The resource token information.
chain_primary_token_info ChainPrimaryToken-

Info
The chain primary token information.

392 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs7.ChainPrimaryTokenInfo

Field Type Description Label
chain_primary_token_data bytes The side chain primary token data.
side_chain_token_initial_issue_listSideChainTokenIni-

tialIssue
The side chain primary token initial issue
list.

re-
peated

acs7.CreateSideChainInput

Field Type Description La-
bel

side_chain_creation_request SideChainCreationRe-
quest

The request information of the side chain cre-
ation.

proposer aelf.Address The proposer of the side chain creation.

acs7.CrossChainBlockData

Field Type Description Label
side_chain_block_data_list SideChainBlockData The side chain block data list to index. repeated
parent_chain_block_data_list ParentChainBlockData The parent chain block data list to index. repeated

acs7.CrossChainExtraData

Field Type Description La-
bel

transac-
tion_status_merkle_tree_root

aelf.Hash Merkle tree root of side chain block transaction status
root.

acs7.CrossChainIndexingDataProposedEvent

Field Type Description Label
proposed_cross_chain_data CrossChainBlockData Proposed cross chain data to be indexed.
proposal_id aelf.Hash The proposal id.

acs7.CrossChainMerkleProofContext

Field Type Description La-
bel

bound_parent_chain_height int64 The height of parent chain bound up with side chain.
merkle_path_from_parent_chain aelf.MerklePath The merkle path generated from parent chain.

20.9. AElf.Contracts.CrossChain 393

AElf, Release release/1.2.3

acs7.IndexedParentChainBlockData

Field Type Description Label
local_chain_height int64 The height of the local chain when indexing the par-

ent chain.
par-
ent_chain_block_data_list

ParentChainBlock-
Data

Parent chain block data. re-
peated

acs7.IndexedSideChainBlockData

Field Type Description Label
side_chain_block_data_list SideChainBlockData Side chain block data. repeated

acs7.ParentChainBlockData

Field Type Description La-
bel

height int64 The height of parent chain.
cross_chain_extra_data CrossChainExtraData The merkle tree root computing from side chain

roots.
chain_id int32 The parent chain id.
transac-
tion_status_merkle_tree_root

aelf.Hash The merkle tree root computing from transac-
tions status in parent chain block.

indexed_merkle_path ParentChainBlock-
Data.IndexedMerklePathEntry

Indexed block height from side chain and
merkle path for this side chain block

re-
peated

extra_data ParentChainBlock-
Data.ExtraDataEntry

Extra data map. re-
peated

acs7.ParentChainBlockData.ExtraDataEntry

Field Type Description Label
key string
value bytes

acs7.ParentChainBlockData.IndexedMerklePathEntry

Field Type Description Label
key int64
value aelf.MerklePath

394 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs7.RechargeInput

Field Type Description Label
chain_id int32 The chain id to recharge.
amount int64 The amount to recharge.

acs7.ReleaseCrossChainIndexingProposalInput

Field Type Description Label
chain_id_list int32 List of chain ids to release. repeated

acs7.ReleaseSideChainCreationInput

Field Type Description Label
proposal_id aelf.Hash The proposal id of side chain creation.

acs7.ResourceTokenInfo

Field Type Description Label
re-
source_token_list_data

bytes The resource token informa-
tion.

ini-
tial_resource_amount

ResourceToken-
Info.InitialResourceAmountEntry

The initial resource token
amount.

re-
peated

acs7.ResourceTokenInfo.InitialResourceAmountEntry

Field Type Description Label
key string
value int32

acs7.SideChainBlockData

Field Type Description La-
bel

height int64 The height of side chain block.
block_header_hash aelf.Hash The hash of side chain block.
transac-
tion_status_merkle_tree_root

aelf.Hash The merkle tree root computing from transactions status in side
chain block.

chain_id int32 The id of side chain.

20.9. AElf.Contracts.CrossChain 395

AElf, Release release/1.2.3

acs7.SideChainBlockDataIndexed

acs7.SideChainCreationRequest

Field Type Description La-
bel

indexing_price int64 The cross chain indexing price.
locked_token_amount int64 Initial locked balance for a new side chain.
is_privilege_preservedbool Creator privilege boolean flag: True if chain cre-

ator privilege preserved, otherwise false.
side_chain_token_creation_requestSideChainTokenCreationRe-

quest
Side chain token information.

side_chain_token_initial_issue_listSideChainTokenInitialIssue A list of accounts and amounts that will be issued
when the chain starts.

re-
peated

ini-
tial_resource_amount

SideChainCreationRe-
quest.InitialResourceAmountEntry

The initial rent resources. re-
peated

acs7.SideChainCreationRequest.InitialResourceAmountEntry

Field Type Description Label
key string
value int32

acs7.SideChainIndexingInformation

Field Type Description Label
chain_id int32 The side chain id.
indexed_height int64 The indexed height.

acs7.SideChainIndexingInformationList

Field Type Description Label
index-
ing_information_list

SideChainIndexingInfor-
mation

A list contains indexing information of side
chains.

re-
peated

acs7.SideChainTokenCreationRequest

Field Type Description Label
side_chain_token_symbol string Token symbol of the side chain to be created
side_chain_token_name string Token name of the side chain to be created
side_chain_token_total_supply int64 Token total supply of the side chain to be created
side_chain_token_decimals int32 Token decimals of the side chain to be created

396 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs7.SideChainTokenInitialIssue

Field Type Description Label
address aelf.Address The account that will be issued.
amount int64 The amount that will be issued.

acs7.VerifyTransactionInput

Field Type Description Label
transaction_id aelf.Hash The cross chain transaction id to verify.
path aelf.MerklePath The merkle path of the transaction.
parent_chain_height int64 The height of parent chain that indexing this transaction.
verified_chain_id int32 The chain if to verify.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

20.9. AElf.Contracts.CrossChain 397

AElf, Release release/1.2.3

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

398 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

20.9. AElf.Contracts.CrossChain 399

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.10 AElf.Contracts.Treasury

Treasury contract.

Used for distributing bonus’ to voters and candidates during the election process.

Implement AElf Standards ACS1 and ACS10.

400 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

20.10.1 Contract Methods

Method Name Request Type Response Type Description
InitialTrea-
suryContract

google.protobuf.Empty google.protobuf.Empty Initialize treasury contract.

InitialMin-
ingRewardProfi-
tItem

google.protobuf.Empty google.protobuf.Empty Initialize the sub-item of the bonus
scheme.

DonateAll Trea-
sury.DonateAllInput

google.protobuf.Empty Donate all tokens owned by the sender.

SetDividend-
PoolWeightSet-
ting

Trea-
sury.DividendPoolWeightSetting

google.protobuf.Empty Set the dividend weight of the sub-item of
the dividend item.

SetMinerRe-
wardWeightSet-
ting

Trea-
sury.MinerRewardWeightSetting

google.protobuf.Empty Set the miner reward weight.

UpdateMi-
ningReward

google.protobuf.Int64Valuegoogle.protobuf.Empty Set the reward for mining.

ChangeTrea-
suryController

AuthorityInfo google.protobuf.Empty Change the governance authority infor-
mation for treasury contract.

RecordMin-
erReplacement

Trea-
sury.RecordMinerReplacementInput

google.protobuf.Empty AEDPoS Contract can notify Treasury
Contract to aware miner replacement
happened.

GetWel-
fareRewar-
dAmountSam-
ple

Trea-
sury.GetWelfareRewardAmountSampleInput

Trea-
sury.GetWelfareRewardAmountSampleOutput

Used to estimate the revenue weight of
10000 tokens voted by users.

GetTrea-
surySchemeId

google.protobuf.Empty aelf.Hash Get the scheme id of treasury.

GetDividend-
PoolWeightPro-
portion

google.protobuf.Empty Trea-
sury.DividendPoolWeightProportion

Query the weight percentage of dividend
pool items.

GetMinerRe-
wardWeightPro-
portion

google.protobuf.Empty Trea-
sury.MinerRewardWeightProportion

Query the weight percentage of the divi-
dend item for miner.

GetTrea-
suryController

google.protobuf.Empty AuthorityInfo Query the governance authority informa-
tion.

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.10. AElf.Contracts.Treasury 401

AElf, Release release/1.2.3

AElf.Standards.ACS10

Method
Name

Request
Type

Re-
sponse
Type

Description

Donate acs10.DonateInputgoogle.protobuf.EmptyDonates tokens from the caller to the treasury. If the tokens are not
native tokens in the current chain, they will be first converted to the
native token.

Release acs10.ReleaseInputgoogle.protobuf.EmptyRelease dividend pool according the period number.
SetSymbol-
List

acs10.SymbolListgoogle.protobuf.EmptySet the token symbols dividend pool supports.

GetSymbol-
List

google.protobuf.Emptyacs10.SymbolListQuery the token symbols dividend pool supports.

GetUndis-
tributedDiv-
idends

google.protobuf.Emptyacs10.DividendsQuery the balance of undistributed tokens whose symbols are in-
cluded in the symbol list.

GetDivi-
dends

google.protobuf.Int64Valueacs10.DividendsQuery the dividend information according to the height.

20.10.2 Contract Types

AElf.Contracts.Treasury

Treasury.DividendPoolWeightProportion

Field Type Description Label
citizen_welfare_proportion_info SchemeProportionInfo The proportion of citizen welfare.
backup_subsidy_proportion_info SchemeProportionInfo The proportion of candidate nodes.
miner_reward_proportion_info SchemeProportionInfo The proportion of miner

Treasury.DividendPoolWeightSetting

Field Type Description Label
citizen_welfare_weight int32 The dividend weight of citizen welfare.
backup_subsidy_weight int32 The dividend weight of candidate nodes.
miner_reward_weight int32 The dividend weight of miner.

Treasury.DonateAllInput

Field Type Description Label
symbol string The token symbol to donate.

402 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Treasury.GetWelfareRewardAmountSampleInput

Field Type Description Label
value int64 Token lock time. repeated

Treasury.GetWelfareRewardAmountSampleOutput

Field Type Description Label
value int64 The weight calculated. repeated

Treasury.MinerReElectionInformation

Field Type Description Label
contin-
ual_appointment_times

MinerReElectionInforma-
tion.ContinualAppointmentTimesEntry

The reappointment informa-
tion for miner.

re-
peated

Treasury.MinerReElectionInformation.ContinualAppointmentTimesEntry

Field Type Description Label
key string
value int64

Treasury.MinerRewardWeightProportion

Field Type Description La-
bel

ba-
sic_miner_reward_proportion_info

SchemeProportion-
Info

The proportion of the basic income of the
miner.

votes_weight_reward_proportion_infoSchemeProportion-
Info

The proportion of the vote of the miner.

re_election_reward_proportion_info SchemeProportion-
Info

The proportion of the reappointment of the
miner.

Treasury.MinerRewardWeightSetting

Field Type Description Label
basic_miner_reward_weight int32 The dividend weight of the basic income of the miner.
votes_weight_reward_weight int32 The dividend weight of the vote of the miner.
re_election_reward_weight int32 The dividend weight of the reappointment of the miner.

20.10. AElf.Contracts.Treasury 403

AElf, Release release/1.2.3

Treasury.RecordMinerReplacementInput

Field Type Description Label
old_pubkey string
new_pubkey string
current_term_number int64

Treasury.SchemeProportionInfo

Field Type Description Label
scheme_id aelf.Hash The scheme id.
proportion int32 Dividend weight percentage.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Standards.ACS10

acs10.Dividends

Field Type Description Label
value Dividends.ValueEntry The dividends, symbol -> amount. repeated

acs10.Dividends.ValueEntry

Field Type Description Label
key string
value int64

404 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

acs10.DonateInput

Field Type Description Label
symbol string The token symbol to donate.
amount int64 The amount to donate.

acs10.DonationReceived

Field Type Description Label
from aelf.Address The address of donors.
pool_contract aelf.Address The address of dividend pool.
symbol string The token symbol Donated.
amount int64 The amount Donated.

acs10.ReleaseInput

Field Type Description Label
period_number int64 The period number to release.

acs10.SymbolList

Field Type Description Label
value string The token symbol list. repeated

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

20.10. AElf.Contracts.Treasury 405

AElf, Release release/1.2.3

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

406 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

20.10. AElf.Contracts.Treasury 407

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

408 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.11 AElf.Contracts.Vote

Vote contract.

The Vote contract is an abstract layer for voting. Developers implement concrete voting activities by calling this
contract.

Implement AElf Standards ACS1.

20.11.1 Contract Methods

Method
Name

Request Type Response
Type

Description

Register Vote.VotingRegisterInputgoogle.protobuf.EmptyCreate a voting activity.
Vote Vote.VoteInput google.protobuf.EmptyAfter successfully creating a voting activity, others are

able to vote.
Withdraw Vote.WithdrawInput google.protobuf.EmptyA voter can withdraw the token after the lock time.
TakeSnapshot Vote.TakeSnapshotInputgoogle.protobuf.EmptySave the result of the specified number of votes and gen-

erates a new round votes.
AddOption Vote.AddOptionInput google.protobuf.EmptyAdd an option to a voting activity.
RemoveOp-
tion

Vote.RemoveOptionInputgoogle.protobuf.EmptyRemove an option from a voting activity.

AddOptions Vote.AddOptionsInputgoogle.protobuf.EmptyAdd multiple options to a voting activity.
RemoveOp-
tions

Vote.RemoveOptionsInputgoogle.protobuf.EmptyRemove multiple options from a voting activity.

GetVotingItem Vote.GetVotingItemInputVote.VotingItem Get a voting activity information.
GetVotingRe-
sult

Vote.GetVotingResultInputVote.VotingResult Get a voting result according to the provided voting ac-
tivity id and snapshot number.

GetLatestVot-
ingResult

aelf.Hash Vote.VotingResult Gets the latest result according to the voting activity id.

GetVotin-
gRecord

aelf.Hash Vote.VotingRecordGet the voting record according to vote id.

GetVotin-
gRecords

Vote.GetVotingRecordsInputVote.VotingRecordsGet the voting record according to vote ids.

GetVotedItems aelf.Address Vote.VotedItems Get all voted information according to voter address.
GetVotingIds Vote.GetVotingIdsInputVote.VotedIds Get the vote ids according to voting activity id.

20.11. AElf.Contracts.Vote 409

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.11.2 Contract Types

AElf.Contracts.Vote

Vote.AddOptionInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
option string The new option to add.

Vote.AddOptionsInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
options string The new options to add. repeated

Vote.GetVotingIdsInput

Field Type Description Label
voter aelf.Address The address of voter.
voting_item_id aelf.Hash The voting activity id.

Vote.GetVotingItemInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.

Vote.GetVotingRecordsInput

Field Type Description Label
ids aelf.Hash The vote ids. repeated

410 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Vote.GetVotingResultInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
snapshot_number int64 The snapshot number.

Vote.RemoveOptionInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
option string The option to remove.

Vote.RemoveOptionsInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
options string The options to remove. repeated

Vote.TakeSnapshotInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
snapshot_number int64 The snapshot number to take.

Vote.VoteInput

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
voter aelf.Address The address of voter.
amount int64 The amount of vote.
option string The option to vote.
vote_id aelf.Hash The vote id.
is_change_target bool Whether vote others.

20.11. AElf.Contracts.Vote 411

AElf, Release release/1.2.3

Vote.Voted

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
voter aelf.Address The address of voter.
snapshot_number int64 The snapshot number.
amount int64 The amount of vote.
vote_timestamp google.protobuf.Timestamp The time of vote.
option string The option voted.
vote_id aelf.Hash The vote id.

Vote.VotedIds

Field Type Description Label
active_votes aelf.Hash The active vote ids. repeated
withdrawn_votes aelf.Hash The withdrawn vote ids. repeated

Vote.VotedItems

Field Type Description Label
voted_item_vote_ids VotedItems.VotedItemVoteIdsEntry The voted ids. repeated

Vote.VotedItems.VotedItemVoteIdsEntry

Field Type Description Label
key string
value VotedIds

412 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Vote.VotingItem

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
accepted_currency string The token symbol which will be ac-

cepted.
is_lock_token bool Whether the vote will lock token.
current_snapshot_number int64 The current snapshot number.
total_snapshot_number int64 The total snapshot number.
options string The list of options. re-

peated
register_timestamp google.protobuf.Timestamp The register time of the voting activity.
start_timestamp google.protobuf.Timestamp The start time of the voting.
end_timestamp google.protobuf.Timestamp The end time of the voting.
cur-
rent_snapshot_start_timestamp

google.protobuf.Timestamp The start time of current round of the vot-
ing.

sponsor aelf.Address The sponsor address of the voting activ-
ity.

Vote.VotingItemRegistered

Field Type Description La-
bel

voting_item_id aelf.Hash The voting activity id.
accepted_currency string The token symbol which will be accepted.
is_lock_token bool Whether the vote will lock token.
current_snapshot_number int64 The current snapshot number.
total_snapshot_number int64 The total number of snapshots of the vote.
register_timestamp google.protobuf.Timestamp The register time of the voting activity.
start_timestamp google.protobuf.Timestamp The start time of the voting.
end_timestamp google.protobuf.Timestamp The end time of the voting.
cur-
rent_snapshot_start_timestamp

google.protobuf.Timestamp The start time of current round of the vot-
ing.

sponsor aelf.Address The sponsor address of the voting activity.

Vote.VotingRecord

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
voter aelf.Address The address of voter.
snapshot_number int64 The snapshot number.
amount int64 The amount of vote.
withdraw_timestamp google.protobuf.Timestamp The time of withdraw.
vote_timestamp google.protobuf.Timestamp The time of vote.
is_withdrawn bool Whether the vote had been withdrawn.
option string The option voted.
is_change_target bool Whether vote others.

20.11. AElf.Contracts.Vote 413

AElf, Release release/1.2.3

Vote.VotingRecords

Field Type Description Label
records VotingRecord The voting records. repeated

Vote.VotingRegisterInput

Field Type Description Label
start_timestamp google.protobuf.Timestamp The start time of the voting.
end_timestamp google.protobuf.Timestamp The end time of the voting.
accepted_currency string The token symbol which will be accepted.
is_lock_token bool Whether the vote will lock token.
total_snapshot_number int64 The total number of snapshots of the vote.
options string The list of options. repeated

Vote.VotingResult

Field Type Description Label
voting_item_id aelf.Hash The voting activity id.
results VotingRe-

sult.ResultsEntry
The voting result, option -> amount of votes, re-

peated
snapshot_number int64 The snapshot number.
voters_count int64 The total number of voters.
snap-
shot_start_timestamp

google.protobuf.TimestampThe start time of this snapshot.

snap-
shot_end_timestamp

google.protobuf.TimestampThe end time of this snapshot.

votes_amount int64 Total votes received during the process of this
snapshot.

Vote.VotingResult.ResultsEntry

Field Type Description Label
key string
value int64

Vote.WithdrawInput

Field Type Description Label
vote_id aelf.Hash The vote id.

414 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Vote.Withdrawn

Field Type Description Label
vote_id aelf.Hash The vote id.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

20.11. AElf.Contracts.Vote 415

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

416 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

20.11. AElf.Contracts.Vote 417

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

418 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.12 AElf.Contracts.TokenHolder

TokenHolder contract.

Used to build a a bonus model for distributing bonus’ to whom hold the token.

Implement AElf Standards ACS1.

20.12.1 Contract Methods

Method
Name

Request Type Response Type Description

Cre-
ateScheme

Token-
Holder.CreateTokenHolderProfitSchemeInput

google.protobuf.EmptyCreate a scheme for distributing bonus.

Ad-
dBene-
ficiary

Token-
Holder.AddTokenHolderBeneficiaryInput

google.protobuf.EmptyAdd a beneficiary to a scheme.

Re-
moveBen-
eficiary

Token-
Holder.RemoveTokenHolderBeneficiaryInput

google.protobuf.EmptyRemoves a beneficiary from a scheme. Note: amount > 0:
update the weight of the beneficiary, amount = 0: remove
the beneficiary.

Con-
tributeProf-
its

Token-
Holder.ContributeProfitsInput

google.protobuf.EmptyContribute profit to a scheme.

Dis-
tributeProf-
its

Token-
Holder.DistributeProfitsInput

google.protobuf.EmptyTo distribute the profits of the scheme, the stakeholders
of the project may go to receive dividends.

Regis-
terFor-
Profits

Token-
Holder.RegisterForProfitsInput

google.protobuf.EmptyThe user registers a bonus project.

With-
draw

aelf.Address google.protobuf.EmptyAfter the lockup time expires, the user can withdraw to-
ken.

Claim-
Profits

Token-
Holder.ClaimProfitsInput

google.protobuf.EmptyAfter DistributeProfits the holder can get his dividend.

GetSchemeaelf.Address Token-
Holder.TokenHolderProfitScheme

Query the details of the specified scheme.

Get-
Prof-
itsMap

Token-
Holder.ClaimProfitsInput

Token-
Holder.ReceivedProfitsMap

Query the dividends available to the holder.

20.12. AElf.Contracts.TokenHolder 419

AElf, Release release/1.2.3

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.12.2 Contract Types

AElf.Contracts.TokenHolder

TokenHolder.AddTokenHolderBeneficiaryInput

Field Type Description Label
beneficiary aelf.Address Beneficiary’s address.
shares int64 The weight of the beneficiary’s dividends in the scheme.

TokenHolder.ClaimProfitsInput

Field Type Description Label
scheme_manager aelf.Address The manager of the scheme.
beneficiary aelf.Address Beneficiary’s address.

TokenHolder.ContributeProfitsInput

Field Type Description Label
scheme_manager aelf.Address The manager of the scheme.
amount int64 The amount of token to contribute.
symbol string The symbol of token to contribute.

TokenHolder.CreateTokenHolderProfitSchemeInput

Field Type Description Label
symbol string The token symbol.
mini-
mum_lock_minutes

int64 Minimum lock time for hold-
ing token.

auto_distribute_thresholdCreateTokenHolderProfitSchemeIn-
put.AutoDistributeThresholdEntry

Threshold setting for releas-
ing dividends.

re-
peated

420 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

TokenHolder.CreateTokenHolderProfitSchemeInput.AutoDistributeThresholdEntry

Field Type Description Label
key string
value int64

TokenHolder.DistributeProfitsInput

Field Type Description Label
scheme_manager aelf.Address The manager of the scheme.
amounts_map DistributeProfitsIn-

put.AmountsMapEntry
The token to distribute, symbol ->
amount.

re-
peated

TokenHolder.DistributeProfitsInput.AmountsMapEntry

Field Type Description Label
key string
value int64

TokenHolder.ReceivedProfitsMap

Field Type Description Label
value ReceivedProf-

itsMap.ValueEntry
The amount of token the beneficiary can get, symbol ->
amount.

re-
peated

TokenHolder.ReceivedProfitsMap.ValueEntry

Field Type Description Label
key string
value int64

TokenHolder.RegisterForProfitsInput

Field Type Description Label
scheme_manager aelf.Address The manager of the scheme.
amount int64 The amount of token holding.

20.12. AElf.Contracts.TokenHolder 421

AElf, Release release/1.2.3

TokenHolder.RemoveTokenHolderBeneficiaryInput

Field Type Description Label
beneficiary aelf.Address Beneficiary’s address.
amount int64 The amount of weights to remove.

TokenHolder.TokenHolderProfitScheme

Field Type Description Label
symbol string The token symbol.
scheme_id aelf.Hash The scheme id.
period int64 The current dividend period.
mini-
mum_lock_minutes

int64 Minimum lock time for holding
token.

auto_distribute_thresholdTokenHolderProf-
itScheme.AutoDistributeThresholdEntry

Threshold setting for releasing
dividends.

re-
peated

TokenHolder.TokenHolderProfitScheme.AutoDistributeThresholdEntry

Field Type Description Label
key string
value int64

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Types

422 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

20.12. AElf.Contracts.TokenHolder 423

AElf, Release release/1.2.3

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

424 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

20.12. AElf.Contracts.TokenHolder 425

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.13 AElf.Contracts.Economic

Economic contract.

The Economic contract establishes the economic system of the AElf. When the block chain starts to work, this contract
will initialize other contracts related to economic activities.

426 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Implement AElf Standards ACS1.

20.13.1 Contract Methods

Method
Name

Request
Type

Re-
sponse
Type

Description

Issue-
Native-
Token

Eco-
nomic.IssueNativeTokenInput

google.protobuf.EmptyOnly ZeroContract is able to issue the native token.

Ini-
tialEco-
nomic-
System

Eco-
nomic.InitialEconomicSystemInput

google.protobuf.EmptyIt will initialize other contracts related to economic activities (For instance,
create the native token). This transaction only can be send once because
after the first sending, its state will be set to initialized.

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.13.2 Contract Types

AElf.Contracts.Economic

Economic.InitialEconomicSystemInput

Field Type Description La-
bel

native_token_symbol string The native token symbol.
native_token_name string The native token name.
native_token_total_supply int64 The native token total supply.
native_token_decimals int32 The accuracy of the native token.
is_native_token_burnable bool It indicates if the token is burnable.
mining_reward_total_amount int64 It determines how much native token is used to reward the min-

ers.
transac-
tion_size_fee_unit_price

int64 todo : remove unused fields

20.13. AElf.Contracts.Economic 427

AElf, Release release/1.2.3

Economic.IssueNativeTokenInput

Field Type Description Label
amount int64 The amount of token.
memo string The memo.
to aelf.Address The recipient of the token.

Economic.IssueResourceTokenInput

Field Type Description Label
symbol string The symbol of resource token.
amount int64 The amount of resource token.
memo string The memo.
to aelf.Address The recipient of the token.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

428 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

20.13. AElf.Contracts.Economic 429

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

430 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

20.13. AElf.Contracts.Economic 431

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.14 AElf.Contracts.TokenConverter

TokenConvert contract.

Using this contract can build a connection between the base token and other tokens created on the chain. After building
the connection, users can trade tokens with the Bancor model. You can find the detail information about Bancor in
AElf Economic System White Paper.

Implement AElf Standards ACS1.

432 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

20.14.1 Contract Methods

Method Name Request Type Response
Type

Description

Initialize TokenCon-
verter.InitializeInput

google.protobuf.EmptyInitialize TokenConvert contract.

SetConnector TokenCon-
verter.Connector

google.protobuf.Empty

Buy TokenCon-
verter.BuyInput

google.protobuf.EmptyAfter establishing bancor model of token and base to-
ken, you can buy token through this method.

Sell TokenCon-
verter.SellInput

google.protobuf.EmptyAfter establishing bancor model of token and base to-
ken, you can sell token through this method.

SetFeeRate google.protobuf.StringValuegoogle.protobuf.EmptySet the fee rate for buy/sell (fee amount = cost * feeR-
ate).

UpdateConnec-
tor

TokenCon-
verter.Connector

google.protobuf.EmptyBefore calling the EnableConnector, the connector
controller can update the pair connector through this
method.

AddPairConnec-
tor

TokenCon-
verter.PairConnectorParam

google.protobuf.EmptyAdd a pair connector for new token and the base to-
ken.

EnableConnec-
tor

TokenCon-
verter.ToBeConnectedTokenInfo

google.protobuf.EmptyAfter adding a pair, you need to call this method to
enable it before buy and sell token.

ChangeConnec-
torController

AuthorityInfo google.protobuf.EmptySet the governance authority information for Token-
Convert contract.

GetPairConnec-
tor

TokenCon-
verter.TokenSymbol

TokenCon-
verter.PairConnector

Query the pair connector according to token symbol.

GetFeeRate google.protobuf.Emptygoogle.protobuf.StringValueQuery the fee rate for buy/sell.
GetBaseToken-
Symbol

google.protobuf.EmptyTokenCon-
verter.TokenSymbol

Query the symbol of base token.

GetNeededDe-
posit

TokenCon-
verter.ToBeConnectedTokenInfo

TokenCon-
verter.DepositInfo

Query how much the base token need be deposited
before enabling the connector.

GetDepositCon-
nectorBalance

google.protobuf.StringValuegoogle.protobuf.Int64ValueQuery how much the base token have been deposited.

GetController-
ForManageCon-
nector

google.protobuf.EmptyAuthorityInfo Query the governance authority information for To-
kenConvert contract.

IsSymbolAble-
ToSell

google.protobuf.StringValuegoogle.protobuf.BoolValueQuery whether the token can be sold.

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.14. AElf.Contracts.TokenConverter 433

AElf, Release release/1.2.3

20.14.2 Contract Types

AElf.Contracts.TokenConverter

TokenConverter.BuyInput

Field Type Description La-
bel

symbol string The token symbol you want to buy.
amount int64 The amount you want to buy.
pay_limit int64 Limit of cost. If the token required for buy exceeds this value, the buy will be abandoned.

And 0 is no limit.

TokenConverter.Connector

Field Type Description La-
bel

symbol string The token symbol.
virtual_balance int64 The virtual balance for base token.
weight string The calculated weight value for this Connector.
is_virtual_balance_enabledbool Whether to use Virtual Balance.
is_purchase_enabled bool Whether the connector is enabled.
related_symbol string Indicates its related connector, the pair connector includes a new created token

connector and the base token connector.
is_deposit_account bool Indicates if the connector is base token connector.

TokenConverter.DepositInfo

Field Type Description Label
need_amount int64 How much more base Token is needed as the deposit.
amount_out_of_token_convert int64 How many tokens are not on the TokenConvert address.

TokenConverter.InitializeInput

Field Type Description Label
base_token_symbol string Base token symbol, default is the native token symbol.
fee_rate string The fee rate for buy/sell.
connectors Connector The default added connectors. repeated

TokenConverter.PairConnector

Field Type Description Label
resource_connector Connector The connector of the specified token.
deposit_connector Connector The related connector.

434 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

TokenConverter.PairConnectorParam

Field Type Description Label
resource_connector_symbol string The token symbol.
resource_weight string The weight value of this token in the Bancor model.
native_virtual_balance int64 This token corresponds to the value of base token.
native_weight string The weight value of base token in Bancor model.

TokenConverter.SellInput

Field Type Description La-
bel

symbol string The token symbol you want to sell.
amount int64 The amount you want to sell.
re-
ceive_limit

int64 Limits on tokens obtained by selling. If the token obtained is less than this value, the
sale will be abandoned. And 0 is no limit.

TokenConverter.ToBeConnectedTokenInfo

Field Type Description La-
bel

token_symbol string The token symbol.
amount_to_token_convert int64 Specifies the number of tokens to convert to the TokenConvert con-

tract.

TokenConverter.TokenBought

Field Type Description Label
symbol string The token symbol bought.
bought_amount int64 The amount bought.
base_amount int64 The total cost of the base token.
fee_amount int64 The fee amount.

TokenConverter.TokenSold

Field Type Description Label
symbol string The token symbol sold.
sold_amount int64 The amount sold.
base_amount int64 The total received of the base token.
fee_amount int64 The fee amount.

20.14. AElf.Contracts.TokenConverter 435

AElf, Release release/1.2.3

TokenConverter.TokenSymbol

Field Type Description Label
symbol string The token symbol.

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

436 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

20.14. AElf.Contracts.TokenConverter 437

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

438 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

20.14. AElf.Contracts.TokenConverter 439

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.15 AElf.Contracts.Configuration

Configuration contract.

Used to manage the configuration on the block chain.

Implement AElf Standards ACS1.

20.15.1 Contract Methods

Method Name Request Type Response Type Description
SetConfiguration Configura-

tion.SetConfigurationInput
google.protobuf.EmptyAdd or update configuration.

ChangeConfigura-
tionController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the
default is Parliament.

GetConfiguration google.protobuf.StringValuegoogle.protobuf.BytesValueQuery the configuration by configura-
tion’s key.

GetConfigura-
tionController

google.protobuf.Empty AuthorityInfo Query the controller information

AElf.Standards.ACS1

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

20.15.2 Contract Types

AElf.Contracts.Configuration

440 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

Configuration.ConfigurationSet

Field Type Description Label
key string The configuration’s key.
value bytes The configuration’s value(binary data).

Configuration.SetConfigurationInput

Field Type Description Label
key string The configuration’s key.
value bytes The configuration’s value(binary data).

AElf.Standards.ACS1

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

AElf.Types

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

20.15. AElf.Contracts.Configuration 441

AElf, Release release/1.2.3

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

442 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

20.15. AElf.Contracts.Configuration 443

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

444 Chapter 20. Smart Contract APIs

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

20.15. AElf.Contracts.Configuration 445

AElf, Release release/1.2.3

446 Chapter 20. Smart Contract APIs

CHAPTER 21

Acs Introduction

21.1 ACS0 - Contract Deployment Standard

ACS0 is used to manage the deployment and update of contracts.

21.1.1 Interface

The contract inherited from ACS0 need implement the following interfaces:

447

AElf, Release release/1.2.3

Methods

Method Name Request Type Response
Type

Description

DeploySystemS-
martContract

acs0.SystemContractDeploymentInputaelf.Address Deploy a system smart contract on chain and return the
address of the system contract deployed.

DeploySmartCon-
tract

acs0.ContractDeploymentInputaelf.Address Deploy a smart contract on chain and return the address
of the contract deployed.

UpdateSmartCon-
tract

acs0.ContractUpdateInputaelf.Address Update a smart contract on chain.

ProposeNewCon-
tract

acs0.ContractDeploymentInputaelf.Hash Create a proposal to deploy a new contract and returns
the id of the proposed contract.

ProposeContract-
CodeCheck

acs0.ContractCodeCheckInputaelf.Hash Create a proposal to check the code of a contract and
return the id of the proposed contract.

ProposeUpdate-
Contract

acs0.ContractUpdateInputaelf.Hash Create a proposal to update the specified contract and
return the id of the proposed contract.

ReleaseAp-
provedContract

acs0.ReleaseContractInputgoogle.protobuf.EmptyRelease the contract proposal which has been approved.

ReleaseC-
odeChecked-
Contract

acs0.ReleaseContractInputgoogle.protobuf.EmptyRelease the proposal which has passed the code check.

ValidateSystem-
ContractAddress

acs0.ValidateSystemContractAddressInputgoogle.protobuf.EmptyValidate whether the input system contract exists.

SetContractPro-
poserRequired-
State

google.protobuf.BoolValuegoogle.protobuf.EmptySet authority of contract deployment.

CurrentContract-
SerialNumber

google.protobuf.Emptygoogle.protobuf.Int64ValueGet the current serial number of genesis contract (cor-
responds to the serial number that will be given to the
next deployed contract).

GetContractInfo aelf.Address acs0.ContractInfoGet detailed information about the specified contract.
GetContractAu-
thor

aelf.Address aelf.Address Get author of the specified contract.

GetContractHash aelf.Address aelf.Hash Get the code hash of the contract about the specified
address.

GetContractAd-
dressByName

aelf.Hash aelf.Address Get the address of a system contract by its name.

GetSmartCon-
tractRegistra-
tionByAddress

aelf.Address aelf.SmartContractRegistrationGet the registration of a smart contract by its address.

GetSmartContrac-
tRegistrationBy-
CodeHash

aelf.Hash aelf.SmartContractRegistrationGet the registration of a smart contract by code hash.

Types

448 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs0.CodeCheckRequired

Field Type Description Label
code bytes The byte array of the contract code.
proposed_contract_input_hash aelf.Hash The id of the proposed contract.
category sint32 The category of contract code(0: C#).
is_system_contract bool Indicates if the contract is the system contract.

acs0.CodeUpdated

Field Type Description Label
address aelf.Address The address of the updated contract.
old_code_hash aelf.Hash The byte array of the old contract code.
new_code_hash aelf.Hash The byte array of the new contract code.
version int32 The version of the current contract.

acs0.ContractCodeCheckInput

Field Type Description La-
bel

contract_input bytes The byte array of the contract code to be checked.
is_contract_deployment bool Whether the input contract is to be deployed or updated.
code_check_release_methodstring Method to call after code check complete(DeploySmartContract or

UpdateSmartContract).
pro-
posed_contract_input_hash

aelf.Hash The id of the proposed contract.

category sint32 The category of contract code(0: C#).
is_system_contract bool Indicates if the contract is the system contract.

acs0.ContractDeployed

Field Type Description Label
author aelf.Address The author of the contract, this is the person who deployed the contract.
code_hash aelf.Hash The hash of the contract code.
address aelf.Address The address of the contract.
version int32 The version of the current contract.
Name aelf.Hash The name of the contract. It has to be unique.

acs0.ContractDeploymentInput

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.

21.1. ACS0 - Contract Deployment Standard 449

AElf, Release release/1.2.3

acs0.ContractInfo

Field Type Description La-
bel

serial_number int64 The serial number of the contract.
author aelf.Address The author of the contract, this is the person who deployed the con-

tract.
category sint32 The category of contract code(0: C#).
code_hash aelf.Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

acs0.ContractProposed

Field Type Description Label
proposed_contract_input_hash aelf.Hash The id of the proposed contract.

acs0.ContractUpdateInput

Field Type Description Label
address aelf.Address The contract address that needs to be updated.
code bytes The byte array of the new contract code.

acs0.ReleaseContractInput

Field Type Description Label
proposal_id aelf.Hash The hash of the proposal.
proposed_contract_input_hash aelf.Hash The id of the proposed contract.

acs0.SystemContractDeploymentInput

Field Type Description La-
bel

category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
name aelf.Hash The name of the contract. It has to be unique.
transac-
tion_method_call_list

SystemContractDeploymentIn-
put.SystemTransactionMethodCallList

An initial list of transactions for the system contract,
which is executed in sequence when the contract is de-
ployed.

450 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs0.SystemContractDeploymentInput.SystemTransactionMethodCall

Field Type Description Label
method_name string The method name of system transaction.
params bytes The params of system transaction method.

acs0.SystemContractDeploymentInput.SystemTransactionMethodCallList

Field Type Description Label
value SystemContractDeploymentIn-

put.SystemTransactionMethodCall
The list of system transac-
tions.

re-
peated

acs0.ValidateSystemContractAddressInput

Field Type Description Label
system_contract_hash_name aelf.Hash The name hash of the contract.
address aelf.Address The address of the contract.

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

21.1. ACS0 - Contract Deployment Standard 451

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

452 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

21.1. ACS0 - Contract Deployment Standard 453

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

454 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

21.1.2 Example

ACS0 declares methods for the scenes about contract deployment and update. AElf provides the implementation for
ACS0, Genesis Contract. You can refer to the implementation of the Genesis contract api.

21.2 ACS1 - Transaction Fee Standard

ACS1 is used to manage the transfer fee.

21.2.1 Interface

The contract inherited from ACS1 need implement the APIs below:

Methods

Method Name Request Type Response
Type

Description

SetMethodFee acs1.MethodFees google.protobuf.EmptySet the method fees for the specified method. Note that
this will override all fees of the method.

ChangeMethod-
FeeController

AuthorityInfo google.protobuf.EmptyChange the method fee controller, the default is parlia-
ment and default organization.

GetMethodFee google.protobuf.StringValueacs1.MethodFeesQuery method fee information by method name.
GetMethod-
FeeController

google.protobuf.EmptyAuthorityInfo Query the method fee controller.

Types

acs1.MethodFee

Field Type Description Label
symbol string The token symbol of the method fee.
basic_fee int64 The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee List of fees to be charged. repeated
is_size_fee_free bool Optional based on the implementation of SetMethodFee method.

21.2. ACS1 - Transaction Fee Standard 455

AElf, Release release/1.2.3

AuthorityInfo

Field Type Description Label
contract_address aelf.Address The contract address of the controller.
owner_address aelf.Address The address of the owner of the contract.

Attention: just the system contract on main chain is able to implement acs1.

21.2.2 Usage

On AElf, a pre-transaction is generated by pre-plugin FeeChargePreExecutionPlugin before the transaction
main processing. It is used to charge the transaction fee.

The generated transaction’s method is ChargeTransactionFees. The implementation is roughly like that (part
of the code is omitted):

/// <summary>
/// Related transactions will be generated by acs1 pre-plugin service,
/// and will be executed before the origin transaction.
/// </summary>
/// <param name="input"></param>
/// <returns></returns>
public override BoolValue ChargeTransactionFees(ChargeTransactionFeesInput input)
{

// ...
// Record tx fee bill during current charging process.
var bill = new TransactionFeeBill();
var fromAddress = Context.Sender;
var methodFees = Context.Call<MethodFees>(input.ContractAddress,

→˓nameof(GetMethodFee),
new StringValue {Value = input.MethodName});

var successToChargeBaseFee = true;
if (methodFees != null && methodFees.Fees.Any())
{

successToChargeBaseFee = ChargeBaseFee(GetBaseFeeDictionary(methodFees), ref
→˓bill);

}
var successToChargeSizeFee = true;
if (!IsMethodFeeSetToZero(methodFees))
{

// Then also do not charge size fee.
successToChargeSizeFee = ChargeSizeFee(input, ref bill);

}
// Update balances.
foreach (var tokenToAmount in bill.FeesMap)
{

ModifyBalance(fromAddress, tokenToAmount.Key, -tokenToAmount.Value);
Context.Fire(new TransactionFeeCharged
{

Symbol = tokenToAmount.Key,
Amount = tokenToAmount.Value

});
if (tokenToAmount.Value == 0)
{

//Context.LogDebug(() => $"Maybe incorrect charged tx fee of
→˓{tokenToAmount.Key}: it's 0."); (continues on next page)

456 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

}
}
return new BoolValue {Value = successToChargeBaseFee && successToChargeSizeFee};

}

In this method, the transaction fee consists of two parts:

1. The system calls GetMethodFee(line 15) to get the transacion fee you should pay. Then, it will check whether
your balance is enough. If your balance is sufficient, the fee will be signed in the bill (variant bill). If not, your
transaction will be rejected.

2. If the method fee is not set to 0 by the contract developer, the system will charge size fee. (the size if calculate
by the parameter’s size)

After charging successfully, an TransactionFeeCharged event is thrown, and the balance of the sender is mod-
ified.

The TransactionFeeCharged event will be captured and processed on the chain to calculate the total amount
of transaction fees charged in the block. In the next block, the 10% of the transaction fee charged in this block is
destroyed, the remaining 90% flows to dividend pool on the main chain, and is transferred to the FeeReciever on
the side chain. The code is:

/// <summary>
/// Burn 10% of tx fees.
/// If Side Chain didn't set FeeReceiver, burn all.
/// </summary>
/// <param name="symbol"></param>
/// <param name="totalAmount"></param>
private void TransferTransactionFeesToFeeReceiver(string symbol, long totalAmount)
{

Context.LogDebug(() => "Transfer transaction fee to receiver.");
if (totalAmount <= 0) return;
var burnAmount = totalAmount.Div(10);
if (burnAmount > 0)

Context.SendInline(Context.Self, nameof(Burn), new BurnInput
{

Symbol = symbol,
Amount = burnAmount

});
var transferAmount = totalAmount.Sub(burnAmount);
if (transferAmount == 0)

return;
var treasuryContractAddress =

Context.GetContractAddressByName(SmartContractConstants.
→˓TreasuryContractSystemName);

if (treasuryContractAddress!= null)
{

// Main chain would donate tx fees to dividend pool.
if (State.DividendPoolContract.Value == null)

State.DividendPoolContract.Value = treasuryContractAddress;
State.DividendPoolContract.Donate.Send(new DonateInput
{

Symbol = symbol,
Amount = transferAmount

});
}
else

(continues on next page)

21.2. ACS1 - Transaction Fee Standard 457

AElf, Release release/1.2.3

(continued from previous page)

{
if (State.FeeReceiver.Value != null)
{

Context.SendInline(Context.Self, nameof(Transfer), new TransferInput
{

To = State.FeeReceiver.Value,
Symbol = symbol,
Amount = transferAmount,

});
}
else
{

// Burn all!
Context.SendInline(Context.Self, nameof(Burn), new BurnInput
{

Symbol = symbol,
Amount = transferAmount

});
}

}
}

In this way, AElf charges the transaction fee via the GetMethodFee provided by ACS1, and the other three methods
are used to help with the implementations of GetMethodFee.

21.2.3 Implementation

The easiest way to do this is to just implement the method GetMethodFee.

If there are Foo1, Foo2, Bar1 and Bar2 methods related to business logic in a contract, they are priced as 1, 1, 2, 2 ELF
respectively, and the transaction fees of these four methods will not be easily modified later, they can be implemented
as follows:

public override MethodFees GetMethodFee(StringValue input)
{

if (input.Value == nameof(Foo1) || input.Value == nameof(Foo2))
{

return new MethodFees
{

MethodName = input.Value,
Fees =
{

new MethodFee
{

BasicFee = 1_00000000,
Symbol = Context.Variables.NativeSymbol

}
}

};
}
if (input.Value == nameof(Bar1) || input.Value == nameof(Bar2))
{

return new MethodFees
{

MethodName = input.Value,

(continues on next page)

458 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

Fees =
{

new MethodFee
{

BasicFee = 2_00000000,
Symbol = Context.Variables.NativeSymbol

}
}

};
}
return new MethodFees();

}

This implementation can modify the transaction fee only by upgrading the contract, without implementing the other
three interfaces.

A more recommended implementation needs to define an MappedState in the State file for the contract:

public MappedState<string, MethodFees> TransactionFees { get; set; }

Modify the TransactionFees data structure in the SetMethodFee method, and return the value in the
GetMethodFee method.

In this solution, the implementation of GetMethodFee is very easy:

public override MethodFees GetMethodFee(StringValue input)
return State.TransactionFees[input.Value];

}

The implementation of SetMethodFee requires the addition of permission management, since contract developers
don’t want the transaction fees of their contract methods to be arbitrarily modified by others.

Referring to the MultiToken contract, it can be implemented as follows:

Firstly, define a SingletonState with type AuthorityInfo(in authority_info.proto)

public SingletonState<AuthorityInfo> MethodFeeController { get; set; }

Then, check the sender’s right by comparing its address with owner.

public override Empty SetMethodFee(MethodFees input)
{

foreach (var symbolToAmount in input.Fees)
{

AssertValidToken(symbolToAmount.Symbol, symbolToAmount.BasicFee);
}
RequiredMethodFeeControllerSet();
Assert(Context.Sender == State.MethodFeeController.Value.OwnerAddress,

→˓"Unauthorized to set method fee.");
State.TransactionFees[input.MethodName] = input;
return new Empty();

}

AssertValidToken checks if the token symbol exists, and the BasicFee is reasonable.

The permission check code is in the lines 8 and 9, and RequiredMethodFeeControllerSet prevents the
permission is not set before.

21.2. ACS1 - Transaction Fee Standard 459

AElf, Release release/1.2.3

If permissions are not set, the SetMethodFee method can only be called by the default address of the Parliament
organization. If a method is sent through this organization, it means that two-thirds of the block producers have agreed
to the proposal.

private void RequiredMethodFeeControllerSet()
{

if (State.MethodFeeController.Value != null) return;
if (State.ParliamentContract.Value == null)
{

State.ParliamentContract.Value = Context.
→˓GetContractAddressByName(SmartContractConstants.ParliamentContractSystemName);

}
var defaultAuthority = new AuthorityInfo();
// Parliament Auth Contract maybe not deployed.
if (State.ParliamentContract.Value != null)
{

defaultAuthority.OwnerAddress = State.ParliamentContract.
→˓GetDefaultOrganizationAddress.Call(new Empty());

defaultAuthority.ContractAddress = State.ParliamentContract.Value;
}
State.MethodFeeController.Value = defaultAuthority;

}

Of course, the authority of SetMethodFee can also be changed, provided that the transaction to modify the authority
is sent from the default address of the Parliament contract:

public override Empty ChangeMethodFeeController(AuthorityInfo input)
{

RequiredMethodFeeControllerSet();
AssertSenderAddressWith(State.MethodFeeController.Value.OwnerAddress);
var organizationExist = CheckOrganizationExist(input);
Assert(organizationExist, "Invalid authority input.");
State.MethodFeeController.Value = input;
return new Empty();

}

The implementation of GetMethodFeeController is also very easy

public override AuthorityInfo GetMethodFeeController(Empty input)
{

RequiredMethodFeeControllerSet();
return State.MethodFeeController.Value;

}

Above all, these are the two ways to implement acs1. Mostly, implementations will use a mixture of the two: part of
methods’ fee is set with a fixed value, the other part of method is not to set method fee.

21.2.4 Test

Create ACS1’s Stub, and call GetMethodFee and GetMethodFeeController to check if the return value is
expected.

21.2.5 Example

All AElf system contracts implement ACS1, which can be used as a reference.

460 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

21.3 ACS2 - Parallel Execution Standard

ACS2 is used to provide information for parallel execution of transactions.

21.3.1 Interface

A contract that inherits ACS2 only needs to implement one method:

Methods

Method
Name

Request
Type

Response
Type

Description

GetResource-
Info

aelf.Transaction acs2.ResourceInfoGets the resource information that the transaction execution
depends on.

Types

acs2.ResourceInfo

Field Type Description Label
write_paths aelf.ScopedStatePath The state path that depends on when writing. repeated
read_paths aelf.ScopedStatePath The state path that depends on when reading. repeated
non_parallelizable bool Whether the transaction is not executed in parallel.

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

21.3. ACS2 - Parallel Execution Standard 461

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

462 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

21.3. ACS2 - Parallel Execution Standard 463

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

464 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

21.3.2 Usage

AElf uses the key-value database to store data. For the data generated during the contract execution, a mechanism
called State Path is used to determine the key of the data.

For example Token contract defines a property,

public MappedState<Address, string, long> Balances { get; set; }

it can be used to access, modify balance.

Assuming that the address of the Token contract is Nmjj7noTpMqZ522j76SDsFLhiKkThv1u3d4TxqJMD8v89tWmE.
If you want to know the balance of the address 2EM5uV6bSJh6xJfZTUa1pZpYsYcCUAdPvZvFUJzMDJEx3rbioz,
you can directly use this key to access redis / ssdb to get its value.

Nmjj7noTpMqZ522j76SDsFLhiKkThv1u3d4TxqJMD8v89tWmE/Balances/
→˓2EM5uV6bSJh6xJfZTUa1pZpYsYcCUAdPvZvFUJzMDJEx3rbioz/ELF

On AElf, the implementation of parallel transaction execution is also based on the key , developers need to provide a
method may access to the StatePath, then the corresponding transactions will be properly grouped before execut-
ing: if the two methods do not access the same StatePath, then you can safely place them in different groups.

Attention: The transaction will be canceled and labeled to “can not be groupped” when the StatePath mismatchs the
method.

If you are interested in the logic, you can view the code ITransactionGrouper, as well as IParallelTransactionExecut-
ingService .

21.3.3 Implementation

Token contract, as an example, the core logic of method Transfer is to modify the balance of address. It accesses
the balances property mentioned above twice.

At this point, we need to notify ITransactionGrouper via the GetResourceInfo method of the key of the
ELF balance of address A and address B:

var args = TransferInput.Parser.ParseFrom(txn.Params);
var resourceInfo = new ResourceInfo
{

Paths =
{

GetPath(nameof(TokenContractState.Balances), txn.From.ToString(), args.
→˓Symbol),

GetPath(nameof(TokenContractState.Balances), args.To.ToString(), args.Symbol),
}

};
return resourceInfo;

The GetPath forms a ScopedStatePath from several pieces of data that make up the key:

private ScopedStatePath GetPath(params string[] parts)
{

return new ScopedStatePath
{

Address = Context.Self,
Path = new StatePath
{

(continues on next page)

21.3. ACS2 - Parallel Execution Standard 465

AElf, Release release/1.2.3

(continued from previous page)

Parts =
{

parts
}

}
}

}

21.3.4 Test

You can construct two transactions, and the transactions are passed directly to an implementation instance of
ITransactionGrouper, and the GroupAsync method is used to see whether the two transactions are paral-
lel.

We prepare two stubs that implement the ACS2 contract with different addresses to simulate the Transfer:

var keyPair1 = SampleECKeyPairs.KeyPairs[0];
var acs2DemoContractStub1 = GetACS2DemoContractStub(keyPair1);
var keyPair2 = SampleECKeyPairs.KeyPairs[1];
var acs2DemoContractStub2 = GetACS2DemoContractStub(keyPair2);

Then take out some services and data needed for testing from Application:

var transactionGrouper = Application.ServiceProvider.GetRequiredService
→˓<ITransactionGrouper>();
var blockchainService = Application.ServiceProvider.GetRequiredService
→˓<IBlockchainService>();
var chain = await blockchainService.GetChainAsync();

Finally, check it via transactionGrouper:

// Situation can be parallel executed.
{

var groupedTransactions = await transactionGrouper.GroupAsync(new ChainContext
{

BlockHash = chain.BestChainHash,
BlockHeight = chain.BestChainHeight

}, new List<Transaction>
{

acs2DemoContractStub1.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[2].PublicKey),
Symbol = "ELF",
Amount = 1

}),
acs2DemoContractStub2.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[3].PublicKey),
Symbol = "ELF",
Amount = 1

}),
});
groupedTransactions.Parallelizables.Count.ShouldBe(2);

}
// Situation cannot.

(continues on next page)

466 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

{
var groupedTransactions = await transactionGrouper.GroupAsync(new ChainContext
{

BlockHash = chain.BestChainHash,
BlockHeight = chain.BestChainHeight

}, new List<Transaction>
{

acs2DemoContractStub1.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[2].PublicKey),
Symbol = "ELF",
Amount = 1

}),
acs2DemoContractStub2.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[2].PublicKey),
Symbol = "ELF",
Amount = 1

}),
});
groupedTransactions.Parallelizables.Count.ShouldBe(1);

}

21.3.5 Example

You can refer to the implementation of the MultiToken contract for GetResourceInfo. Noting that for the
ResourceInfo provided by the method Transfer, you need to consider charging a transaction fee in addition to
the two keys mentioned in this article.

21.4 ACS3 - Contract Proposal Standard

ACS3 is suitable for the case that a method needs to be approved by multiple parties. At this time, you can consider
using some of the interfaces provided by ACS3.

21.4.1 Interface

If you want multiple addresses vote to get agreement to do something, you can implement the following methods
defined in ACS3:

21.4. ACS3 - Contract Proposal Standard 467

AElf, Release release/1.2.3

Methods

Method
Name

Request
Type

Re-
sponse
Type

Description

CreatePro-
posal

acs3.CreateProposalInputaelf.Hash Create a proposal for which organization members can vote. When the
proposal is released, a transaction will be sent to the specified contract.
Return id of the newly created proposal.

Approve aelf.Hash google.protobuf.EmptyApprove a proposal according to the proposal ID.
Reject aelf.Hash google.protobuf.EmptyReject a proposal according to the proposal ID.
Abstain aelf.Hash google.protobuf.EmptyAbstain a proposal according to the proposal ID.
Release aelf.Hash google.protobuf.EmptyRelease a proposal according to the proposal ID and send a transaction

to the specified contract.
ChangeOr-
ganization-
Threshold

acs3.ProposalReleaseThresholdgoogle.protobuf.EmptyChange the thresholds associated with proposals. All fields will be
overwritten by the input value and this will affect all current propos-
als of the organization. Note: only the organization can execute this
through a proposal.

ChangeOr-
ganization-
Proposer-
WhiteList

acs3.ProposerWhiteListgoogle.protobuf.EmptyChange the white list of organization proposer. This method overrides
the list of whitelisted proposers.

CreatePro-
posal-
BySystem-
Contract

acs3.CreateProposalBySystemContractInputaelf.Hash Create a proposal by system contracts, and return id of the newly cre-
ated proposal.

ClearPro-
posal

aelf.Hash google.protobuf.EmptyRemove the specified proposal. If the proposal is in effect, the cleanup
fails.

GetProposal aelf.Hash acs3.ProposalOutputGet the proposal according to the proposal ID.
Validate-
Organiza-
tionExist

aelf.Address google.protobuf.BoolValueCheck the existence of an organization.

Vali-
datePro-
poserIn-
WhiteList

acs3.ValidateProposerInWhiteListInputgoogle.protobuf.BoolValueCheck if the proposer is whitelisted.

Types

acs3.CreateProposalBySystemContractInput

Field Type Description Label
proposal_input CreateProposalInput The parameters of creating proposal.
origin_proposer aelf.Address The actor that trigger the call.

468 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs3.CreateProposalInput

Field Type Description La-
bel

con-
tract_method_name

string The name of the method to call after release.

to_address aelf.Address The address of the contract to call after release.
params bytes The parameter of the method to be called after the release.
expired_time google.protobuf.TimestampThe timestamp at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of the organization.

pro-
posal_description_url

string Url is used for proposal describing.

token aelf.Hash The token is for proposal id generation and with this token, proposal
id can be calculated before proposing.

acs3.OrganizationCreated

Field Type Description Label
organization_address aelf.Address The address of the created organization.

acs3.OrganizationHashAddressPair

Field Type Description Label
organization_hash aelf.Hash The id of organization.
organization_address aelf.Address The address of organization.

acs3.OrganizationThresholdChanged

Field Type Description Label
organization_address aelf.Address The organization address
proposer_release_threshold ProposalReleaseThreshold The new release threshold.

acs3.OrganizationWhiteListChanged

Field Type Description Label
organization_address aelf.Address The organization address.
proposer_white_list ProposerWhiteList The new proposer whitelist.

21.4. ACS3 - Contract Proposal Standard 469

AElf, Release release/1.2.3

acs3.ProposalCreated

Field Type Description Label
proposal_id aelf.Hash The id of the created proposal.
organization_address aelf.Address The organization address of the created proposal.

acs3.ProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The id of the proposal.
con-
tract_method_name

string The method that this proposal will call when being re-
leased.

to_address aelf.Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf.TimestampThe date at which this proposal will expire.
organiza-
tion_address

aelf.Address The address of this proposals organization.

proposer aelf.Address The address of the proposer of this proposal.
to_be_released bool Indicates if this proposal is releasable.
approval_count int64 Approval count for this proposal.
rejection_count int64 Rejection count for this proposal.
abstention_count int64 Abstention count for this proposal.

acs3.ProposalReleaseThreshold

Field Type Description Label
minimal_approval_threshold int64 The value for the minimum approval threshold.
maximal_rejection_threshold int64 The value for the maximal rejection threshold.
maximal_abstention_threshold int64 The value for the maximal abstention threshold.
minimal_vote_threshold int64 The value for the minimal vote threshold.

acs3.ProposalReleased

Field Type Description Label
proposal_id aelf.Hash The id of the released proposal.
organization_address aelf.Address The organization address of the released proposal.

acs3.ProposerWhiteList

Field Type Description Label
proposers aelf.Address The address of the proposers repeated

470 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs3.ReceiptCreated

Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp The timestamp of this method call.
organization_address aelf.Address The address of the organization.

acs3.ValidateProposerInWhiteListInput

Field Type Description Label
proposer aelf.Address The address to search/check.
organization_address aelf.Address The address of the organization.

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

21.4. ACS3 - Contract Proposal Standard 471

AElf, Release release/1.2.3

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

472 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

21.4. ACS3 - Contract Proposal Standard 473

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

21.4.2 Implementation

It is assumed here that there is only one organization in a contract, that is, there is no need to specifically define the
Organization type. Since the organization is not explicitly declared and created, the organization’s proposal whitelist
does not exist. The process here is that the voter must use a certain token to vote.

For simplicity, only the core methods CreateProposal, Approve, Reject, Abstain, and Release are implemented here.

There are only two necessary State attributes:

public MappedState<Hash, ProposalInfo> Proposals { get; set; }
public SingletonState<ProposalReleaseThreshold> ProposalReleaseThreshold { get; set; }

The Proposals stores all proposal’s information, and the ProposalReleaseThreshold is used to save the requirements
that the contract needs to meet to release the proposal.

474 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

When the contract is initialized, the proposal release requirements should be set:

public override Empty Initialize(Empty input)
{

State.TokenContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenContractSystemName);
State.ProposalReleaseThreshold.Value = new ProposalReleaseThreshold
{

MinimalApprovalThreshold = 1,
MinimalVoteThreshold = 1

};
return new Empty();

}

The requirement is at least one member who vote and at least one approval. Create proposal:

public override Hash CreateProposal(CreateProposalInput input)
{

var proposalId = Context.GenerateId(Context.Self, input.Token);
Assert(State.Proposals[proposalId] == null, "Proposal with same token already

→˓exists.");
State.Proposals[proposalId] = new ProposalInfo
{

ProposalId = proposalId,
Proposer = Context.Sender,
ContractMethodName = input.ContractMethodName,
Params = input.Params,
ExpiredTime = input.ExpiredTime,
ToAddress = input.ToAddress,
ProposalDescriptionUrl = input.ProposalDescriptionUrl

};
return proposalId;

}

Vote:

public override Empty Abstain(Hash input)
{

Charge();
var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
proposal.Abstentions.Add(Context.Sender);
State.Proposals[input] = proposal;
return new Empty();

}
public override Empty Approve(Hash input)
{

Charge();
var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
proposal.Approvals.Add(Context.Sender);

(continues on next page)

21.4. ACS3 - Contract Proposal Standard 475

AElf, Release release/1.2.3

(continued from previous page)

State.Proposals[input] = proposal;
return new Empty();

}
public override Empty Reject(Hash input)
{

Charge();
var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
proposal.Rejections.Add(Context.Sender);
State.Proposals[input] = proposal;
return new Empty();

}
private void Charge()
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = Context.Variables.NativeSymbol,
Amount = 1_00000000

});
}

Release is just count the vote, here is a recommended implementation:

public override Empty Release(Hash input)
{

var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
Assert(IsReleaseThresholdReached(proposal), "Didn't reach release threshold.");
Context.SendInline(proposal.ToAddress, proposal.ContractMethodName, proposal.

→˓Params);
return new Empty();

}
private bool IsReleaseThresholdReached(ProposalInfo proposal)
{

var isRejected = IsProposalRejected(proposal);
if (isRejected)

return false;
var isAbstained = IsProposalAbstained(proposal);
return !isAbstained && CheckEnoughVoteAndApprovals(proposal);

}
private bool IsProposalRejected(ProposalInfo proposal)
{

var rejectionMemberCount = proposal.Rejections.Count;
return rejectionMemberCount > State.ProposalReleaseThreshold.Value.

→˓MaximalRejectionThreshold;
}
private bool IsProposalAbstained(ProposalInfo proposal)
{

var abstentionMemberCount = proposal.Abstentions.Count;
(continues on next page)

476 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

return abstentionMemberCount > State.ProposalReleaseThreshold.Value.
→˓MaximalAbstentionThreshold;
}
private bool CheckEnoughVoteAndApprovals(ProposalInfo proposal)
{

var approvedMemberCount = proposal.Approvals.Count;
var isApprovalEnough =

approvedMemberCount >= State.ProposalReleaseThreshold.Value.
→˓MinimalApprovalThreshold;

if (!isApprovalEnough)
return false;

var isVoteThresholdReached =
proposal.Abstentions.Concat(proposal.Approvals).Concat(proposal.Rejections).

→˓Count() >=
State.ProposalReleaseThreshold.Value.MinimalVoteThreshold;

return isVoteThresholdReached;
}

21.4.3 Test

Before testing, two methods were added to a Dapp contract. We will test the proposal with these methods.

Define a singleton string and an organization address state in the State class:

public StringState Slogan { get; set; }
public SingletonState<Address> Organization { get; set; }

A pair of Set/Get methods:

public override StringValue GetSlogan(Empty input)
{

return State.Slogan.Value == null ? new StringValue() : new StringValue {Value =
→˓State.Slogan.Value};
}

public override Empty SetSlogan(StringValue input)
{

Assert(Context.Sender == State.Organization.Value, "No permission.");
State.Slogan.Value = input.Value;
return new Empty();

}

In this way, during the test, create a proposal for the SetSlogan. After passing and releasing, use the GetSlogan method
to check whether the Slogan has been modified.

Prepare a Stub that implements the ACS3 contract:

var keyPair = SampleECKeyPairs.KeyPairs[0];
var acs3DemoContractStub =

GetTester<ACS3DemoContractContainer.ACS3DemoContractStub>(DAppContractAddress,
→˓keyPair);

Since approval requires the contract to charge users, the user should send Approve transaction of the Token contract.

21.4. ACS3 - Contract Proposal Standard 477

AElf, Release release/1.2.3

var tokenContractStub =
GetTester<TokenContractContainer.TokenContractStub>(

GetAddress(TokenSmartContractAddressNameProvider.StringName), keyPair);
await tokenContractStub.Approve.SendAsync(new ApproveInput
{

Spender = DAppContractAddress,
Symbol = "ELF",
Amount = long.MaxValue

});

Create a proposal, the target method is SetSlogan, here we want to change the Slogan to “AElf” :

var proposalId = (await acs3DemoContractStub.CreateProposal.SendAsync(new
→˓CreateProposalInput
{

OrganizationAddress = OrganizationAddress
ContractMethodName = nameof(acs3DemoContractStub.SetSlogan),
ToAddress = DAppContractAddress,
ExpiredTime = TimestampHelper.GetUtcNow().AddHours(1),
Params = new StringValue {Value = "AElf"}.ToByteString(),
Token = HashHelper.ComputeFrom("AElf")

})).Output;

Make sure that the Slogan is still an empty string at this time and then vote:

// Check slogan
{

var slogan = await acs3DemoContractStub.GetSlogan.CallAsync(new Empty());
slogan.Value.ShouldBeEmpty();

}
await acs3DemoContractStub.Approve.SendAsync(proposalId);

Release proposal, and the Slogan becomes “AElf”.

await acs3DemoContractStub.Release.SendAsync(proposalId);
// Check slogan
{

var slogan = await acs3DemoContractStub.GetSlogan.CallAsync(new Empty());
slogan.Value.ShouldBe("AElf");

}

21.5 ACS4 - Consensus Standard

ACS4 is used to customize consensus mechanisms.

21.5.1 Interface

If you want to customize the consensus mechanism, you need to implement the following five interfaces:

478 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

Methods

Method
Name

Request
Type

Re-
sponse
Type

Description

GetConsen-
susCom-
mand

google.protobuf.BytesValueacs4.ConsensusCommandGenerate a consensus command based on the consensus contract state
and the input public key.

GetConsen-
susExtra-
Data

google.protobuf.BytesValuegoogle.protobuf.BytesValueGenerate consensus extra data when a block is generated.

Generate-
Consensus-
Transactions

google.protobuf.BytesValueacs4.TransactionListGenerate consensus system transactions when a block is generated. Each
block will contain only one consensus transaction, which is used to write
the latest consensus information to the State database.

Validate-
Consensus-
BeforeExe-
cution

google.protobuf.BytesValueacs4.ValidationResultBefore executing the block, verify that the consensus information in the
block header is correct.

Validate-
Consen-
susAfterEx-
ecution

google.protobuf.BytesValueacs4.ValidationResultAfter executing the block, verify that the state information written to the
consensus is correct.

Types

acs4.ConsensusCommand

Field Type Description La-
bel

limit_milliseconds_of_mining_blockint32 Time limit of mining next block.
hint bytes Context of Hint is diverse according to the consensus pro-

tocol we choose, so we use bytes.
arranged_mining_time google.protobuf.TimestampThe time of arrange mining.
mining_due_time google.protobuf.TimestampThe expiration time of mining.

acs4.TransactionList

Field Type Description Label
transactions aelf.Transaction Consensus system transactions. repeated

acs4.ValidationResult

Field Type Description Label
success bool Is successful.
message string The error message.
is_re_trigger bool Whether to trigger mining again.

21.5. ACS4 - Consensus Standard 479

AElf, Release release/1.2.3

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

480 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

21.5. ACS4 - Consensus Standard 481

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

482 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

21.5.2 Usage

The five interfaces defined in ACS4 basically correspond to the five methods of the IConsensusService interface
in the AElf.Kernel.Consensus project:

21.5. ACS4 - Consensus Standard 483

AElf, Release release/1.2.3

ACS4 IConsensusService Methodology The Timing To Call
GetConsensusCommand Task TriggerConsen-

susAsync
(ChainContext chainCon-
text);

When TriggerConsen-
susAsync is called,
it will use the account
configured by
the node to call the Get-
ConsensusCommand
method of the consensus
contract
to obtain block informa-
tion
ConsensusCommand),
and use it to
(see IConsensusScheduler
implementation)
.

1. When the node is
started;

2. When the
BestChainFound-

EventData event is
thrown;

3. When the validation
of consensus

data fails and the consen-
sus needs
to be triggered again (The
IsReTrigger field of the
ValidationResult type is
true);

GetConsensus-
ExtraData

Task<byte[]> GetConsen-
sus
ExtraDataAsync(ChainContext
chainContext);

When a node produces a
block, it will
generate block header in-
formation for
the new block by IBlock-
ExtraDataService.
This service is imple-
mented to traverse
all IBlockExtraDat-
aProvider
implementations, and they
generate
binary array information
into the
ExtraData field of Block-
Header. The
consensus block header
information is
provided by Consensu-
sExtraDataProvider,
in which the GetConsen-
susExtraDataAsync
of the IConsensusService
in the
consensus contract is
called, and the
GetConsensusExtraDataAsync
method is
implemented by calling
the
GetConsensusExtraData
in the consensus
contract.

At the time that the node
produces
a new block.

GenerateConsensus-
Transactions

Task<List<Transaction>>
GenerateConsensus-
TransactionsAsync(
ChainContext chainCon-
text);

In the process of generat-
ing new blocks,
a consensus transaction
needs to be
generated as one of the
system
transactions. The basic
principle is the
same as GetConsensusEx-
traData.

At the time that the node
produces
a new block.

ValidateConsensus-
BeforeExecution

Task<bool> ValidateCon-
sensus
BeforeExecutionAsync(
chainContext, byte[]
consensusExtraData);

As long as the IBlockVal-
idationProvider
interface is implemented,
a new block
validator can be added.
The consensus
validator is Consensus-
ValidationProvider
, where ValidateBlockBe-
foreExecuteAsync
is implemented by calling
the
ValidateConsensusBeforeExecution
method
of the consensus contract.

At the time that the node
produces
a new block.

ValidateConsensus-
AfterExecution

Task<bool> ValidateCon-
sensus
AfterExecutionAsync
(ChainContext chainCon-
text,
byte[] consensusExtra-
Data);

The implementation of
ValidateBlockAfterExecuteAsync
in
ConsensusValidationProvider
is to call
the ValidateConsen-
susAfterExecution
in the consensus contract.

At the time that the node
produces
a new block.

484 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

21.5.3 Example

You can refer to the implementation of the AEDPoS contract.

21.6 ACS5 - Contract Threshold Standard

If you want to raise the threshold for using contract, consider implementing ACS5.

21.6.1 Interface

To limit to call a method in a contract, you only need to implement the following five interfaces:

Methods

Method Name Request Type Response Type Description
SetMethodCallingTh-
reshold

acs5.SetMethodCallingThresholdInputgoogle.protobuf.Empty Set the threshold for method
calling.

GetMethodCallingTh-
reshold

google.protobuf.StringValue acs5.MethodCallingThresholdGet the threshold for method
calling.

Types

acs5.MethodCallingThreshold

Field Type Description Label
sym-
bol_to_amount

MethodCallingThresh-
old.SymbolToAmountEntry

The threshold for method calling, token sym-
bol -> amount.

re-
peated

thresh-
old_check_type

ThresholdCheckType The type of threshold check.

acs5.MethodCallingThreshold.SymbolToAmountEntry

Field Type Description Label
key string
value int64

21.6. ACS5 - Contract Threshold Standard 485

AElf, Release release/1.2.3

acs5.SetMethodCallingThresholdInput

Field Type Description La-
bel

method string The method name to check.
sym-
bol_to_amount

SetMethodCallingThresholdIn-
put.SymbolToAmountEntry

The threshold for method calling, token
symbol -> amount.

re-
peated

thresh-
old_check_type

ThresholdCheckType The type of threshold check.

acs5.SetMethodCallingThresholdInput.SymbolToAmountEntry

Field Type Description Label
key string
value int64

acs5.ThresholdCheckType

Name Number Description
BALANCE 0 Check balance only.
ALLOWANCE 1 Check balance and allowance at the same time.

21.6.2 Usage

Similar to ACS1, which uses an automatically generated pre-plugin transaction called ChargeTransactionFees
to charge a transaction fee, ACS5 automatically generates a pre-plugin transaction called CheckThreshold to test
whether the account that sent the transaction can invoke the corresponding method.

The implementation of CheckThreshold:

public override Empty CheckThreshold(CheckThresholdInput input)
{

var meetThreshold = false;
var meetBalanceSymbolList = new List<string>();
foreach (var symbolToThreshold in input.SymbolToThreshold)
{

if (GetBalance(input.Sender, symbolToThreshold.Key) < symbolToThreshold.Value)
continue;

meetBalanceSymbolList.Add(symbolToThreshold.Key);
}
if (meetBalanceSymbolList.Count > 0)
{

if (input.IsCheckAllowance)
{

foreach (var symbol in meetBalanceSymbolList)
{

if (State.Allowances[input.Sender][Context.Sender][symbol] <
input.SymbolToThreshold[symbol]) continue;

meetThreshold = true;

(continues on next page)

486 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

break;
}

}
else
{

meetThreshold = true;
}

}
if (input.SymbolToThreshold.Count == 0)
{

meetThreshold = true;
}
Assert(meetThreshold, "Cannot meet the calling threshold.");
return new Empty();

}

In other words, if the token balance of the sender of the transaction or the amount authorized for the target contract does
not reach the set limit, the pre-plugin transaction will throw an exception, thereby it prevents the original transaction
from executing.

21.6.3 Implementation

Just lik the GetMethodFee of ACS1, you can implement only one GetMethodCallingThreshold method.

It can also be achieved by using MappedState<string, MethodCallingThreshold> in the State class:

public MappedState<string, MethodCallingThreshold> MethodCallingThresholds { get; set;
→˓ }

But at the same time, do not forget to configure the call permission of SetMethodCallingThreshold, which
requires the definition of an Admin in the State (of course, you can also use ACS3):

public SingletonState<Address> Admin { get; set; }

The easiest implementation

public override Empty SetMethodCallingThreshold(SetMethodCallingThresholdInput input)
{

Assert(State.Admin.Value == Context.Sender, "No permission.");
State.MethodCallingThresholds[input.Method] = new MethodCallingThreshold
{

SymbolToAmount = {input.SymbolToAmount}
};
return new Empty();

}

public override MethodCallingThreshold GetMethodCallingThreshold(StringValue input)
{

return State.MethodCallingThresholds[input.Value];
}

public override Empty Foo(Empty input)
{

return new Empty();
}

(continues on next page)

21.6. ACS5 - Contract Threshold Standard 487

AElf, Release release/1.2.3

(continued from previous page)

message SetMethodCallingThresholdInput {
string method = 1;
map<string, int64> symbol_to_amount = 2;// The order matters.
ThresholdCheckType threshold_check_type = 3;

}

21.6.4 Test

You can test the Foo method defined above.

Make a Stub:

var keyPair = SampleECKeyPairs.KeyPairs[0];
var acs5DemoContractStub =

GetTester<ACS5DemoContractContainer.ACS5DemoContractStub>(DAppContractAddress,
→˓keyPair);

Before setting the threshold, check the current threshold, which should be 0:

var methodResult = await acs5DemoContractStub.GetMethodCallingThreshold.CallAsync(
new StringValue
{

Value = nameof(acs5DemoContractStub.Foo)
});

methodResult.SymbolToAmount.Count.ShouldBe(0);

The ELF balance of the caller of Foo should be greater than 1 ELF:

await acs5DemoContractStub.SetMethodCallingThreshold.SendAsync(
new SetMethodCallingThresholdInput
{

Method = nameof(acs5DemoContractStub.Foo),
SymbolToAmount =
{

{"ELF", 1_0000_0000}
},
ThresholdCheckType = ThresholdCheckType.Balance

});

Check the threshold again:

methodResult = await acs5DemoContractStub.GetMethodCallingThreshold.CallAsync(
new StringValue
{

Value = nameof(acs5DemoContractStub.Foo)
});

methodResult.SymbolToAmount.Count.ShouldBe(1);
methodResult.ThresholdCheckType.ShouldBe(ThresholdCheckType.Balance);

Send the Foo transaction via an account who has sufficient balance can succeed:

// Call with enough balance.
{

var executionResult = await acs5DemoContractStub.Foo.SendAsync(new Empty());

(continues on next page)

488 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

executionResult.TransactionResult.Status.ShouldBe(TransactionResultStatus.Mined);
}

Send the Foo transaction via another account without ELF fails:

// Call without enough balance.
{

var poorStub =
GetTester<ACS5DemoContractContainer.ACS5DemoContractStub>(DAppContractAddress,

SampleECKeyPairs.KeyPairs[1]);
var executionResult = await poorStub.Foo.SendWithExceptionAsync(new Empty());
executionResult.TransactionResult.Error.ShouldContain("Cannot meet the calling

→˓threshold.");
}

21.7 ACS6 - Random Number Provider Standard

If your contract is about to generate a random number, you can consider using acs6.

21.7.1 Interface

To provider a random number according to certain input, you only need to implement one interface:

Methods

Method
Name

Request Type Response Type Description

GetRandom-
Bytes

google.protobuf.BytesValuegoogle.protobuf.BytesValueGet the random number provided by this
contract.

21.7.2 Usage

All you need is to override this method to return a random number according to the given input. You can decide the
certain logic of generating random number yourself, just remember to return a BytesValue type, thus the caller can
deserialize the output himself.

21.7.3 Implementation

The easiest implementation

public override BytesValue GetRandomBytes(BytesValue input)
{

var serializedInput = new GetRandomBytesInput();
serializedInput.MergeFrom(input.Value);
var value = new Hash();
value.MergeFrom(serializedInput.Value);
var randomHashFromContext = Context.GetRandomHash(value);

(continues on next page)

21.7. ACS6 - Random Number Provider Standard 489

AElf, Release release/1.2.3

(continued from previous page)

return new BytesValue
{

Value = serializedInput.Kind == 1
? new BytesValue {Value = randomHashFromContext.Value}.ToByteString()
: new Int64Value {Value = Context.

→˓ConvertHashToInt64(randomHashFromContext, 1, 10000)}.ToByteString()
};

}

21.8 ACS7 - Contract CrossChain Standard

ACS7 is for cross chain related contract implementation.

21.8.1 Interface

This involves methods for chain creation and indexing:

490 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

Methods

Method Name Request Type Response
Type

Description

ProposeCrossChain-
Indexing

acs7.CrossChainBlockDatagoogle.protobuf.EmptyPropose once cross chain indexing.

ReleaseCrossChain-
IndexingProposal

acs7.ReleaseCrossChainIndexingProposalInputgoogle.protobuf.EmptyRelease the proposed indexing if already approved.

RequestSideChain-
Creation

acs7.SideChainCreationRequestgoogle.protobuf.EmptyRequest side chain creation.

ReleaseSideChain-
Creation

acs7.ReleaseSideChainCreationInputgoogle.protobuf.EmptyRelease the side chain creation request if al-
ready approved and it will call the method Cre-
ateSideChain.

CreateSideChain acs7.CreateSideChainInputgoogle.protobuf.Int32ValueCreate the side chain and returns the newly created
side chain ID. Only SideChainLifetimeController is
permitted to invoke this method.

Recharge acs7.RechargeInput google.protobuf.EmptyRecharge for the specified side chain.
DisposeSideChain google.protobuf.Int32Valuegoogle.protobuf.Int32ValueDispose a side chain according to side chain id.

Only SideChainLifetimeController is permitted to
invoke this method.

AdjustIndex-
ingFeePrice

acs7.AdjustIndexingFeeInputgoogle.protobuf.EmptyAdjust side chain indexing fee. Only In-
dexingFeeController is permitted to invoke this
method.

VerifyTransaction acs7.VerifyTransactionInputgoogle.protobuf.BoolValueVerify cross chain transaction.
Get-
SideChainIdAnd-
Height

google.protobuf.Emptyacs7.ChainIdAndHeightDictGets all the side chain id and height of the current
chain.

GetSideChainIn-
dexingInformation-
List

google.protobuf.Emptyacs7.SideChainIndexingInformationListGet indexing information of side chains.

GetAllChainsI-
dAndHeight

google.protobuf.Emptyacs7.ChainIdAndHeightDictGet id and recorded height of all chains.

GetIndexed-
SideChainBlock-
DataByHeight

google.protobuf.Int64Valueacs7.IndexedSideChainBlockDataGet block data of indexed side chain according to
height.

GetBoundPar-
entChainHeigh-
tAndMerklePathBy-
Height

google.protobuf.Int64Valueacs7.CrossChainMerkleProofContextGet merkle path bound up with side chain according
to height.

GetChainInitializa-
tionData

google.protobuf.Int32Valueacs7.ChainInitializationDataGet initialization data for specified side chain.

Types

acs7.AdjustIndexingFeeInput

Field Type Description Label
side_chain_id int32 The side chain id to adjust.
indexing_fee int64 The new price of indexing fee.

21.8. ACS7 - Contract CrossChain Standard 491

AElf, Release release/1.2.3

acs7.ChainIdAndHeightDict

Field Type Description La-
bel

id_height_dictChainIdAndHeight-
Dict.IdHeightDictEntry

A collection of chain ids and heights, where the key is the
chain id and the value is the height.

re-
peated

acs7.ChainIdAndHeightDict.IdHeightDictEntry

Field Type Description Label
key int32
value int64

acs7.ChainInitializationConsensusInfo

Field Type Description Label
initial_consensus_data bytes Initial consensus data.

acs7.ChainInitializationData

Field Type Description La-
bel

chain_id int32 The id of side chain.
creator aelf.Address The side chain creator.
creation_timestamp google.protobuf.TimestampThe timestamp for side chain creation.
cre-
ation_height_on_parent_chain

int64 The height of side chain creation on parent chain.

chain_creator_privilege_preservedbool Creator privilege boolean flag: True if chain creator
privilege preserved, otherwise false.

par-
ent_chain_token_contract_address

aelf.Address Parent chain token contract address.

chain_initialization_consensus_infoChainInitialization-
ConsensusInfo

Initial consensus information.

native_token_info_data bytes The native token info.
resource_token_info ResourceTokenInfo The resource token information.
chain_primary_token_info ChainPrimaryToken-

Info
The chain primary token information.

acs7.ChainPrimaryTokenInfo

Field Type Description Label
chain_primary_token_data bytes The side chain primary token data.
side_chain_token_initial_issue_listSideChainTokenIni-

tialIssue
The side chain primary token initial issue
list.

re-
peated

492 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs7.CreateSideChainInput

Field Type Description La-
bel

side_chain_creation_request SideChainCreationRe-
quest

The request information of the side chain cre-
ation.

proposer aelf.Address The proposer of the side chain creation.

acs7.CrossChainBlockData

Field Type Description Label
side_chain_block_data_list SideChainBlockData The side chain block data list to index. repeated
parent_chain_block_data_list ParentChainBlockData The parent chain block data list to index. repeated

acs7.CrossChainExtraData

Field Type Description La-
bel

transac-
tion_status_merkle_tree_root

aelf.Hash Merkle tree root of side chain block transaction status
root.

acs7.CrossChainIndexingDataProposedEvent

Field Type Description Label
proposed_cross_chain_data CrossChainBlockData Proposed cross chain data to be indexed.
proposal_id aelf.Hash The proposal id.

acs7.CrossChainMerkleProofContext

Field Type Description La-
bel

bound_parent_chain_height int64 The height of parent chain bound up with side chain.
merkle_path_from_parent_chain aelf.MerklePath The merkle path generated from parent chain.

acs7.IndexedParentChainBlockData

Field Type Description Label
local_chain_height int64 The height of the local chain when indexing the par-

ent chain.
par-
ent_chain_block_data_list

ParentChainBlock-
Data

Parent chain block data. re-
peated

21.8. ACS7 - Contract CrossChain Standard 493

AElf, Release release/1.2.3

acs7.IndexedSideChainBlockData

Field Type Description Label
side_chain_block_data_list SideChainBlockData Side chain block data. repeated

acs7.ParentChainBlockData

Field Type Description La-
bel

height int64 The height of parent chain.
cross_chain_extra_data CrossChainExtraData The merkle tree root computing from side chain

roots.
chain_id int32 The parent chain id.
transac-
tion_status_merkle_tree_root

aelf.Hash The merkle tree root computing from transac-
tions status in parent chain block.

indexed_merkle_path ParentChainBlock-
Data.IndexedMerklePathEntry

Indexed block height from side chain and
merkle path for this side chain block

re-
peated

extra_data ParentChainBlock-
Data.ExtraDataEntry

Extra data map. re-
peated

acs7.ParentChainBlockData.ExtraDataEntry

Field Type Description Label
key string
value bytes

acs7.ParentChainBlockData.IndexedMerklePathEntry

Field Type Description Label
key int64
value aelf.MerklePath

acs7.RechargeInput

Field Type Description Label
chain_id int32 The chain id to recharge.
amount int64 The amount to recharge.

acs7.ReleaseCrossChainIndexingProposalInput

Field Type Description Label
chain_id_list int32 List of chain ids to release. repeated

494 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs7.ReleaseSideChainCreationInput

Field Type Description Label
proposal_id aelf.Hash The proposal id of side chain creation.

acs7.ResourceTokenInfo

Field Type Description Label
re-
source_token_list_data

bytes The resource token informa-
tion.

ini-
tial_resource_amount

ResourceToken-
Info.InitialResourceAmountEntry

The initial resource token
amount.

re-
peated

acs7.ResourceTokenInfo.InitialResourceAmountEntry

Field Type Description Label
key string
value int32

acs7.SideChainBlockData

Field Type Description La-
bel

height int64 The height of side chain block.
block_header_hash aelf.Hash The hash of side chain block.
transac-
tion_status_merkle_tree_root

aelf.Hash The merkle tree root computing from transactions status in side
chain block.

chain_id int32 The id of side chain.

acs7.SideChainBlockDataIndexed

21.8. ACS7 - Contract CrossChain Standard 495

AElf, Release release/1.2.3

acs7.SideChainCreationRequest

Field Type Description La-
bel

indexing_price int64 The cross chain indexing price.
locked_token_amount int64 Initial locked balance for a new side chain.
is_privilege_preservedbool Creator privilege boolean flag: True if chain cre-

ator privilege preserved, otherwise false.
side_chain_token_creation_requestSideChainTokenCreationRe-

quest
Side chain token information.

side_chain_token_initial_issue_listSideChainTokenInitialIssue A list of accounts and amounts that will be issued
when the chain starts.

re-
peated

ini-
tial_resource_amount

SideChainCreationRe-
quest.InitialResourceAmountEntry

The initial rent resources. re-
peated

acs7.SideChainCreationRequest.InitialResourceAmountEntry

Field Type Description Label
key string
value int32

acs7.SideChainIndexingInformation

Field Type Description Label
chain_id int32 The side chain id.
indexed_height int64 The indexed height.

acs7.SideChainIndexingInformationList

Field Type Description Label
index-
ing_information_list

SideChainIndexingInfor-
mation

A list contains indexing information of side
chains.

re-
peated

acs7.SideChainTokenCreationRequest

Field Type Description Label
side_chain_token_symbol string Token symbol of the side chain to be created
side_chain_token_name string Token name of the side chain to be created
side_chain_token_total_supply int64 Token total supply of the side chain to be created
side_chain_token_decimals int32 Token decimals of the side chain to be created

496 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs7.SideChainTokenInitialIssue

Field Type Description Label
address aelf.Address The account that will be issued.
amount int64 The amount that will be issued.

acs7.VerifyTransactionInput

Field Type Description Label
transaction_id aelf.Hash The cross chain transaction id to verify.
path aelf.MerklePath The merkle path of the transaction.
parent_chain_height int64 The height of parent chain that indexing this transaction.
verified_chain_id int32 The chain if to verify.

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

21.8. ACS7 - Contract CrossChain Standard 497

AElf, Release release/1.2.3

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

498 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

21.8. ACS7 - Contract CrossChain Standard 499

AElf, Release release/1.2.3

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

21.8.2 Example

ACS7 declares methods for the scenes about cross chain. AElf provides the implementation for ACS7,
CrossChainContract. You can refer to the implementation of the Cross chain contract api.

21.9 ACS8 - Transaction Resource Token Fee Standard

ACS8 has some similarities to ACS1, both of them are charge transaction fee standard.

The difference is that ACS1 charges the user a transaction fee, ACS8 charges the called contract, and the transaction
fee charged by ACS8 is the specified four tokens: WRITE, READ, NET, TRAFFIC.

In another word, if a contract declares that it inherits from ACS8, each transaction in this contract will charge four
kinds of resource token.

500 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

21.9.1 Interface

Only one method is defined in the acs8.proto file:

Methods

Method
Name

Request
Type

Re-
sponse
Type

Description

BuyRe-
source-
Token

acs8.BuyResourceTokenInputgoogle.protobuf.EmptyBuy one of the four resource coins, which consumes the ELF balance in the
contract account (you can recharge it yourself, or you can collect the user’s
ELF tokens as a profit to be self-sufficient).

Types

acs8.BuyResourceTokenInput

Field Type Description La-
bel

symbol string The symbol token you want to buy.
amount int64 The amount you want to buy.
pay_limit int64 Limit of cost. If the token required for buy exceeds this value, the buy will be abandoned.

And 0 is no limit.

21.9.2 Usage

The contract inherited from ACS1 uses a pre-plugin transaction called ChargeTransactionFees for charging
transaction fee.

Because the specific charge amount is determined by the actual consumption of the transaction, the post-plugin gener-
ates ChargeResourceToken transaction to charge resource token.

The implementation of ChargeResourceToken is also similar to it of ChargeTransactionFees:

public override Empty ChargeResourceToken(ChargeResourceTokenInput input)
{

Context.LogDebug(() => string.Format("Start executing ChargeResourceToken.{0}",
→˓input));

if (input.Equals(new ChargeResourceTokenInput()))
{

return new Empty();
}
var bill = new TransactionFeeBill();
foreach (var pair in input.CostDic)
{

Context.LogDebug(() => string.Format("Charging {0} {1} tokens.", pair.Value,
→˓pair.Key));

var existingBalance = GetBalance(Context.Sender, pair.Key);
Assert(existingBalance >= pair.Value,

string.Format("Insufficient resource of {0}. Need balance: {1}; Current
→˓balance: {2}.", pair.Key, pair.Value, existingBalance));

(continues on next page)

21.9. ACS8 - Transaction Resource Token Fee Standard 501

AElf, Release release/1.2.3

(continued from previous page)

bill.FeesMap.Add(pair.Key, pair.Value);
}
foreach (var pair in bill.FeesMap)
{

Context.Fire(new ResourceTokenCharged
{

Symbol = pair.Key,
Amount = pair.Value,
ContractAddress = Context.Sender

});
if (pair.Value == 0)
{

Context.LogDebug(() => string.Format("Maybe incorrect charged resource
→˓fee of {0}: it's 0.", pair.Key));

}
}
return new Empty();

}

The amount of each resource token should be calculated by AElf.Kernel.FeeCalculation. In detail, A data
structure named CalculateFeeCoefficients is defined in token_contract.proto, whose function is to save
all coefficients of a polynomial, and every three coefficients are a group, such as a, b, c, which means (b / c) *
x ^ a. Each resource token has a polynomial that calculates it. Then according to the polynomial and the actual
consumption of the resource, calculate the cost of the resource token. Finally, the cost is used as the parameter of
ChargeResourceToken to generate this post-plugin transaction.

In addition, the method of the contract that has been owed cannot be executed before the contract top up resource
token. As a result, a pre-plugin transaction is added, similar to the ACS5 pre-plugin transaction, which checks the
contract’s resource token balance, and the transaction’s method name is CheckResourceToken :

public override Empty CheckResourceToken(Empty input)
{

foreach (var symbol in Context.Variables.GetStringArray(TokenContractConstants.
→˓PayTxFeeSymbolListName))

{
var balance = GetBalance(Context.Sender, symbol);
var owningBalance = State.OwningResourceToken[Context.Sender][symbol];
Assert(balance > owningBalance,

string.Format("Contract balance of {0} token is not enough. Owning {1}.",
→˓symbol, owningBalance));

}
return new Empty();

}

21.10 ACS9 - Contract profit dividend standard

On the AElf’s side chain, the contract needs to declare where its profits are going, and implement ACS9.

21.10.1 Interface

ACS9 contains an method which does not have to be implemented:

502 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

Methods

Method
Name

Request Type Response
Type

Description

TakeCon-
tractProfits

acs9.TakeContractProfitsInputgoogle.protobuf.EmptyUsed for the developer to collect the profits from the contract
and the profits will be distributed in this method.

GetProfit-
Config

google.protobuf.Emptyacs9.ProfitConfigQuery the config of profit.

GetProfit-
sAmount

google.protobuf.Emptyacs9.ProfitsMapQuery the profits of the contract so far.

Types

acs9.ProfitConfig

Field Type Description La-
bel

dona-
tion_parts_per_hundred

int32 The portion of the profit that will be donated to the dividend pool each time
the developer receives the profit.

prof-
its_token_symbol_list

string The profit token symbol list. re-
peated

stak-
ing_token_symbol

string The token symbol that the user can lock them to claim the profit.

acs9.ProfitsMap

Field Type Description Label
value ProfitsMap.ValueEntry The profits, token symbol -> amount. repeated

acs9.ProfitsMap.ValueEntry

Field Type Description Label
key string
value int64

acs9.TakeContractProfitsInput

Field Type Description Label
symbol string The token symbol to take.
amount int64 The amount to take.

21.10. ACS9 - Contract profit dividend standard 503

AElf, Release release/1.2.3

21.10.2 Implementation

Here we define a contract. The contract creates a token called APP at the time of initialization and uses the
TokenHolder contract to create a token holder bonus scheme with the lock token is designated to APP.

The user will be given 10 APP when to sign up.

Users can purchase 1 APP with 1 ELF using method Deposit, and they can redeem the ELF using the method Withdraw.

When the user sends the Use transaction, the APP token is consumed.

Contract initialization is as follows:

public override Empty Initialize(InitializeInput input)
{

State.TokenHolderContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenHolderContractSystemName);
State.TokenContract.Value =

Context.GetContractAddressByName(SmartContractConstants.
→˓TokenContractSystemName);

State.DividendPoolContract.Value =
Context.GetContractAddressByName(input.DividendPoolContractName.Value.

→˓ToBase64());
State.Symbol.Value = input.Symbol == string.Empty ? "APP" : input.Symbol;
State.ProfitReceiver.Value = input.ProfitReceiver;
CreateToken(input.ProfitReceiver);
// To test TokenHolder Contract.
CreateTokenHolderProfitScheme();
// To test ACS9 workflow.
SetProfitConfig();
State.ProfitReceiver.Value = input.ProfitReceiver;
return new Empty();

}
private void CreateToken(Address profitReceiver, bool isLockWhiteListIncludingSelf =
→˓false)
{

var lockWhiteList = new List<Address>
{Context.GetContractAddressByName(SmartContractConstants.

→˓TokenHolderContractSystemName)};
if (isLockWhiteListIncludingSelf)

lockWhiteList.Add(Context.Self);
State.TokenContract.Create.Send(new CreateInput
{

Symbol = State.Symbol.Value,
TokenName = "DApp Token",
Decimals = ACS9DemoContractConstants.Decimal,
Issuer = Context.Self,
IsBurnable = true,
IsProfitable = true,
TotalSupply = ACS9DemoContractConstants.TotalSupply,
LockWhiteList =
{

lockWhiteList
}

});
State.TokenContract.Issue.Send(new IssueInput
{

To = profitReceiver,

(continues on next page)

504 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

Amount = ACS9DemoContractConstants.TotalSupply / 5,
Symbol = State.Symbol.Value,
Memo = "Issue token for profit receiver"

});
}
private void CreateTokenHolderProfitScheme()
{

State.TokenHolderContract.CreateScheme.Send(new CreateTokenHolderProfitSchemeInput
{

Symbol = State.Symbol.Value
});

}
private void SetProfitConfig()
{

State.ProfitConfig.Value = new ProfitConfig
{

DonationPartsPerHundred = 1,
StakingTokenSymbol = "APP",
ProfitsTokenSymbolList = {"ELF"}

};
}

The State.symbol is a singleton of type string, state.Profitconfig is a singleton of type ProfitConfig, and
state.profitreceiver is a singleton of type Address.

The user can use the SighUp method to register and get the bonus. Besides, it will create a archive for him:

/// <summary>
/// When user sign up, give him 10 APP tokens, then initialize his profile.
/// </summary>
/// <param name="input"></param>
/// <returns></returns>
public override Empty SignUp(Empty input)
{

Assert(State.Profiles[Context.Sender] == null, "Already registered.");
var profile = new Profile
{

UserAddress = Context.Sender
};
State.TokenContract.Issue.Send(new IssueInput
{

Symbol = State.Symbol.Value,
Amount = ACS9DemoContractConstants.ForNewUser,
To = Context.Sender

});
// Update profile.
profile.Records.Add(new Record
{

Type = RecordType.SignUp,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} +{1}",State.Symbol.Value,

→˓ACS9DemoContractConstants.ForNewUser)
});
State.Profiles[Context.Sender] = profile;
return new Empty();

}

Recharge and redemption:

21.10. ACS9 - Contract profit dividend standard 505

AElf, Release release/1.2.3

public override Empty Deposit(DepositInput input)
{

// User Address -> DApp Contract.
State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = "ELF",
Amount = input.Amount

});
State.TokenContract.Issue.Send(new IssueInput
{

Symbol = State.Symbol.Value,
Amount = input.Amount,
To = Context.Sender

});
// Update profile.
var profile = State.Profiles[Context.Sender];
profile.Records.Add(new Record
{

Type = RecordType.Deposit,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} +{1}", State.Symbol.Value, input.Amount)

});
State.Profiles[Context.Sender] = profile;
return new Empty();

}
public override Empty Withdraw(WithdrawInput input)
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = State.Symbol.Value,
Amount = input.Amount

});
State.TokenContract.Transfer.Send(new TransferInput
{

To = Context.Sender,
Symbol = input.Symbol,
Amount = input.Amount

});
State.TokenHolderContract.RemoveBeneficiary.Send(new

→˓RemoveTokenHolderBeneficiaryInput
{

Beneficiary = Context.Sender,
Amount = input.Amount

});
// Update profile.
var profile = State.Profiles[Context.Sender];
profile.Records.Add(new Record
{

Type = RecordType.Withdraw,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} -{1}", State.Symbol.Value, input.Amount)

});
State.Profiles[Context.Sender] = profile;

(continues on next page)

506 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

return new Empty();
}

In the implementation of Use, 1/3 profits are directly transferred into the token holder dividend scheme:

public override Empty Use(Record input)
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = State.Symbol.Value,
Amount = ACS9DemoContractConstants.UseFee

});
if (input.Symbol == string.Empty)

input.Symbol = State.TokenContract.GetPrimaryTokenSymbol.Call(new Empty()).
→˓Value;

var contributeAmount = ACS9DemoContractConstants.UseFee.Div(3);
State.TokenContract.Approve.Send(new ApproveInput
{

Spender = State.TokenHolderContract.Value,
Symbol = input.Symbol,
Amount = contributeAmount

});
// Contribute 1/3 profits (ELF) to profit scheme.
State.TokenHolderContract.ContributeProfits.Send(new ContributeProfitsInput
{

SchemeManager = Context.Self,
Amount = contributeAmount,
Symbol = input.Symbol

});
// Update profile.
var profile = State.Profiles[Context.Sender];
profile.Records.Add(new Record
{

Type = RecordType.Withdraw,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} -{1}", State.Symbol.Value,

→˓ACS9DemoContractConstants.UseFee),
Symbol = input.Symbol

});
State.Profiles[Context.Sender] = profile;
return new Empty();

}

The implementation of this contract has been completed. Next, implement ACS9 to perfect the profit distribution:

public override Empty TakeContractProfits(TakeContractProfitsInput input)
{

var config = State.ProfitConfig.Value;
// For Side Chain Dividends Pool.
var amountForSideChainDividendsPool = input.Amount.Mul(config.

→˓DonationPartsPerHundred).Div(100);
State.TokenContract.Approve.Send(new ApproveInput
{

Symbol = input.Symbol,
Amount = amountForSideChainDividendsPool,

(continues on next page)

21.10. ACS9 - Contract profit dividend standard 507

AElf, Release release/1.2.3

(continued from previous page)

Spender = State.DividendPoolContract.Value
});
State.DividendPoolContract.Donate.Send(new DonateInput
{

Symbol = input.Symbol,
Amount = amountForSideChainDividendsPool

});
// For receiver.
var amountForReceiver = input.Amount.Sub(amountForSideChainDividendsPool);
State.TokenContract.Transfer.Send(new TransferInput
{

To = State.ProfitReceiver.Value,
Amount = amountForReceiver,
Symbol = input.Symbol

});
// For Token Holder Profit Scheme. (To distribute.)
State.TokenHolderContract.DistributeProfits.Send(new DistributeProfitsInput
{

SchemeManager = Context.Self
});
return new Empty();

}
public override ProfitConfig GetProfitConfig(Empty input)
{

return State.ProfitConfig.Value;
}
public override ProfitsMap GetProfitsAmount(Empty input)
{

var profitsMap = new ProfitsMap();
foreach (var symbol in State.ProfitConfig.Value.ProfitsTokenSymbolList)
{

var balance = State.TokenContract.GetBalance.Call(new GetBalanceInput
{

Owner = Context.Self,
Symbol = symbol

}).Balance;
profitsMap.Value[symbol] = balance;

}
return profitsMap;

}

21.10.3 Test

Since part of the profits from the ACS9 contract transfer to the Token contract and the other transfer to the
dividend pool, a TokenHolder Stub and a contract implementing ACS10 Stub are required in the test. Accordingly,
the contracts that implements ACS9 or ACS10 need to be deployed. Before the test begins, the contract implementing
ACS9 can be initialized by interface IContractInitializationProvider, and sets the dividend pool’s name
to the other contract’s name:

public class ACS9DemoContractInitializationProvider : IContractInitializationProvider
{

public List<InitializeMethod> GetInitializeMethodList(byte[] contractCode)
{

return new List<InitializeMethod>
{

(continues on next page)

508 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

new InitializeMethod
{

MethodName = nameof(ACS9DemoContract.Initialize),
Params = new InitializeInput
{

ProfitReceiver = Address.FromPublicKey(SampleECKeyPairs.KeyPairs.
→˓Skip(3).First().PublicKey),

DividendPoolContractName = ACS10DemoSmartContractNameProvider.Name
}.ToByteString()

}
};

}
public Hash SystemSmartContractName { get; } = ACS9DemoSmartContractNameProvider.

→˓Name;
public string ContractCodeName { get; } = "AElf.Contracts.ACS9DemoContract";

}

Prepare a user account:

protected List<ECKeyPair> UserKeyPairs => SampleECKeyPairs.KeyPairs.Skip(2).Take(3).
→˓ToList();

Prepare some Stubs:

var keyPair = UserKeyPairs[0];
var address = Address.FromPublicKey(keyPair.PublicKey);
// Prepare stubs.
var acs9DemoContractStub = GetACS9DemoContractStub(keyPair);
var acs10DemoContractStub = GetACS10DemoContractStub(keyPair);
var userTokenStub =

GetTester<TokenContractImplContainer.TokenContractImplStub>(TokenContractAddress,
→˓UserKeyPairs[0]);
var userTokenHolderStub =

GetTester<TokenHolderContractContainer.TokenHolderContractStub>
→˓(TokenHolderContractAddress,

UserKeyPairs[0]);

Then, transfer ELF to the user (TokenContractStub is the Stub of the initial bp who has much ELF) :

// Transfer some ELFs to user.
await TokenContractStub.Transfer.SendAsync(new TransferInput
{

To = address,
Symbol = "ELF",
Amount = 1000_00000000

});

Have the user call SignUp to check if he/she has got 10 APP tokens:

await acs9DemoContractStub.SignUp.SendAsync(new Empty());
// User has 10 APP tokens because of signing up.
(await GetFirstUserBalance("APP")).ShouldBe(10_00000000);

Test the recharge method of the contract itself:

var elfBalanceBefore = await GetFirstUserBalance("ELF");
// User has to Approve an amount of ELF tokens before deposit to the DApp.

(continues on next page)

21.10. ACS9 - Contract profit dividend standard 509

AElf, Release release/1.2.3

(continued from previous page)

await userTokenStub.Approve.SendAsync(new ApproveInput
{

Amount = 1000_00000000,
Spender = ACS9DemoContractAddress,
Symbol = "ELF"

});
await acs9DemoContractStub.Deposit.SendAsync(new DepositInput
{

Amount = 100_00000000
});
// Check the change of balance of ELF.
var elfBalanceAfter = await GetFirstUserBalance("ELF");
elfBalanceAfter.ShouldBe(elfBalanceBefore - 100_00000000);
// Now user has 110 APP tokens.
(await GetFirstUserBalance("APP")).ShouldBe(110_00000000);

The user locks up 57 APP via the TokenHolder contract in order to obtain profits from the contract:

// User lock some APP tokens for getting profits. (APP -57)
await userTokenHolderStub.RegisterForProfits.SendAsync(new RegisterForProfitsInput
{

SchemeManager = ACS9DemoContractAddress,
Amount = 57_00000000

});

The Use method is invoked 10 times and 0.3 APP is consumed each time, and finally the user have 50 APP left:

await userTokenStub.Approve.SendAsync(new ApproveInput
{

Amount = long.MaxValue,
Spender = ACS9DemoContractAddress,
Symbol = "APP"

});
// User uses 10 times of this DApp. (APP -3)
for (var i = 0; i < 10; i++)
{

await acs9DemoContractStub.Use.SendAsync(new Record());
}
// Now user has 50 APP tokens.
(await GetFirstUserBalance("APP")).ShouldBe(50_00000000);

Using the TakeContractProfits method, the developer attempts to withdraw 10 ELF as profits. The 10 ELF
will be transferred to the developer in this method:

const long baseBalance = 0;
{

var balance = await TokenContractStub.GetBalance.CallAsync(new GetBalanceInput
{

Owner = UserAddresses[1], Symbol = "ELF"
});
balance.Balance.ShouldBe(baseBalance);

}
// Profits receiver claim 10 ELF profits.
await acs9DemoContractStub.TakeContractProfits.SendAsync(new TakeContractProfitsInput
{

Symbol = "ELF",

(continues on next page)

510 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

Amount = 10_0000_0000
});
// Then profits receiver should have 9.9 ELF tokens.
{

var balance = await TokenContractStub.GetBalance.CallAsync(new GetBalanceInput
{

Owner = UserAddresses[1], Symbol = "ELF"
});
balance.Balance.ShouldBe(baseBalance + 9_9000_0000);

}

Next check the profit distribution results. The dividend pool should be allocated 0.1 ELF:

// And Side Chain Dividends Pool should have 0.1 ELF tokens.
{

var scheme = await TokenHolderContractStub.GetScheme.
→˓CallAsync(ACS10DemoContractAddress);

var virtualAddress = await ProfitContractStub.GetSchemeAddress.CallAsync(new
→˓SchemePeriod

{
SchemeId = scheme.SchemeId,
Period = 0

});
var balance = await TokenContractStub.GetBalance.CallAsync(new GetBalanceInput
{

Owner = virtualAddress,
Symbol = "ELF"

});
balance.Balance.ShouldBe(1000_0000);

}

The user receives 1 ELF from the token holder dividend scheme:

// Help user to claim profits from token holder profit scheme.
await TokenHolderContractStub.ClaimProfits.SendAsync(new ClaimProfitsInput
{

Beneficiary = UserAddresses[0],
SchemeManager = ACS9DemoContractAddress,

});
// Profits should be 1 ELF.
(await GetFirstUserBalance("ELF")).ShouldBe(elfBalanceAfter + 1_0000_0000);

Finally, let’s test the Withdraw method.

// Withdraw
var beforeBalance =

await userTokenStub.GetBalance.CallAsync(new GetBalanceInput
{

Symbol = "APP",
Owner = UserAddresses[0]

});
var withDrawResult = await userTokenHolderStub.Withdraw.
→˓SendAsync(ACS9DemoContractAddress);
withDrawResult.TransactionResult.Status.ShouldBe(TransactionResultStatus.Mined);
var resultBalance = await userTokenStub.GetBalance.CallAsync(new GetBalanceInput
{

Symbol = "APP",
(continues on next page)

21.10. ACS9 - Contract profit dividend standard 511

AElf, Release release/1.2.3

(continued from previous page)

Owner = UserAddresses[0]
});
resultBalance.Balance.ShouldBe(beforeBalance.Balance + 57_00000000);

21.11 ACS10 - Dividend Pool Standard

ACS10 is used to construct a dividend pool in the contract.

21.11.1 Interface

To construct a dividend pool, you can implement the following interfaces optionally:

Methods

Method
Name

Request
Type

Re-
sponse
Type

Description

Donate acs10.DonateInputgoogle.protobuf.EmptyDonates tokens from the caller to the treasury. If the tokens are not
native tokens in the current chain, they will be first converted to the
native token.

Release acs10.ReleaseInputgoogle.protobuf.EmptyRelease dividend pool according the period number.
SetSymbol-
List

acs10.SymbolListgoogle.protobuf.EmptySet the token symbols dividend pool supports.

GetSymbol-
List

google.protobuf.Emptyacs10.SymbolListQuery the token symbols dividend pool supports.

GetUndis-
tributedDiv-
idends

google.protobuf.Emptyacs10.DividendsQuery the balance of undistributed tokens whose symbols are in-
cluded in the symbol list.

GetDivi-
dends

google.protobuf.Int64Valueacs10.DividendsQuery the dividend information according to the height.

Types

acs10.Dividends

Field Type Description Label
value Dividends.ValueEntry The dividends, symbol -> amount. repeated

acs10.Dividends.ValueEntry

Field Type Description Label
key string
value int64

512 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

acs10.DonateInput

Field Type Description Label
symbol string The token symbol to donate.
amount int64 The amount to donate.

acs10.DonationReceived

Field Type Description Label
from aelf.Address The address of donors.
pool_contract aelf.Address The address of dividend pool.
symbol string The token symbol Donated.
amount int64 The amount Donated.

acs10.ReleaseInput

Field Type Description Label
period_number int64 The period number to release.

acs10.SymbolList

Field Type Description Label
value string The token symbol list. repeated

aelf.Address

Field Type Description Label
value bytes

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

21.11. ACS10 - Dividend Pool Standard 513

AElf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

514 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

21.11. ACS10 - Dividend Pool Standard 515

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

516 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

21.11.2 Usage

ACS10 only unifies the standard interface of the dividend pool, which does not interact with the AElf chain.

21.11.3 Implementation

With the Profit contract

A Profit Scheme can be created using the CreateScheme method of Profit contract:

State.ProfitContract.Value =
Context.GetContractAddressByName(SmartContractConstants.ProfitContractSystemName);

var schemeToken = HashHelper.ComputeFrom(Context.Self);
State.ProfitContract.CreateScheme.Send(new CreateSchemeInput
{

Manager = Context.Self,
CanRemoveBeneficiaryDirectly = true,
IsReleaseAllBalanceEveryTimeByDefault = true,
Token = schemeToken

});
State.ProfitSchemeId.Value = Context.GenerateId(State.ProfitContract.Value,
→˓schemeToken);

The Context.GenerateId method is a common method used by the AElf to generate Id. We use the address of the Profit
contract and the schemeToken provided to the Profit contract to calculate the Id of the scheme, and we set this id to
State.ProfitSchemeId (SingletonState<Hash>).

After the establishment of the dividend scheme:

• ContributeProfits method of Profit can be used to implement the method Donate in ACS10.

• The Release in the ACS10 can be implemented using the method DistributeProfits in the Profit
contract;

• Methods such as AddBeneficiary and RemoveBeneficiary can be used to manage the recipients and
their weight.

• AddSubScheme, RemoveSubScheme and other methods can be used to manage the sub-dividend scheme
and its weight;

• The SetSymbolList and GetSymbolList can be implemented by yourself. Just make sure the symbol
list you set is used correctly in Donate and Release.

• GetUndistributedDividends returns the balance of the token whose symbol is included in symbol list.

With TokenHolder Contract

When initializing the contract, you should create a token holder dividend scheme using the CreateScheme in the
TokenHolder contract(Token Holder Profit Scheme

State.TokenHolderContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenHolderContractSystemName);
State.TokenHolderContract.CreateScheme.Send(new CreateTokenHolderProfitSchemeInput
{

Symbol = Context.Variables.NativeSymbol,
MinimumLockMinutes = input.MinimumLockMinutes

(continues on next page)

21.11. ACS10 - Dividend Pool Standard 517

AElf, Release release/1.2.3

(continued from previous page)

});
return new Empty();

In a token holder dividend scheme, a scheme is bound to its creator, so SchemeId is not necessary to compute (in fact,
the scheme is created via the Profit contract).

Considering the GetDividends returns the dividend information according to the input height, so each Donate need
update dividend information for each height . A Donate can be implemented as:

public override Empty Donate(DonateInput input)
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
Symbol = input.Symbol,
Amount = input.Amount,
To = Context.Self

});
State.TokenContract.Approve.Send(new ApproveInput
{

Symbol = input.Symbol,
Amount = input.Amount,
Spender = State.TokenHolderContract.Value

});
State.TokenHolderContract.ContributeProfits.Send(new ContributeProfitsInput
{

SchemeManager = Context.Self,
Symbol = input.Symbol,
Amount = input.Amount

});
Context.Fire(new DonationReceived
{

From = Context.Sender,
Symbol = input.Symbol,
Amount = input.Amount,
PoolContract = Context.Self

});
var currentReceivedDividends = State.ReceivedDividends[Context.CurrentHeight];
if (currentReceivedDividends != null && currentReceivedDividends.Value.

→˓ContainsKey(input.Symbol))
{

currentReceivedDividends.Value[input.Symbol] =
currentReceivedDividends.Value[input.Symbol].Add(input.Amount);

}
else
{

currentReceivedDividends = new Dividends
{

Value =
{

{
input.Symbol, input.Amount

}
}

};
}
State.ReceivedDividends[Context.CurrentHeight] = currentReceivedDividends;

(continues on next page)

518 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

(continued from previous page)

Context.LogDebug(() => string.Format("Contributed {0} {1}s to side chain
→˓dividends pool.", input.Amount, input.Symbol));

return new Empty();
}

The method Release directly sends the TokenHolder’s method DistributeProfits transaction:

public override Empty Release(ReleaseInput input)
{

State.TokenHolderContract.DistributeProfits.Send(new DistributeProfitsInput
{

SchemeManager = Context.Self
});
return new Empty();

}

In the TokenHolder contract, the default implementation is to release what token is received, so
SetSymbolList does not need to be implemented, and GetSymbolList returns the symbol list recorded in
dividend scheme:

public override Empty SetSymbolList(SymbolList input)
{

Assert(false, "Not support setting symbol list.");
return new Empty();

}
public override SymbolList GetSymbolList(Empty input)
{

return new SymbolList
{

Value =
{

GetDividendPoolScheme().ReceivedTokenSymbols
}

};
}
private Scheme GetDividendPoolScheme()
{

if (State.DividendPoolSchemeId.Value == null)
{

var tokenHolderScheme = State.TokenHolderContract.GetScheme.Call(Context.
→˓Self);

State.DividendPoolSchemeId.Value = tokenHolderScheme.SchemeId;
}
return Context.Call<Scheme>(

Context.GetContractAddressByName(SmartContractConstants.
→˓ProfitContractSystemName),

nameof(ProfitContractContainer.ProfitContractReferenceState.GetScheme),
State.DividendPoolSchemeId.Value);

}

The implementation of GetUndistributedDividends is the same as described in the previous section, and it
returns the balance:

public override Dividends GetUndistributedDividends(Empty input)
{

var scheme = GetDividendPoolScheme();

(continues on next page)

21.11. ACS10 - Dividend Pool Standard 519

AElf, Release release/1.2.3

(continued from previous page)

return new Dividends
{

Value =
{

scheme.ReceivedTokenSymbols.Select(s => State.TokenContract.GetBalance.
→˓Call(new GetBalanceInput

{
Owner = scheme.VirtualAddress,
Symbol = s

})).ToDictionary(b => b.Symbol, b => b.Balance)
}

};
}

In addition to the Profit and TokenHolder contracts, of course, you can also implement a dividend pool on your
own contract.

21.11.4 Test

The dividend pool, for example, is tested in two ways with the TokenHolder contract.

One way is for the dividend pool to send Donate, Release and a series of query operations;

The other way is to use an account to lock up, and then take out dividends.

Define the required Stubs:

const long amount = 10_00000000;
var keyPair = SampleECKeyPairs.KeyPairs[0];
var address = Address.FromPublicKey(keyPair.PublicKey);
var acs10DemoContractStub =

GetTester<ACS10DemoContractContainer.ACS10DemoContractStub>(DAppContractAddress,
→˓keyPair);
var tokenContractStub =

GetTester<TokenContractContainer.TokenContractStub>(TokenContractAddress,
→˓keyPair);
var tokenHolderContractStub =

GetTester<TokenHolderContractContainer.TokenHolderContractStub>
→˓(TokenHolderContractAddress,

keyPair);

Before proceeding, You should Approve the TokenHolder contract and the dividend pool contract.

await tokenContractStub.Approve.SendAsync(new ApproveInput
{

Spender = TokenHolderContractAddress,
Symbol = "ELF",
Amount = long.MaxValue

});
await tokenContractStub.Approve.SendAsync(new ApproveInput
{

Spender = DAppContractAddress,
Symbol = "ELF",
Amount = long.MaxValue

});

Lock the position, at which point the account balance is reduced by 10 ELF:

520 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

await tokenHolderContractStub.RegisterForProfits.SendAsync(new RegisterForProfitsInput
{

SchemeManager = DAppContractAddress,
Amount = amount

});

Donate, at which point the account balance is reduced by another 10 ELF:

await acs10DemoContractStub.Donate.SendAsync(new DonateInput
{

Symbol = "ELF",
Amount = amount

});

At this point you can test the GetUndistributedDividends and GetDividends:

// Check undistributed dividends before releasing.
{

var undistributedDividends =
await acs10DemoContractStub.GetUndistributedDividends.CallAsync(new Empty());

undistributedDividends.Value["ELF"].ShouldBe(amount);
}
var blockchainService = Application.ServiceProvider.GetRequiredService
→˓<IBlockchainService>();
var currentBlockHeight = (await blockchainService.GetChainAsync()).BestChainHeight;
var dividends =

await acs10DemoContractStub.GetDividends.CallAsync(new Int64Value {Value =
→˓currentBlockHeight});
dividends.Value["ELF"].ShouldBe(amount);

Release bonus, and test GetUndistributedDividends again:

await acs10DemoContractStub.Release.SendAsync(new ReleaseInput
{

PeriodNumber = 1
});
// Check undistributed dividends after releasing.
{

var undistributedDividends =
await acs10DemoContractStub.GetUndistributedDividends.CallAsync(new Empty());

undistributedDividends.Value["ELF"].ShouldBe(0);
}

Finally, let this account receive the dividend and then observe the change in its balance:

var balanceBeforeClaimForProfits = await tokenContractStub.GetBalance.CallAsync(new
→˓GetBalanceInput
{

Owner = address,
Symbol = "ELF"

});
await tokenHolderContractStub.ClaimProfits.SendAsync(new ClaimProfitsInput
{

SchemeManager = DAppContractAddress,
Beneficiary = address

});
var balanceAfterClaimForProfits = await tokenContractStub.GetBalance.CallAsync(new
→˓GetBalanceInput

(continues on next page)

21.11. ACS10 - Dividend Pool Standard 521

AElf, Release release/1.2.3

(continued from previous page)

{
Owner = address,
Symbol = "ELF"

});
balanceAfterClaimForProfits.Balance.ShouldBe(balanceBeforeClaimForProfits.Balance +
→˓amount);

21.11.5 Example

The dividend pool of the main chain and the side chain is built by implementing ACS10.

The dividend pool provided by the Treasury contract implementing ACS10 is on the main chain.

The dividend pool provided by the Consensus contract implementing ACS10 is on the side chain.

21.12 ACS11 - Cross Chain Consensus Standard

ACS11 is used to customize consensus mechanisms for cross chain.

21.12.1 Interface

The contract inherited from ACS11 need implement the following interfaces:

Methods

Method Name Request Type Response Type Description
UpdateInformationFrom-
CrossChain

google.protobuf.BytesValuegoogle.protobuf.EmptyUpdate the consensus information of the
side chain.

GetChainInitializationIn-
formation

google.protobuf.BytesValuegoogle.protobuf.BytesValueGet the current miner list and consensus
round information.

CheckCrossChainIndex-
ingPermission

aelf.Address google.protobuf.BoolValueVerify that the input address is the current
miner.

Types

aelf.Address

Field Type Description Label
value bytes

522 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.BinaryMerkleTree

Field Type Description Label
nodes Hash The leaf nodes. repeated
root Hash The root node hash.
leaf_count int32 The count of leaf node.

aelf.Hash

Field Type Description Label
value bytes

aelf.LogEvent

Field Type Description Label
address Address The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. repeated
non_indexed bytes The non indexed data.

aelf.MerklePath

Field Type Description Label
merkle_path_nodes MerklePathNode The merkle path nodes. repeated

aelf.MerklePathNode

Field Type Description Label
hash Hash The node hash.
is_left_child_node bool Whether it is a left child node.

aelf.SInt32Value

Field Type Description Label
value sint32

aelf.SInt64Value

Field Type Description Label
value sint64

21.12. ACS11 - Cross Chain Consensus Standard 523

AElf, Release release/1.2.3

aelf.ScopedStatePath

Field Type Description Label
address Address The scope address, which will be the contract address.
path StatePath The path of contract state.

aelf.SmartContractRegistration

Field Type Description Label
category sint32 The category of contract code(0: C#).
code bytes The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract bool Whether it is a system contract.
version int32 The version of the current contract.

aelf.StatePath

Field Type Description Label
parts string The partial path of the state path. repeated

aelf.Transaction

Field Type Description La-
bel

from Ad-
dress

The address of the sender of the transaction.

to Ad-
dress

The address of the contract when calling a contract.

ref_block_numberint64 The height of the referenced block hash.
ref_block_prefixbytes The first four bytes of the referenced block hash.
method_namestring The name of a method in the smart contract at the To address.
params bytes The parameters to pass to the smart contract method.
signa-
ture

bytes When signing a transaction it’s actually a subset of the fields: from/to and the target
method as well as the parameter that were given. It also contains the reference block
number and prefix.

aelf.TransactionExecutingStateSet

Field Type Description Label
writes TransactionExecutingStateSet.WritesEntry The changed states. repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes TransactionExecutingStateSet.DeletesEntry The deleted states. repeated

524 Chapter 21. Acs Introduction

AElf, Release release/1.2.3

aelf.TransactionExecutingStateSet.DeletesEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field Type Description Label
key string
value bool

aelf.TransactionExecutingStateSet.WritesEntry

Field Type Description Label
key string
value bytes

aelf.TransactionResult

Field Type Description La-
bel

trans-
ac-
tion_id

Hash The transaction id.

sta-
tus

Trans-
action-
Result-
Status

The transaction result status.

logs Lo-
gEvent

The log events. re-
peated

bloom bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re-
turn_value

bytes The return value of the transaction execution.

block_numberint64 The height of the block hat packages the transaction.
block_hashHash The hash of the block hat packages the transaction.
error string Failed execution error message.

21.12. ACS11 - Cross Chain Consensus Standard 525

AElf, Release release/1.2.3

aelf.TransactionResultStatus

Name Num-
ber

Description

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILED6 Transaction validation failed.

21.12.2 Example

ACS11 declares methods for the scenes about customize consensus mechanisms for cross chain. AElf provides the
implementation for ACS11, AEDPoS Contract. You can refer to the implementation of the AEDPoS contract api.

526 Chapter 21. Acs Introduction

CHAPTER 22

Command line interface

22.1 Introduction to the CLI

The aelf-command tool is a CLI tool built for interacting with an AElf node. This section will walk you through some
of the most commonly used features and show you how to install the tool.

22.1.1 Features

• Get or Set common configs, endpoint, account, datadir, password.

• For new users who are not familiar with the CLI parameters, any missing parameters will be asked in a prompting
way.

• Create a new account.

• Load an account from a given private key or mnemonic.

• Show wallet details which include private key, address, public key and mnemonic.

• Encrypt account info into keyStore format and save to file.

• Get current Best Height of the chain.

• Get block info by a given height or block hash.

• Get transaction result by a given transaction id.

• Send a transaction or call a read-only method on a smart contract.

• Deploy a smart contract.

• Open a REPL for using JavaScript to interact with the chain.

• Friendly interactions, beautify with chalk & ora.

• Get current chain status.

• Create a proposal on any contract method.

527

AElf, Release release/1.2.3

• Deserialize the result returned by executing a transaction.

• Start a socket.io server for supplying services for dApps.

22.1.2 Install aelf-command

npm i aelf-command -g

22.1.3 Using aelf-command

First Step

You need to create a new account or load a account by a private key or mnemonic you already have.

• Create a new wallet

$ aelf-command create
Your wallet info is :
Mnemonic : great mushroom loan crisp ... door juice embrace
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea
Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Save account info into a file? ... no / yes
XXX Enter a password ... ********
XXX Confirm password ... ********
XXX
Account info has been saved to "/Users/young/.local/share/aelf/keys/
→˓2Ue31YTuB5Szy7cnr...Gi5uMQBYarYUR5oGin1sys6H.json"

• Load wallet from private key

$ aelf-command load e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Your wallet info is :
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea
Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Save account info into a file?
XXX Enter a password ... ********
XXX Confirm password ... ********
XXX
Account info has been saved to "/Users/young/.local/share/aelf/keys/
→˓2Ue31YTuB5Szy7cnr...Gi5uMQBYarYUR5oGin1sys6H.json"

• show wallet info you already have

$ aelf-command wallet -a 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
Your wallet info is :
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea
Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H

Here you can get the account info and decide whether to encrypt account info and save into a file.

528 Chapter 22. Command line interface

AElf, Release release/1.2.3

Examples:

$ aelf-command console -a 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Enter the the URI of an AElf node: http://127.0.0.1:8000
XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk
aelf | the instance of an aelf-sdk, connect to

| http://127.0.0.1:8000
_account | the instance of an AElf wallet, address

| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

Any missed parameters you did not give in CLI parameters will be asked in a prompting way

$ aelf-command console
XXX Enter the the URI of an AElf node: http://127.0.0.1:8000
XXX Enter a valid wallet address, if you don\'t have, create one by aelf-command create
→˓... 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk
aelf | the instance of an aelf-sdk, connect to

| http://13.231.179.27:8000
_account | the instance of an AElf wallet, address

| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

Help

Type

$ aelf-command -h
Usage: aelf-command [command] [options]

Options:
-v, --version output the version number
-e, --endpoint <URI> The URI of an AElf node.

→˓Eg: http://127.0.0.1:8000
(continues on next page)

22.1. Introduction to the CLI 529

AElf, Release release/1.2.3

(continued from previous page)

-a, --account <account> The address of AElf wallet
-p, --password <password> The password of encrypted

→˓keyStore
-d, --datadir <directory> The directory that

→˓contains the AElf related files. Defaults to {home}/.local/share/aelf
-h, --help output usage information

Commands:
call [contract-address|contract-name] [method] [params] Call a read-only method

→˓on a contract.
send [contract-address|contract-name] [method] [params] Execute a method on a

→˓contract.
get-blk-height Get the current block

→˓height of specified chain
get-chain-status Get the current chain

→˓status
get-blk-info [height|block-hash] [include-txs] Get a block info
get-tx-result [tx-id] Get a transaction result
console Open a node REPL
create [options] [save-to-file] Create a new account
wallet Show wallet details

→˓which include private key, address, public key and mnemonic
load [private-key|mnemonic] [save-to-file] Load wallet from a

→˓private key or mnemonic
proposal [proposal-contract] [organization] [expired-time] Send a proposal to an

→˓origination with a specific contract method
deploy [category] [code-path] Deprecated! Please use

→˓`aelf-command send` , check details in aelf-command `README.md`
config <flag> [key] [value] Get, set, delete or

→˓list aelf-command config
event [tx-id] Deserialize the result

→˓returned by executing a transaction
dapp-server [options] Start a dAPP SOCKET.IO

→˓server

in your terminal and get useful information.

Any sub-commands such as call, you can get help by typing this

$ aelf-command call -h
Usage: aelf-command call [options] [contract-address|contract-name] [method] [params]

Call a read-only method on a contract.

Options:
-h, --help output usage information

Examples:

aelf-command call <contractName|contractAddress> <method> <params>
aelf-command call <contractName|contractAddress> <method>
aelf-command call <contractName|contractAddress>
aelf-command call

$ aelf-command console -h
Usage: aelf-command console [options]

(continues on next page)

530 Chapter 22. Command line interface

AElf, Release release/1.2.3

(continued from previous page)

Open a node REPL

Options:
-h, --help output usage information

Examples:

aelf-command console
...

22.2 Commands

22.2.1 Common options

• datadir: The directory that contains aelf-command files, such as encrypted account info
keyStore files. Default to be {home}/.local/share/aelf

• endpoint: The endpoint for the RPC service.

• account: The account to be used to interact with the blockchain endpoint.

• password: The password for unlocking the given account.

You can specified options above in several ways, and the priority is in the order of low to high.

1. export variables in shell.

This is datadir
$ export AELF_CLI_DATADIR=/Users/{you}/.local/share/aelf
This is endpoint
$ export AELF_CLI_ENDPOINT=http://127.0.0.1:8000
This is account
$ export AELF_CLI_ACCOUNT=2Ue31YTuB5Szy7c...gtGi5uMQBYarYUR5oGin1sys6H

2. aelf-command global .aelfrc config file

The global config file is stored in the <datadir>/.aelfrc file, you can read the config file, but better not
modify it by yourself.

Modify this config file by aelf-command config.

• set: set and save config in the file, remember just set the datadir, endpoint, account, password
four keys.

$ aelf-command config set endpoint http://127.0.0.1:8000
XXX Succeed!

$ aelf-command config -h
Usage: aelf-command config [options] <flag> [key] [value]

get, set, delete or list aelf-command config

Options:
-h, --help output usage information

Examples:

(continues on next page)

22.2. Commands 531

AElf, Release release/1.2.3

(continued from previous page)

aelf-command config get <key>
aelf-command config set <key> <value>
aelf-command config delete <key>
aelf-command config list

• get: get the value of given key from global .aelfrc file

$ aelf-command config get endpoint
http://127.0.0.1:8000

• delete: delete the <key, value> from global .aelfrc file by a given key

$ aelf-command config delete endpoint
XXX Succeed!

• list: get the list of all configs stored in global .aelfrc file

$ aelf-command config list
endpoint=http://127.0.0.1:8000
password=password

Remember config command only can be used to modify the global .aelfrc file for now, more usages such
as modify working directory will be implemented in later.

3. aelf-command working directory .aelfrc file

The current working directory of aelf-command can have a file named .aelfrc and store configs, the
format of this file is like global .aelfrc file:

endpoint http://127.0.0.1:8000
password yourpassword

each line is <key, value> config and a whitespace is needed to separate them.

4. aelf-command options.

You can give common options by passing them in CLI parameters.

aelf-command console -a sadaf -p password -e http://127.0.0.1:8000

Notice the priority, the options given in higher priority will overwrite the lower priority.

22.2.2 create - Create a new account

This command will create a new account.

$ aelf-command create -h
Usage: aelf-command create [options] [save-to-file]

create a new account

Options:
-c, --cipher [cipher] Which cipher algorithm to use, default to be aes-128-ctr
-h, --help output usage information

(continues on next page)

532 Chapter 22. Command line interface

AElf, Release release/1.2.3

(continued from previous page)

Examples:

aelf-command create <save-to-file>
aelf-command create

Example:

• Specify the cipher way to encrypt account info by passing option -c [cipher], such as:

aelf-command create -c aes-128-cbc

22.2.3 load - Load an account by a given private key or mnemonic

This command allow you load an account from backup.

load from mnemonic
$ aelf-command load 'great mushroom loan crisp ... door juice embrace'
load from private key
$ aelf-command load 'e038eea7e151eb451ba2901f7...b08ba5b76d8f288'
load from prompting
$ aelf-command load
? Enter a private key or mnemonic › e038eea7e151eb451ba2901f7...b08ba5b76d8f288
...

22.2.4 wallet - Show wallet details which include private key, address, public
key and mnemonic

This command allows you to print wallet info.

$ aelf-command wallet -a C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuw...8qYjGsESanXR
AElf [Info]: Private Key : 97ca9fbece296231f26bee0e493500810f...
→˓cbd984f69a8dc22ec9ec89ebb00
AElf [Info]: Public Key : 04c30dd0c3b5abfc85a11b15dabd0de926...
→˓74fe04e92eaebf2e4fef6445d9b9b11efe6f4b70c8e86644b72621f9987dc00bb1eab44a9bd7512ea53f93937a5d0
AElf [Info]: Address : C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuw...8qYjGsESanXR

22.2.5 proposal - Create a proposal

There are three kinds of proposal contracts in AElf:

• AElf.ContractNames.Parliament

• AElf.ContractNames.Referendum

• AElf.ContractNames.Association

depending on your needs you can choose one and create a proposal.

• Get an organization address or create one

Get the default organization’s address with the parliament contract (AElf.ContractNames.Parliament):

22.2. Commands 533

AElf, Release release/1.2.3

$ aelf-command call AElf.ContractNames.Parliament GetDefaultOrganizationAddress
XXX Fetching contract successfully!
XXX Calling method successfully!
AElf [Info]:
Result:
"BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc"
XXX Succeed!

BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc is the default organization address.

The default organization is an organization that contains all miners; every proposal under AElf.ContractNames.
Parliament can only be released when it has got over 2/3 miners approval.

Create an organization with the Referendum contract (AElf.ContractNames.Referendum):

$ aelf-command send AElf.ContractNames.Referendum
XXX Fetching contract successfully!
? Pick up a contract method: CreateOrganization

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional parameters:
? Enter the required param <tokenSymbol>: ELF
? Enter the required param <proposalReleaseThreshold.minimalApprovalThreshold>: 666
? Enter the required param <proposalReleaseThreshold.maximalRejectionThreshold>: 666
? Enter the required param <proposalReleaseThreshold.maximalAbstentionThreshold>: 666
? Enter the required param <proposalReleaseThreshold.minimalVoteThreshold>: 666
? Enter the required param <proposerWhiteList.proposers>: [
→˓"2hxkDg6Pd2d4yU1A16PTZVMMrEDYEPR8oQojMDwWdax5LsBaxX"]
The params you entered is:
{

"tokenSymbol": "ELF",
"proposalReleaseThreshold": {
"minimalApprovalThreshold": 666,
"maximalRejectionThreshold": 666,
"maximalAbstentionThreshold": 666,
"minimalVoteThreshold": 666

},
"proposerWhiteList": {
"proposers": [

"2hxkDg6Pd2d4yU1A16PTZVMMrEDYEPR8oQojMDwWdax5LsBaxX"
]

}
}
XXX Succeed!
AElf [Info]:
Result:
{

"TransactionId": "273285c7e8825a0af5291dd5d9295f746f2bb079b30f915422564de7a64fc874"
}
XXX Succeed!

• Create a proposal

$ aelf-command proposal
? Pick up a contract name to create a proposal: AElf.ContractNames.Parliament
? Enter an organization address: BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc

(continues on next page)

534 Chapter 22. Command line interface

AElf, Release release/1.2.3

(continued from previous page)

? Select the expired time for this proposal: 2022/09/23 22:06
? Optional, input an URL for proposal description:
? Enter a contract address or name: AElf.ContractNames.Token
XXX Fetching contract successfully!
? Pick up a contract method: Transfer

If you need to pass file contents to the contractMethod, you can enter the relative
→˓or absolute path of the file instead

Enter required params one by one:
? Enter the required param <to>: 2hxkDg6Pd2d4yU1A16PTZVMMrEDYEPR8oQojMDwWdax5LsBaxX
? Enter the required param <symbol>: ELF
? Enter the required param <amount>: 100000000
? Enter the required param <memo>: test
AElf [Info]:
{ TransactionId:
'09c8c824d2e3aea1d6cd15b7bb6cefe4e236c5b818d6a01d4f7ca0b60fe99535' }

XXX loading proposal id...
AElf [Info]: Proposal id:
→˓"bafe83ca4ec5b2a2f1e8016d09b21362c9345954a014379375f1a90b7afb43fb".
XXX Succeed!

You can get the proposal id, then get the proposal’s status.

• Get proposal status

$ aelf-command call AElf.ContractNames.Parliament GetProposal
→˓bafe83ca4ec5b2a2f1e8016d09b21362c9345954a014379375f1a90b7afb43fb
{

...
"expiredTime": {
"seconds": "1663942010",
"nanos": 496000

},
"organizationAddress": "BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc",
"proposer": "2tj7Ea67fuQfVAtQZ3WBmTv7AAJ8S9D2L4g6PpRRJei6JXk7RG",
"toBeReleased": false

}
XXX Succeed!

toBeReleased indicates whether you can release this proposal. By default, a proposal needs over 2/3 BP nodes
approval.

• Release a proposal

You can release a proposal when it got approved.

$ aelf-command send AElf.ContractNames.Parliament Release
→˓bafe83ca4ec5b2a2f1e8016d09b21362c9345954a014379375f1a90b7afb43fb
AElf [Info]:
{ TransactionId:
'09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535' }

Get the transaction result

$ aelf-command get-tx-result 09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535
AElf [Info]: {

(continues on next page)

22.2. Commands 535

AElf, Release release/1.2.3

(continued from previous page)

"TransactionId": "09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535",
"Status": "MINED",
"Logs": [
{
"Address": "25CecrU94dmMdbhC3LWMKxtoaL4Wv8PChGvVJM6PxkHAyvXEhB",
"Name": "Transferred",
"Indexed": [

"CiIKIJTPGZ24g4eHwSVNLit8jgjFJeeYCEEYLDpFiCeCT0Bf",
"EiIKIO0jJRxjHdRQmUTby8klRVSqYpwhOyUsnXYV3IrQg8N1",
"GgNFTEY="

],
"NonIndexed": "IICgt4fpBSomVC00MzFkMjc0Yi0zNWJjLTRjYzgtOGExZC1iODhhZTgxYzU2Zjc="
}

],
"Bloom":

→˓"AAAAAAAAABAAgAAAQAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAACAAAAAAAAAAACAAAAAAAAAAAgAAAgAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAQAAA==
→˓",
"BlockNumber": 28411,
"BlockHash": "fa22e4eddff12a728895a608db99d40a4b21894f7c07df1a4fa8f0625eb914a2",
"Transaction": {
"From": "2tj7Ea67fuQfVAtQZ3WBmTv7AAJ8S9D2L4g6PpRRJei6JXk7RG",
"To": "29RDBXTqwnpWPSPHGatYsQXW2E17YrQUCj7QhcEZDnhPb6ThHW",
"RefBlockNumber": 28410,
"RefBlockPrefix": "0P+eTw==",
"MethodName": "Release",
"Params": "\"ad868c1e0d74127dd746ccdf3443a09459c55cf07d247df053ddf718df258c86\"",
"Signature": "DQcv55EBWunEFPXAbqZG20OLO5T0Sq/s0A+/

→˓iuwv1TdQqIV4318HrqFLsGpx9m3+sp5mzhAnMlrG7CSxM6EuIgA="
},
"ReturnValue": "",
"Error": null

}

If you want to call a contract method by creating a proposal and released it, the released transaction result could be
confusing, you can use another aelf-command sub-command to get the readable result;

Take the example above which has transferred token by proposal, transferred result can be viewed by decoding the
Logs field in the transaction result. Use aelf-command event to decode the results.

Pass the transaction id as a parameter:

$ aelf-command event 09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535
[Info]:
The results returned by
Transaction: 09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535 is:
[

{
"Address": "25CecrU94dmMdbhC3LWMKxtoaL4Wv8PChGvVJM6PxkHAyvXEhB",
"Name": "Transferred",
"Indexed": [

"CiIKIJTPGZ24g4eHwSVNLit8jgjFJeeYCEEYLDpFiCeCT0Bf",
"EiIKIO0jJRxjHdRQmUTby8klRVSqYpwhOyUsnXYV3IrQg8N1",
"GgNFTEY="

],
"NonIndexed": "IICgt4fpBSomVC00MzFkMjc0Yi0zNWJjLTRjYzgtOGExZC1iODhhZTgxYzU2Zjc=",
"Result": {

"from": "28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK",

(continues on next page)

536 Chapter 22. Command line interface

AElf, Release release/1.2.3

(continued from previous page)

"to": "2oSMWm1tjRqVdfmrdL8dgrRvhWu1FP8wcZidjS6wPbuoVtxhEz",
"symbol": "ELF",
"amount": "200000000000",
"memo": "T-431d274b-35bc-4cc8-8a1d-b88ae81c56f7"

}
}

]

The Result field is the decoded result.

For more details, check the descriptions of aelf-command event.

22.2.6 deploy - Deploy a smart contract

This command has been deprecated, use aelf-command send or aelf-command proposal instead

Examples:

1. Use Genesis Contract to deploy a new smart contract

$ aelf-command get-chain-status
XXX Succeed
{
"ChainId": "AELF",
"Branches": {

"41a8a1ebf037197b7e2f10a67d81f741d46a6af41775bcc4e52ab855c58c4375": 8681551,
"ed4012c21a2fbf810db52e9869ef6a3fb0629b36d23c9be2e3692a24703b3112": 8681597,
"13476b902ef137ed63a4b52b2902bb2b2fa5dbe7c256fa326c024a73dc63bcb3": 8681610

},
"NotLinkedBlocks": {},
"LongestChainHeight": 8681610,
"LongestChainHash":

→˓"13476b902ef137ed63a4b52b2902bb2b2fa5dbe7c256fa326c024a73dc63bcb3",
"GenesisBlockHash":

→˓"cd5ce1bfa0cd97a1dc34f735c57bea2fcb9d88fc8f76bece2592fe7d82d5660c",
"GenesisContractAddress": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"LastIrreversibleBlockHash":

→˓"4ab84cdfe0723b191eedcf4d2ca86b0f64e57105e61486c21d98d562b14f2ab0",
"LastIrreversibleBlockHeight": 8681483,
"BestChainHash":

→˓"0dbc2176aded950020577552c92c82e66504ea109d4d6588887502251b7e932b",
"BestChainHeight": 8681609

}

use GenesisContractAddress as a parameter of aelf-command send
use contract method `DeploySmartContract` if the chain you are connecting to
→˓requires no limit of authority
$ aelf-command send 2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8
→˓DeploySmartContract
XXX Fetching contract successfully!

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:

(continues on next page)

22.2. Commands 537

AElf, Release release/1.2.3

(continued from previous page)

? Enter the required param <category>: 0
? Enter the required param <code>: /Users/test/contract.dll
...

use contract method `ProposeNewContract` if the chain you are connecting to
→˓requires create new propose when deploying smart contracts
$ aelf-command send 2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8
→˓ProposeNewContract
XXX Fetching contract successfully!

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <category>: 0
? Enter the required param <code>: /Users/test/contract.dll
...

• You must input contract method parameters in the prompting way, note that you can input a relative or
absolute path of contract file to pass a file to aelf-command, aelf-command will read the file content
and encode it as a base64 string.

• After call ProposeNewContract, you can get proposal id and proposedContractInputHash
later by running

$ aelf-command event
→˓34184cbc27c95bbc0a1bd676192c3afc380740ab61626e5d428ae17faf9ea984
[Info]:
The results returned by
Transaction: 34184cbc27c95bbc0a1bd676192c3afc380740ab61626e5d428ae17faf9ea984 is:
[
...
{

"Address": "pykr77ft9UUKJZLVq15wCH8PinBSjVRQ12sD1Ayq92mKFsJ1i",
"Name": "ContractProposed",
"Indexed": [],
"NonIndexed": "CiIKIK0dKXkwu/HDpZUf/tzjJSfcZ5XznUrE/C0XMtp4liqo",
"Result": {
"proposedContractInputHash":

→˓"ad1d297930bbf1c3a5951ffedce32527dc6795f39d4ac4fc2d1732da78962aa8"
}

},
{

"Address": "2JT8xzjR5zJ8xnBvdgBZdSjfbokFSbF5hDdpUCbXeWaJfPDmsK",
"Name": "ProposalCreated",
"Indexed": [

"EiIKIEknWCUo4/KJS/vDAf7u1R6JmLEfAcapRY1BZ9yogawl"
],
"NonIndexed": "CiIKIFb/RK9tR/SjJn0z7d4AjUvw288KCwTRyXSYMMryQuC2",
"Result": {

"organizationAddress": "ZDcYStbBRACaEQh6K1nqPb2SHKPCTggB9E66onthFoGrVnkfi",
"proposalId":

→˓"56ff44af6d47f4a3267d33edde008d4bf0dbcf0a0b04d1c9749830caf242e0b6"
}

}
]

538 Chapter 22. Command line interface

AElf, Release release/1.2.3

• Wait for the organization members to approve your proposal and you can release your proposal by calling
ReleaseApprovedContract

$ aelf-command send 2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8
XXX Fetching contract successfully!
? Pick up a contract method: ReleaseApprovedContract

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <proposalId>: proposalId
? Enter the required param <proposedContractInputHash>: proposedContractInputHash
The params you entered is:
{
"proposalId": proposalNewContract proposalId,
"proposedContractInputHash": proposedContractInputHash

}
XXX Succeed!

• And then you can get code check proposal id from event of ReleaseApprovedContract trans-
action.

....
{

"Address": "2JT8xzjR5zJ8xnBvdgBZdSjfbokFSbF5hDdpUCbXeWaJfPDmsK",
"Name": "ProposalCreated",
"Indexed": [

"EiIKIEknWCUo4/KJS/vDAf7u1R6JmLEfAcapRY1BZ9yogawl"
],
"NonIndexed": "CiIKIAfOf/a3zIillggQjSl2N0Y3aEh8bRGK5ppBrc14CKSn",
"Result": {

"organizationAddress": "ZDcYStbBRACaEQh6K1nqPb2SHKPCTggB9E66onthFoGrVnkfi",
"proposalId":

→˓"07ce7ff6b7cc88a59608108d297637463768487c6d118ae69a41adcd7808a4a7"
}

}

• Wait for the code check pass, then you can release code check proposal by calling ReleaseCodeCheck

$ aelf-command send 2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8 -a
→˓28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK -p 123
XXX Fetching contract successfully!
? Pick up a contract method: ReleaseCodeCheckedContract

If you need to pass file contents as a parameter, you can enter the relative
→˓or absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <proposalId>:
→˓07ce7ff6b7cc88a59608108d297637463768487c6d118ae69a41adcd7808a4a7
? Enter the required param <proposedContractInputHash>:
→˓ad1d297930bbf1c3a5951ffedce32527dc6795f39d4ac4fc2d1732da78962aa8

The params you entered is:
{
"proposalId":

→˓07ce7ff6b7cc88a59608108d297637463768487c6d118ae69a41adcd7808a4a7,

(continues on next page)

22.2. Commands 539

AElf, Release release/1.2.3

(continued from previous page)

"proposedContractInputHash": proposedContractInputHash
}
XXX Succeed!

• Finally, you can get deployed contract address later by from event of
ReleaseCodeCheckedContract transaction.

....
{
""Address"": ""pykr77ft9UUKJZLVq15wCH8PinBSjVRQ12sD1Ayq92mKFsJ1i"",
""Name"": ""ContractDeployed"",
""Indexed"": [
"CiIKIJTPGZ24g4eHwSVNLit8jgjFJeeYCEEYLDpFiCeCT0Bf",
"EiIKICAU/M9E2AWln6XZSUFrTWR1tXud95vPX1peinPpF7nC"

],
""NonIndexed"": ""GiIKIK/s1HKVrx1RU5ei3DVJvgc1muE6h2+xyCROHBTfsRqIIAE="",
""Result"": {
""author"": ""28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK"",
""codeHash"": "

→˓"2014fccf44d805a59fa5d949416b4d6475b57b9df79bcf5f5a5e8a73e917b9c2"",
""address"": ""2LUmicHyH4RXrMjG4beDwuDsiWJESyLkgkwPdGTR8kahRzq5XS"",
""version"": 1

}
}

22.2.7 event - Deserialize the result return by executing a transaction

Only transaction id is required as the parameter.

$ aelf-command event fe1974fde291e44e16c55db666f2c747323cdc584d616de05c88c8bae18ecceb
[Info]:
The results returned by
Transaction: fe1974fde291e44e16c55db666f2c747323cdc584d616de05c88c8bae18ecceb is:
[

{
"Address": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"Name": "ContractDeployed",
"Indexed": [

"CiIKIN2O6lDDGWbgbkomYr6+9+2B0JpHsuses3KfLwzHgSmu",
"EiIKIDXZGwZLKqm78WpYDXuBlyd6Dv+RMjrgOUEnwamfIA/z"

],
"NonIndexed": "GiIKIN2O6lDDGWbgbkomYr6+9+2B0JpHsuses3KfLwzHgSmu",
"Result": {

"author": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"codeHash": "35d91b064b2aa9bbf16a580d7b8197277a0eff91323ae0394127c1a99f200ff3",
"address": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8"

}
}

]
XXX Succeed!

This command get the Log field of a transaction result and deserialize the Log field with the correspond protobuf
descriptors.

A transaction may be related with several Contract Method’s events, so the transaction result can include several
Logs.

540 Chapter 22. Command line interface

AElf, Release release/1.2.3

In each item:

• Address: the contract address.

• Name: name of event published from related contract method.

• Indexed: indexed data of event in type of base64

• NoIndexed: no indexed data of event in type of base64.

• Result: the decoded result, this is readable and you can use it and get what the fields means inside the Result
by reading the contract documents or contract related protobuf files. In this example, you can read the protobuf
file;

22.2.8 send - Send a transaction

$ aelf-command send
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid wallet address, if you do not have, create one by aelf-command create
→˓... D3vSjRYL8MpeRpvUDy85ktXijnBe2tHn8NTACsggUVteQCNGP
XXX Enter the password you typed when creating a wallet ... ********
XXX Enter contract name (System contracts only) or the address of contract ... AElf.
→˓ContractNames.Token
XXX Fetching contract successfully!
? Pick up a contract method: Transfer

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <to>: C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuwfQu8qYjGsESanXR
? Enter the required param <symbol>: ELF
? Enter the required param <amount>: 100000000
? Enter the required param <memo>: 'test command'
The params you entered is:
{

"to": "C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuwfQu8qYjGsESanXR",
"symbol": "ELF",
"amount": 100000000,
"memo": "'test command'"

}
XXX Succeed!
AElf [Info]:
Result:
{

"TransactionId": "85d4684cb6e4721a63893240f73f675ac53768679c291abeb54974ff4e063bb5"
}
XXX Succeed!

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELF", "to":
→˓"C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuwfQu8qYjGsESanXR", "amount": "1000000"}'

22.2.9 call - Call a read-only method on a contract

22.2. Commands 541

https://github.com/AElfProject/AElf/blob/master/protobuf/acs0.proto#L95
https://github.com/AElfProject/AElf/blob/master/protobuf/acs0.proto#L95

AElf, Release release/1.2.3

$ aelf-command call
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid wallet address, if you do not have, create one by aelf-command create
→˓... D3vSjRYL8MpeRpvUDy85ktXijnBe2tHn8NTACsggUVteQCNGP
XXX Enter the password you typed when creating a wallet ... ********
XXX Enter contract name (System contracts only) or the address of contract ... AElf.
→˓ContractNames.Token
XXX Fetching contract successfully!
? Pick up a contract method: GetTokenInfo

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <symbol>: ELF
The params you entered is:
{

"symbol": "ELF"
}
XXX Calling method successfully!
AElf [Info]:
Result:
{

"symbol": "ELF",
"tokenName": "Native Token",
"supply": "99732440917954549",
"totalSupply": "100000000000000000",
"decimals": 8,
"issuer": "FAJcKnSpbViZfAufBFzX4nC8HtuT93rxUS4VCMACUwXWYurC2",
"isBurnable": true,
"issueChainId": 9992731,
"burned": "267559132045477"

}
XXX Succeed!

aelf-command call AElf.ContractNames.Token GetTokenInfo '{"symbol":"ELF"}'

22.2.10 get-chain-status - Get the current status of the block chain

$ aelf-command get-chain-status
XXX Succeed
{

"ChainId": "AELF",
"Branches": {
"59937e3c16860dedf0c80955f4995a5604ca43ccf39cd52f936fb4e5a5954445": 4229086

},
"NotLinkedBlocks": {},
"LongestChainHeight": 4229086,
"LongestChainHash":

→˓"59937e3c16860dedf0c80955f4995a5604ca43ccf39cd52f936fb4e5a5954445",
"GenesisBlockHash":

→˓"da5e200259320781a1851081c99984fb853385153991e0f00984a0f5526d121c",
"GenesisContractAddress": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"LastIrreversibleBlockHash":

→˓"497c24ff443f5cbd33da24a430f5c6c5e0be2f31651bd89f4ddf2790bcbb1906",

(continues on next page)

542 Chapter 22. Command line interface

AElf, Release release/1.2.3

(continued from previous page)

"LastIrreversibleBlockHeight": 4229063,
"BestChainHash": "59937e3c16860dedf0c80955f4995a5604ca43ccf39cd52f936fb4e5a5954445",
"BestChainHeight": 4229086

}

22.2.11 get-tx-result - Get a transaction result

$ aelf-command get-tx-result
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid transaction id in hex format ...
→˓7b620a49ee9666c0c381fdb33f94bd31e1b5eb0fdffa081463c3954e9f734a02
XXX Succeed!
{ TransactionId:

'7b620a49ee9666c0c381fdb33f94bd31e1b5eb0fdffa081463c3954e9f734a02',
Status: 'MINED',
Logs: null,
Bloom:

→˓'AA==
→˓',
BlockNumber: 7900508,
BlockHash:
'a317c5ecf4a22a481f88ab08b8214a8e8c24da76115d9ddcef4afc9531d01b4b',
Transaction:
{ From: 'D3vSjRYL8MpeRpvUDy85ktXijnBe2tHn8NTACsggUVteQCNGP',

To: 'WnV9Gv3gioSh3Vgaw8SSB96nV8fWUNxuVozCf6Y14e7RXyGaM',
RefBlockNumber: 7900503,
RefBlockPrefix: 'Q6WLSQ==',
MethodName: 'GetTokenInfo',
Params: '{ "symbol": "ELF" }',
Signature:

→˓'JtSpWbMX13tiJD0klMSJQyPBa0aRNFY4hTh3hltdWqhBpv4IRTbjjZfQj39lbBSCOy68vnLg6rUerEcyCsqwfgE=
→˓' },
ReadableReturnValue:
'{ "symbol": "ELF", "tokenName": "elf token", "supply": "1000000000", "totalSupply

→˓": "1000000000", "decimals": 2, "issuer":
→˓"2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8", "isBurnable": true }',
Error: null }

22.2.12 get-blk-height - Get the block height

$ aelf-command get-blk-height
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
> 7902091

22.2.13 get-blk-info - Get the block info by a block height or a block hash

You can pass a block height or a block hash to this sub-command.

22.2. Commands 543

AElf, Release release/1.2.3

$ aelf-command get-blk-info
XXX Enter the the URI of an AElf node: http://13.231.179.27:8000
XXX Enter a valid height or block hash: 123
XXX Include transactions whether or not: no / yes
{ BlockHash:

'6034db3e02e283d3b81a4528442988d28997d3828f87cca1a89457b294517372',
Header:
{ PreviousBlockHash:

'9d6bcc588c0bc10942899e7ec4536665c86f23286029ed45287babf22c582f5a',
MerkleTreeRootOfTransactions:
'7ceb349715787ececa647ad48576467d294de6dcc44d14e19f60c4a91a7a9536',

MerkleTreeRootOfWorldState:
'b529e2775283edc39cd4e3f685616085b18bd5521a87ea7904ad99cd2dc50910',

Extra:
'[

→˓"CkEEJT3FEw+k9cuqv7uruq1fEwQwEjKtYxbXK86wUGrAOH7BgCVkMendLkQZmpEpMgzcz+JXnaVpWtFt3AJcGmGycxL+DggIEvIDCoIBMDQyNTNkYzUxMzBmYTRmNWNiYWFiZmJiYWJiYWFkNWYxMzA0MzAxMjMyYWQ2MzE2ZDcyYmNlYjA1MDZhYzAzODdlYzE4MDI1NjQzMWU5ZGQyZTQ0MTk5YTkxMjkzMjBjZGNjZmUyNTc5ZGE1Njk1YWQxNmRkYzAyNWMxYTYxYjI3MxLqAggCIiIKIOAP2QU8UpM4u9Y3OxdKdI5Ujm3DSyQ4JaRNf7q5ka5mKiIKIH5yNJs87wb/
→˓AkWcIrCxvCX/
→˓Te3fGHVXFxE8xsnfT1HtMgwIoJro6AUQjOa1pQE4TkqCATA0MjUzZGM1MTMwZmE0ZjVjYmFhYmZiYmFiYmFhZDVmMTMwNDMwMTIzMmFkNjMxNmQ3MmJjZWIwNTA2YWMwMzg3ZWMxODAyNTY0MzFlOWRkMmU0NDE5OWE5MTI5MzIwY2RjY2ZlMjU3OWRhNTY5NWFkMTZkZGMwMjVjMWE2MWIyNzNiIgogHY83adsNje+EtL0lLEte8KfT6X/
→˓836zXZTbntbqyjgtoBHAEegwIoJro6AUQzOybpgF6DAigmujoBRCk8MG1AnoLCKGa6OgFEOCvuBF6CwihmujoBRCg/
→˓JhzegwIoZro6AUQ9Lml1wF6DAihmujoBRDYyOO7AnoMCKGa6OgFEKy+ip8DkAEOEp8CCoIBMDQ4MWMyOWZmYzVlZjI5NjdlMjViYTJiMDk0NGVmODQzMDk0YmZlOTU0NWFhZGFjMGQ3Nzk3MWM2OTFjZTgyMGQxYjNlYzQxZjNjMDllNDZjNmQxMjM2NzA5ZTE1ZTEyY2U5N2FhZGNjYTBmZGU4NDY2M2M3OTg0OWZiOGYwM2RkMhKXAQgEMgwIpJro6AUQjOa1pQE4IkqCATA0ODFjMjlmZmM1ZWYyOTY3ZTI1YmEyYjA5NDRlZjg0MzA5NGJmZTk1NDVhYWRhYzBkNzc5NzFjNjkxY2U4MjBkMWIzZWM0MWYzYzA5ZTQ2YzZkMTIzNjcwOWUxNWUxMmNlOTdhYWRjY2EwZmRlODQ2NjNjNzk4NDlmYjhmMDNkZDISnwIKggEwNDFiZTQwMzc0NjNjNTdjNWY1MjgzNTBhNjc3ZmRkZmEzMzcxOWVlZjU5NDMwNDY5ZTlmODdkY2IyN2Y0YTQ1NjY0OTI4NmZhNzIxYzljOWVjZDMxMmY0YjdlZDBmZGE4OTJmZTNlZDExZWFjYTBmMzcxOTBkMjAzYTczYTA2YjFmEpcBCAYyDAiomujoBRCM5rWlATgySoIBMDQxYmU0MDM3NDYzYzU3YzVmNTI4MzUwYTY3N2ZkZGZhMzM3MTllZWY1OTQzMDQ2OWU5Zjg3ZGNiMjdmNGE0NTY2NDkyODZmYTcyMWM5YzllY2QzMTJmNGI3ZWQwZmRhODkyZmUzZWQxMWVhY2EwZjM3MTkwZDIwM2E3M2EwNmIxZhKfAgqCATA0OTMzZmYzNDRhNjAxMTdmYzRmYmRmMDU2ODk5YTk0NDllNjE1MzA0M2QxYzE5MWU4NzlkNjlkYzEzZmIyMzM2NWJmNTQxZWM1NTU5MWE2MTQ3YmM1Y2M3ZjUzMjQ0OTY2ZGE5NzA2ZWZmNzZiY2Y2ZjViY2EyOTYzNmVmODNkYzYSlwEICjIMCLCa6OgFEIzmtaUBOCJKggEwNDkzM2ZmMzQ0YTYwMTE3ZmM0ZmJkZjA1Njg5OWE5NDQ5ZTYxNTMwNDNkMWMxOTFlODc5ZDY5ZGMxM2ZiMjMzNjViZjU0MWVjNTU1OTFhNjE0N2JjNWNjN2Y1MzI0NDk2NmRhOTcwNmVmZjc2YmNmNmY1YmNhMjk2MzZlZjgzZGM2EpUDCoIBMDRiNmMwNzcxMWJjMzBjZGY5OGM5ZjA4MWU3MDU5MWY5OGYyYmE3ZmY5NzFlNWExNDZkNDcwMDlhNzU0ZGFjY2ViNDY4MTNmOTJiYzgyYzcwMDk3MWFhOTM5NDVmNzI2YTk2ODY0YTJhYTM2ZGE0MDMwZjA5N2Y4MDZiNWFiZWNhNBKNAggIEAEyDAismujoBRCM5rWlATgwQAJKggEwNGI2YzA3NzExYmMzMGNkZjk4YzlmMDgxZTcwNTkxZjk4ZjJiYTdmZjk3MWU1YTE0NmQ0NzAwOWE3NTRkYWNjZWI0NjgxM2Y5MmJjODJjNzAwOTcxYWE5Mzk0NWY3MjZhOTY4NjRhMmFhMzZkYTQwMzBmMDk3ZjgwNmI1YWJlY2E0egwInJro6AUQjOa1pQF6DAicmujoBRCkz+mjAnoMCJya6OgFEIj8yfECegwInJro6AUQ7KiH0wN6CwidmujoBRCko6hXegwInZro6AUQ6LTNugF6DAidmujoBRCY4NObAnoMCJ2a6OgFEMzWv+oCkAEQIFg6ggEwNGI2YzA3NzExYmMzMGNkZjk4YzlmMDgxZTcwNTkxZjk4ZjJiYTdmZjk3MWU1YTE0NmQ0NzAwOWE3NTRkYWNjZWI0NjgxM2Y5MmJjODJjNzAwOTcxYWE5Mzk0NWY3MjZhOTY4NjRhMmFhMzZkYTQwMzBmMDk3ZjgwNmI1YWJlY2E0QAIYBQ==
→˓", ""]',

Height: 123,
Time: '2019-07-01T13:39:45.8704899Z',
ChainId: 'AELF',
Bloom:

→˓'00
→˓',

SignerPubkey:

→˓'04253dc5130fa4f5cbaabfbbabbaad5f1304301232ad6316d72bceb0506ac0387ec180256431e9dd2e44199a9129320cdccfe2579da5695ad16ddc025c1a61b273
→˓' },
Body:
{ TransactionsCount: 1,

Transactions:
['a365a682caf3b586cbd167b81b167979057246a726c7282530554984ec042625'] } }

aelf-command get-blk-info
→˓ca61c7c8f5fc1bc8af0536bc9b51c61a94f39641a93a748e72802b3678fea4a9 true

22.2.14 console - Open an interactive console

$ aelf-command console
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid wallet address, if you do not have, create one by aelf-command create
→˓... 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk

(continues on next page)

544 Chapter 22. Command line interface

AElf, Release release/1.2.3

(continued from previous page)

aelf | instance of aelf-sdk, connect to
| http://13.231.179.27:8000

_account | instance of AElf wallet, wallet address
| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

22.2.15 dapp-server - Start a socket.io server for supplying services for dApps

If you’re developing a dApp and you need an environment to hold wallet info and connect to the AElf chain, you can
use this sub-command to start a server for dApp local development.

$ aelf-command dapp-server
AElf [Info]: DApp server is listening on port 35443

or listen on a specified port
$ aelf-command dapp-server --port 40334
AElf [Info]: DApp server is listening on port 40334

This server uses Socket.io to listen on local port 35443 and you can use aelf-bridge to connect to this server like this:

import AElfBridge from 'aelf-bridge';
const bridgeInstance = new AElfBridge({

proxyType: 'SOCKET.IO',
socketUrl: 'http://localhost:35443',
channelType: 'ENCRYPT'

});
// connect to dapp-server
bridgeInstance.connect().then(console.log).catch(console.error);

checkout more information in aelf-bridge and aelf-bridge-demo.

22.2. Commands 545

https://github.com/AElfProject/aelf-bridge
https://github.com/AElfProject/aelf-bridge
https://github.com/AElfProject/aelf-bridge-demo

AElf, Release release/1.2.3

546 Chapter 22. Command line interface

CHAPTER 23

Wallet and Block Explorer

23.1 Explorer

Github

Currently, the explorer provides functions such as viewing blocks, transactions, purchasing resources, voting and node
campaigning as well as viewing contracts.

23.2 iOS/Android Wallet

iOS/Android Wallet provides basic asset management and cross-chain trading capabilities. It also provides an open
application platform for developers to access the wallet according to the usage document of the wallet SDK.

23.3 Web Wallet

Github

The Web Wallet provides basic transaction related functionality.

23.3.1 Explorer-api

To get more informantion by code

Block

547

https://github.com/AElfProject/aelf-block-explorer
https://github.com/AElfProject/aelf-web-wallet
https://github.com/AElfProject/aelf-block-api

AElf, Release release/1.2.3

Get Block List

URL: api/all/blocks?limit={limit}&page={page}
Method: GET
SuccessResponse:
{

"total": 5850,
"blocks": [

{
"block_hash":

→˓"7e1c2fb6d3cc5e8c2cef7d75de9c1adf0e25e9d17d4f22e543fa20f5f23b20e9",
"pre_block_hash":

→˓"6890fa74156b1a88a3ccef1fef72f4f78ff2755ffcd4fb5434ed7b3c153061f5",
"chain_id": "AELF",
"block_height": 5719,
"tx_count": 1,
"merkle_root_tx":

→˓"47eabbc7a499764d0b25c7216ba75fe39717f9866a0716c8a0d1798e64852d84",
"merkle_root_state":

→˓"d14e78dc3c7811b7c17c8b04ebad9e547c35b3faa8bfcc9189b8c12e9f6a4aae",
"time": "2019-04-27T02:00:34.691118Z"

},
{

"block_hash":
→˓"6890fa74156b1a88a3ccef1fef72f4f78ff2755ffcd4fb5434ed7b3c153061f5",

"pre_block_hash":
→˓"f1098bd6df58acf74d8877529702dffc444cb401fc8236519606aa9165d945ae",

"chain_id": "AELF",
"block_height": 5718,
"tx_count": 1,
"merkle_root_tx":

→˓"b29b416148b4fb79060eb80b49bb6ac25a82da2d7a1c5d341e0bf279a7c57362",
"merkle_root_state":

→˓"4dbef401f6d9ed303cf1b5e609a64b1c06a7fb77620b9d13b0e4649719e2fe55",
"time": "2019-04-27T02:00:34.691118Z"

},
{

"block_hash":
→˓"f1098bd6df58acf74d8877529702dffc444cb401fc8236519606aa9165d945ae",

"pre_block_hash":
→˓"1fbdf3a4fb3c41e9ddf25958715815d9d643dfb39e1aaa94631d197e9b1a94bb",

"chain_id": "AELF",
"block_height": 5717,
"tx_count": 1,
"merkle_root_tx":

→˓"776abba03d66127927edc6437d406f708b64c1653a1cc22af9c490aa4f0c22dc",
"merkle_root_state":

→˓"ccc32ab23d619b2b8e0e9b82a53bb66b3a6d168993188b5d3f7f0ac2cb17206f",
"time": "2019-04-27T02:00:26.690003Z"

},
]

}

548 Chapter 23. Wallet and Block Explorer

AElf, Release release/1.2.3

Get Block List By Bock Hash

URL: api/block/transactions?limit={limit}&page={page}&order={order}&block_hash={block_
→˓hash}
Method: GET
SuccessResponse:
{

"transactions": [
{

"tx_id": "209ceb8ee88eeb2c55db7783c48ec0b1adf6badba89fc7ddb86e968601027cbb
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 590,
"address_from": "csoxW4vTJNT9gdvyWS6W7UqEdkSo9pWyJqBoGSnUHXVnj4ykJ",
"address_to": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"params": "",
"method": "DeploySmartContract",
"block_hash":

→˓"79584a99b7f5da5959a26ff02cbe174d632eb5ef3c6c8d5192de48b6f5584c8d",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T06:47:00.265604Z"

},
{

"tx_id": "d9398736920a5c87ea7cae46c265efa84ac7be4cf8edd37bea54078abef1b44c
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 590,
"address_from": "2EyPedNTscFK5EwR8FqTrCeW2LZzuPQ7vr18Y5QWuEUApdCkM6",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"79584a99b7f5da5959a26ff02cbe174d632eb5ef3c6c8d5192de48b6f5584c8d",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T06:47:00.265604Z"

}
]

}

Transactions

Get Transactions List

URL: api/all/transactions?limit={limit}&page={limit}
Method: GET
SuccessResponse:
{

"total": 1179,
"transactions": [

{
"tx_id": "c65d1206e65aaf2e7e08cc818c372ff2c2947cb6cbec746efe6a5e20b7adefa9

→˓", (continues on next page)

23.3. Web Wallet 549

AElf, Release release/1.2.3

(continued from previous page)

"params_to": "",
"chain_id": "AELF",
"block_height": 1064,
"address_from": "grSAEQ5vJ7UfCN2s1v4fJJnk98bu4SHa2hpQkQ9HT88rmaZLz",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"8c922b20164ad3774b56d19673154f383ed89656cbd56433d1681c8c3a4dcab9",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "4780a7b2737b6f044894719b9bb4cb09862c0b4a7cae267131a0b5c3e7c12850
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1063,
"address_from": "QUYYqzTQmugruHYmuJVftwmVjnUM82pXnMTnT5jh55qwZKrMw",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "UpdateValue",
"block_hash":

→˓"381114b86b09886f59956851a1d47d8442b29f44f3785dade3c667ca320e23bb",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "0230385e3f060059d2a62addac09ad6d01f96d32ec076cfbf44c6a3b70c6e092
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1062,
"address_from": "zizPhdDpQCZxMChMxn1oZ4ttJGJUo61Aocg5BpTYvzLQGmBjT",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"06a3ceb783480f4cf5b8402f6749617093d9ea5f9a053f65e86554aeed6d98f4",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:28.635113Z"

},
]

}

Get Transactions List By Address

URL: api/address/transactions?contract_address={contract_address}&limit={limit}&page=
→˓{page}&address={address}
Method: GET
SuccessResponse:

(continues on next page)

550 Chapter 23. Wallet and Block Explorer

AElf, Release release/1.2.3

(continued from previous page)

{
"total": 1179,
"transactions": [

{
"tx_id": "c65d1206e65aaf2e7e08cc818c372ff2c2947cb6cbec746efe6a5e20b7adefa9

→˓",
"params_to": "",
"chain_id": "AELF",
"block_height": 1064,
"address_from": "grSAEQ5vJ7UfCN2s1v4fJJnk98bu4SHa2hpQkQ9HT88rmaZLz",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"8c922b20164ad3774b56d19673154f383ed89656cbd56433d1681c8c3a4dcab9",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "4780a7b2737b6f044894719b9bb4cb09862c0b4a7cae267131a0b5c3e7c12850
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1063,
"address_from": "QUYYqzTQmugruHYmuJVftwmVjnUM82pXnMTnT5jh55qwZKrMw",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "UpdateValue",
"block_hash":

→˓"381114b86b09886f59956851a1d47d8442b29f44f3785dade3c667ca320e23bb",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "0230385e3f060059d2a62addac09ad6d01f96d32ec076cfbf44c6a3b70c6e092
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1062,
"address_from": "zizPhdDpQCZxMChMxn1oZ4ttJGJUo61Aocg5BpTYvzLQGmBjT",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"06a3ceb783480f4cf5b8402f6749617093d9ea5f9a053f65e86554aeed6d98f4",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:28.635113Z"

},
]

}

TPS

23.3. Web Wallet 551

AElf, Release release/1.2.3

Get TPS Record

URL: api/tps/list?start_time={unix_timestamp}&end_time={unix_timestamp}&order={order}
Method: GET
SuccessResponse:
{

"total": 178,
"tps": [

{
"id": 12498,
"start": "2019-11-22T01:12:14Z",
"end": "2019-11-22T01:13:14Z",
"txs": 1878,
"blocks": 120,
"tps": 31,
"tpm": 1878,
"type": 1

},
{

"id": 12499,
"start": "2019-11-22T01:13:14Z",
"end": "2019-11-22T01:14:14Z",
"txs": 1889,
"blocks": 117,
"tps": 31,
"tpm": 1889,
"type": 1

},
{

"id": 12500,
"start": "2019-11-22T01:14:14Z",
"end": "2019-11-22T01:15:14Z",
"txs": 1819,
"blocks": 114,
"tps": 30,
"tpm": 1819,
"type": 1

},
{

"id": 12501,
"start": "2019-11-22T01:15:14Z",
"end": "2019-11-22T01:16:14Z",
"txs": 1779,
"blocks": 105,
"tps": 30,
"tpm": 1779,
"type": 1

}
]

}

552 Chapter 23. Wallet and Block Explorer

CHAPTER 24

aelf-web-extension

You can get more information in Github

24.1 For User

release version, please waiting

dev version

If you are using qq browser,etc, you can add the extention too.

24.1.1 Notice

Note: Using File:/// protocol may can not use the extenstion // https://developer.chrome.com/extensions/match_
patterns Note: Access to file URLs isn’t automatic. The user must visit the extensions management page and opt in to
file access for each extension that requests it.

24.2 For Dapp Developers

24.2.1 Interaction Flow

• Make sure the user get the Extension

• Connect Chain

• Initialize Contract

• Call contract methods

553

https://github.com/AElfProject/aelf-web-extension
https://chrome.google.com/webstore/detail/aelf-explorer-extension-d/mlmlhipeonlflbcclinpbmcjdnpnmkpf
File:///
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns

AElf, Release release/1.2.3

24.2.2 How to use

If you need complete data structure. you can click here

• Check Extension Demo

• GET_CHAIN_STATUS

• CALL_AELF_CHAIN

• LOGIN

• INIT_AELF_CONTRACT

• CALL_AELF_CONTRACT / CALL_AELF_CONTRACT_READONLY

• CHECK_PERMISSION

• SET_CONTRACT_PERMISSION

• REMOVE_CONTRACT_PERMISSION

• REMOVE_METHODS_WHITELIST

24.3 Data Format

NightElf = {
histories: [],
keychain: {

keypairs: [
{

name: 'your keypairs name',
address: 'your keypairs address',
mnemonic: 'your keypairs mnemonic',
privateKey: 'your keupairs privateKey',
publicKey: {

x: 'you keupairs publicKey',
y: 'you keupairs publicKey'

}
}

],
permissions: [

{
chainId: 'AELF',
contractAddress: 'contract address',
contractName: 'contract name',
description: 'contract description',
github: 'contract github',
whitelist: {

Approve: {
parameter1: 'a',
parameter2: 'b',
parameter3: 'c'

}
}

}
]

}
}

554 Chapter 24. aelf-web-extension

AElf, Release release/1.2.3

24.3.1 Demo of Checking the Extension

let nightElfInstance = null;
class NightElfCheck {

constructor() {
const readyMessage = 'NightElf is ready';
let resovleTemp = null;
this.check = new Promise((resolve, reject) => {

if (window.NightElf) {
resolve(readyMessage);

}
setTimeout(() => {

reject({
error: 200001,
message: 'timeout / can not find NightElf / please install the

→˓extension'
});

}, 1000);
resovleTemp = resolve;

});
document.addEventListener('NightElf', result => {

console.log('test.js check the status of extension named nightElf: ',
→˓result);

resovleTemp(readyMessage);
});

}
static getInstance() {

if (!nightElfInstance) {
nightElfInstance = new NightElfCheck();
return nightElfInstance;

}
return nightElfInstance;

}
}
const nightElfCheck = NightElfCheck.getInstance();
nightElfCheck.check.then(message => {

// connectChain -> Login -> initContract -> call contract methods
});

24.3.2 GET_CHAIN_STATUS

You can see the demo ./devDemos/test.html. [demo.js just a draft]

If you want to check Token Transfer Demo. You can click here

The methods calls act the same as the methods call of the aelf-sdk.js

Note: '...' stands for omitted data.

const aelf = new window.NightElf.AElf({
httpProvider: [

'http://192.168.197.56:8101/chain',
null,
null,
null,
[{

name: 'Accept',

(continues on next page)

24.3. Data Format 555

https://github.com/hzz780/aelf-web-extension/tree/1.0/devDemos
https://github.com/hzz780/aelf-web-extension/tree/master/demo/token

AElf, Release release/1.2.3

(continued from previous page)

value: 'text/plain;v=1.0'
}]

],
appName: 'Test'

});

aelf.chain.getChainStatus((error, result) => {
console.log('>>>>>>>>>>>>> connectChain >>>>>>>>>>>>>');
console.log(error, result);

});

// result = {
// ChainId: "AELF"
// GenesisContractAddress: "61W3AF3Voud7cLY2mejzRuZ4WEN8mrDMioA9kZv3H8taKxF"
// }

24.3.3 CALL_AELF_CHAIN

const txid = 'c45edfcca86f4f528cd8e30634fa4ac53801aae05365cfefc3bfe9b652fe5768';
aelf.chain.getTxResult(txid, (err, result) => {

console.log('>>>>>>>>>>>>> getTxResult >>>>>>>>>>>>>');
console.log(err, result);

});

// result = {
// Status: "NotExisted"
// TransactionId:
→˓"ff5bcd126f9b7f22bbfd0816324390776f10ccb3fe0690efc84c5fcf6bdd3fc6"
// }

24.3.4 LOGIN

aelf.login({
appName: 'hzzTest',
chainId: 'AELF',
payload: {

method: 'LOGIN',
contracts: [{

chainId: 'AELF',
contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
contractName: 'token',
description: 'token contract',
github: ''

}, {
chainId: 'AELF TEST',
contractAddress: '2Xg2HKh8vusnFMQsHCXW1q3vys5JxG5ZnjiGwNDLrrpb9Mb',
contractName: 'TEST contractName',
description: 'contract description',
github: ''

}]
}

}, (error, result) => {

(continues on next page)

556 Chapter 24. aelf-web-extension

AElf, Release release/1.2.3

(continued from previous page)

console.log('login>>>>>>>>>>>>>>>>>>', result);
});

// keychain = {
// keypairs: [{
// name: 'your keypairs name',
// address: 'your keypairs address',
// mnemonic: 'your keypairs mnemonic',
// privateKey: 'your keypairs privateKey'
// publicKey: {
// x: 'f79c25eb......',
// y: '7fa959ed......'
// }
// }],
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',
// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: ''
// }],
// domain: 'Dapp domain'
// }]
// }

24.3.5 INIT_AELF_CONTRACT

// In aelf-sdk.js wallet is the realy wallet.
// But in extension sdk, we just need the address of the wallet.
const tokenContract;
const wallet = {

address: '2JqnxvDiMNzbSgme2oxpqUFpUYfMjTpNBGCLP2CsWjpbHdu'
};
// It is different from the wallet created by Aelf.wallet.getWalletByPrivateKey();
// There is only one value named address;
aelf.chain.contractAtAsync(

'4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
wallet,
(error, result) => {

console.log('>>>>>>>>>>>>> contractAtAsync >>>>>>>>>>>>>');
console.log(error, result);
tokenContract = result;

}
);

// result = {
// Approve: ƒ (),
// Burn: ƒ (),
// ChargeTransactionFees: ƒ (),
// ClaimTransactionFees: ƒ (),
//
// }

24.3. Data Format 557

AElf, Release release/1.2.3

24.3.6 CALL_AELF_CONTRACT / CALL_AELF_CONTRACT_READONLY

// tokenContract from the contractAsync
tokenContract.GetBalance.call(

{
symbol: 'AELF',
owner: '65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9'

},
(err, result) => {

console.log('>>>>>>>>>>>>>>>>>>>', result);
}

);

tokenContract.Approve(
{

symbol: 'AELF',
spender: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
amount: '100'

},
(err, result) => {

console.log('>>>>>>>>>>>>>>>>>>>', result);
}

);

// If you use tokenContract.GetBalance.call this method is only applicable to
→˓queries that do not require extended authorization validation.(CALL_AELF_CONTRACT_
→˓READONLY)
// If you use tokenContract.Approve this requires extended authorization validation
→˓(CALL_AELF_CONTRACT)

// tokenContract.GetBalance.call(payload, (error, result) => {})
// result = {
// symbol: "AELF",
// owner: "65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9",
// balance: 0
// }

24.3.7 CHECK_PERMISSION

aelf.checkPermission({
appName: 'hzzTest',
type: 'address', // if you did not set type, it aways get by domain.
address: '4WBgSL2fSem9ABD4LLZBpwP8eEymVSS1AyTBCqXjt5cfxXK'

}, (error, result) => {
console.log('checkPermission>>>>>>>>>>>>>>>>>', result);

});

// result = {
// ...,
// permissions:[
// {
// address: '...',
// appName: 'hzzTest',
// contracts: [{
// chainId: 'AELF',

(continues on next page)

558 Chapter 24. aelf-web-extension

AElf, Release release/1.2.3

(continued from previous page)

// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: ''
// },
// {
// chainId: 'AELF TEST',
// contractAddress: 'TEST contractAddress',
// contractName: 'TEST contractName',
// description: 'contract description',
// github: ''
// }],
// domian: 'Dapp domain'
// }
//]
// }

24.3.8 SET_CONTRACT_PERMISSION

aelf.setContractPermission({
appName: 'hzzTest',
hainId: 'AELF',
payload: {

address: '2JqnxvDiMNzbSgme2oxpqUFpUYfMjTpNBGCLP2CsWjpbHdu',
contracts: [{

chainId: 'AELF',
contractAddress: 'TEST contractAddress',
contractName: 'AAAA',
description: 'contract description',
github: ''

}]
}

}, (error, result) => {
console.log('>>>>>>>>>>>>>', result);

});

// keychain = {
// keypairs: {...},
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',
// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: '',
// whitelist: {}
// },
// {
// chainId: 'AELF',
// contractAddress: 'TEST contractAddress',
// contractName: 'AAAA',
// description: 'contract description',
// github: ''

(continues on next page)

24.3. Data Format 559

AElf, Release release/1.2.3

(continued from previous page)

// }],
// domain: 'Dapp domain'
// }]
// }

24.3.9 REMOVE_CONTRACT_PERMISSION

aelf.removeContractPermission({
appName: 'hzzTest',
chainId: 'AELF',
payload: {

contractAddress: '2Xg2HKh8vusnFMQsHCXW1q3vys5JxG5ZnjiGwNDLrrpb9Mb'
}

}, (error, result) => {
console.log('removeContractPermission>>>>>>>>>>>>>>>>>>>', result);

});

// keychain = {
// keypairs: {...},
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',
// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: ''
// }],
// domain: 'Dapp domain'
// }]
// }

24.3.10 REMOVE_METHODS_WHITELIST

aelf.removeMethodsWhitelist({
appName: 'hzzTest',
chainId: 'AELF',
payload: {

contractAddress: '2Xg2HKh8vusnFMQsHCXW1q3vys5JxG5ZnjiGwNDLrrpb9Mb',
whitelist: ['Approve']

}
}, (error, result) => {

console.log('removeWhitelist>>>>>>>>>>>>>>>>>', result);
});
// keychain = {
// keypairs: {...},
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',

(continues on next page)

560 Chapter 24. aelf-web-extension

AElf, Release release/1.2.3

(continued from previous page)

// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: '',
// whitelist: {}
// }],
// domain: 'Dapp domain'
// }]
// }

24.4 For Extension Developers

1. Download the code

git clone https://github.com/hzz780/aelf-web-extension.git

2. Install dependent

npm install

3. Run webpack

webpack -w

4. Add to the browser

open development mode, add the webpack output app/public.

24.5 Project Information

We use ECDH to use public key to encryt data and private key to decrypt data.

24.4. For Extension Developers 561

https://github.com/indutny/elliptic

AElf, Release release/1.2.3

562 Chapter 24. aelf-web-extension

CHAPTER 25

DevOps

25.1 Open source development

We want to stay as open as possible during AElf’s development. For this we follow a certain amount rules and
guidelines to try and keep the project as accessible as possible. Our project is open source and we publish our code as
well as current issues online. It is our responsibility to make it as transparent as possible.

AElf is a collaborative project and welcomes outside opinion and requests/discussion for modifications of the code,
but since we work in an open environment all collaborator need to respect a certain standard. We clarify this in the
following standard:

•

We encourage collaborators that want to participate to first read the white paper and the documentations to understand
the ideas surrounding AElf. Also a look at our code and architecture and the way current functionality has been
implemented. After this if any questions remain, you can open an issues on GitHub stating as clearly as possible what
you need to clarify.

Finally, any collaborator wanting to participate in the development should open a pull request following our rules. It
will be formally reviewed and discussed through GitHub and if validated by core members of AElf, can be merged.

25.2 Deployment

For versioning we use the semver versioning system: https://semver.org

Daily build

Integrated with github we have cron job that will publish the latest version of devs myget packets.

- MyGet: https://www.myget.org/gallery/aelf-project-dev

Release branch

563

AElf, Release release/1.2.3

- Nuget: https://www.nuget.org/profiles/AElf

25.3 Testing

Testing is one of the most important aspects of software development. Non tested software is difficult to improve.
There are two main types of testing that we perform: unit testing and performance testing. The unit testing covers
functionality and protocol, which is an essential part of a blockchain system. The performance tests are also very
important to show that modifications have not impacted the speed at which our nodes process incoming transactions
and blocks.

25.3.1 Unit testing

To ensure the quality of our system and avoid regression, as well as permit safe modifications, we try to cover as much
of our functionality as possible through unit tests. We mostly use the xUnit framework and follow generally accepted
best practices when testing. Our workflow stipulates that for any new functionality, we cover it with tests and make
sure other unit tests.

25.3.2 Perf testing

The performance testing is crucial to AElf since a strong point of our system is speed.

25.4 Monitoring

• Server monitoring: Zabbix monitors instances of aelf metrics like cpu, db. . .

• Chain monitoring: project on github with Grafana dashboard from Influxdb

• Akka monitoring: monitor actors.

564 Chapter 25. DevOps

CHAPTER 26

QuickStart

26.1 Manual build & run the sources

This method is not as straightforward as the docker quickstart but is a lot more flexible. If your aim is to develop
some dApps it’s better you follow these more advanced ways of launching a node. This section will walk you through
configuring, running and interacting with an AElf node.

First, if you haven’t already done it, clone our repository

git clone https://github.com/AElfProject/AElf.git aelf
cd aelf/src

Navigate into the newly created aelf directory.

26.1.1 Generating the nodes account

First you need to install the aelf-command command packet. Open a terminal and enter the following command:

npm i -g aelf-command

Windows Note: it’s possible that you get some errors about python not being installed, you can safely ignore these.

After installing aelf-command you can use the following command to create an account/key-pair:

aelf-command create

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

Your wallet info is :
Mnemonic : great mushroom loan crisp ... door juice embrace
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea

(continues on next page)

565

https://github.com/AElfProject/AElf

AElf, Release release/1.2.3

(continued from previous page)

Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Save account info into a file? ... no / yes
XXX Enter a password ... ********
XXX Confirm password ... ********
XXX
Account info has been saved to "/Users/xxx/.local/share/**aelf**/keys/
→˓2Ue31YTuB5Szy7cnr...Gi5uMQBYarYUR5oGin1sys6H.json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf is the data
directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

26.1.2 Node configuration

We have one last step before we can run the node, we have to set up some configuration. Navigate into the
AElf.Launcher directory:

cd AElf.Launcher/

This folder contains the default appsettings.json file, with some default values already given. There’s still some fields
that are empty and that need configuring. This will require the information printed during the creation of the account.
Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

{
"Account":
{

"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H",
"NodeAccountPassword": "********"

},
}

The NodeAccount field corresponds to the address, you also have to enter the password that you entered earlier.

{
"InitialMinerList" : [

"0478903d96aa2c8c0...6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea"
],

}

This is a configuration that is used to specify the initial miners for the DPoS consensus, for now just configure one,
it’s the accounts public key that was printed during the account creation.

Note that if your Redis server is on another host listening on a different port than the default, you will also have to
configure the connection strings (port/db number):

{
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

},
}

566 Chapter 26. QuickStart

AElf, Release release/1.2.3

We’ve created an account/key-pair and modified the configuration to use this account for the node and mining, we’re
now ready to launch the node.

26.1.3 Launch and test

Now we will build and run the node with the following commands:

dotnet build AElf.Launcher.csproj --configuration Release
dotnet bin/Release/net6.0/AElf.Launcher.dll > aelf-logs.logs &
cd ..

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

aelf-command get-blk-height -e http://127.0.0.1:8000

26.1.4 Cleanup

To stop the node you can simply find and kill the process:

On mac/Linux:

ps -f | grep [A]Elf.Launcher.dll | awk '{print $2}'

On Windows (Powershell):

Get-CimInstance Win32_Process -Filter "name = 'dotnet.exe'" | select CommandLine,
→˓ProcessId | Where-Ob
ject {$_.CommandLine -like "*AElf.Launcher.dll"} | Stop-Process -ID {$_.ProcessId}

If needed you should also clean your redis database, with either of the following commands:

redis-cli FLUSHALL (clears all dbs)

redis-cli -n <database_number> FLUSHDB (clear a specified db)

26.1.5 Extra

For reference and after you’ve started a node, you can get infos about an account with the aelf-command console
command:

aelf-command console -a 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H

XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk
aelf | the instance of an aelf-sdk, connect to

(continues on next page)

26.1. Manual build & run the sources 567

AElf, Release release/1.2.3

(continued from previous page)

| http://127.0.0.1:8000
_account | the instance of an AElf wallet, address

| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

568 Chapter 26. QuickStart

CHAPTER 27

Developing smart contracts

AElf is part of a relatively new software type called the blockchain. From a high-level perspective, a blockchain is a
network of interconnected nodes that process transactions in order to form blocks. Transactions are usually broadcast
to the network by sending them to a node; this node verifies the transaction, and if it’s correct will broadcast it to other
nodes. The client that sent the transaction can be of many types, including a browser, script or any client that can
connect and send HTTP requests to a node.

Internally blockchains keep a record of all the transactions ever executed by the network, and these transactions are
contained in cryptographically linked blocks. AElf uses a DPoS consensus type in which miners collect transactions
and, according to a schedule, package them into blocks that are broadcast to the network. These linked blocks effec-
tively constitute the blockchain (here, blockchain refers to the data structure rather than the software). In AElf the
transaction and blocks are usually referred to as chain data.

Smart contracts are pieces of code that can be executed by transactions, and that will usually modify their associated
state. In other words, the execution of transactions modifies the current values of the contracts state. The set of all the
state variables of all the contracts is referred to as a state data.

27.1 Contracts in AElf

Conceptually, AElf smart contracts are entities composed of essentially three things: action methods, view methods,
and the contracts state. Actions represent logic that modifies the state of the contract, and views are used to fetch the
current state of the contract without modifying it. Theses two types of methods are executed when a transaction is
being processed by a node, usually when executing a block or producing it.

In practice, an aelf contract is written in C# with some parts that are generated from a protobuf definition. The
protobuf is used to define the contract’s methods and data types. By using a custom plugin, the protobuf compiler
generates the C# code that is later extended by the contract author to implement logic.

569

AElf, Release release/1.2.3

27.2 Development

Currently, the primary language supported by an AElf node is C#. The provided C# SDK contains all essential
elements for writing smart contracts, including communication with the execution context, access to state and storage
primitives.

Writing a contract boils down to creating a protobuf definition and a C# project (referred to sometimes as a Class
Library in the C# world) and referencing the SDK. Only a small subset of the C# language is needed to develop a
contract.

This series of articles mainly uses AElf Boilerplate as a smart contract development framework. It takes care of the
build process for the contract author and provides some well-defined location to place the contract files. The first
article will show you how to set up this environment. After the setup, the next three articles will walk you through
creating, testing, and deploying a contract. Later articles will focus on exposing more complex functionality.

27.2.1 Setup

AElf Boilerplate is the go-to environment for creating and testing smart contracts. It takes care of including your con-
tract files in the build system and linking the appropriate development SDK. Boilerplate also takes care of generating
the csharp code from the proto definition.

This article will get you started with development on Boilerplate. It contains the following items: - how to clone,
build, and run AElf Boilerplate. - how to run the Hello World contract tests. - a brief presentation of Boilerplate.

Environment

IDE

Strictly speaking, you don’t need an IDE for this tutorial, but it is highly recommended. If you don’t already have one
you can try Visual Studio Code (vscode) with the C# extension: - installation instructions for vscode here. - working
with C# extension here.

You can, of course, use your favorite C# IDE, most of the steps described here and in later articles do not need IDE
support.

Clone the repository

The following command will clone AElf Boilerplate into a aelf-boilerplate folder with Boilerplate’s code inside it,
open a terminal and enter the following command:

git clone https://github.com/AElfProject/aelf-boilerplate

The boilerplate repo contains a framework for easy smart contract development as well as examples (some explained
in this series of articles).

Build and run

Open the project

If not already done, open vscode and open the aelf-boilerplate folder. If asked to add some “required assets” say yes.
There may also be some dependencies to restore: for all of them, choose Restore.

570 Chapter 27. Developing smart contracts

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/languages/csharp
https://github.com/AElfProject/aelf-boilerplate

AElf, Release release/1.2.3

Open vscode’s Integrated Terminal and build the project with the following command. Note: you can find out more
about vscode’s terminal here.

Install script

As stated earlier, Boilerplate takes care of the C# code generation and thus has a dependency on protobuf. If you don’t
already have it installed, run the following script from withing the aelf-boilerplate folder:

Mac or Linux
sh chain/scripts/install.sh

Windows
open a PowerShell console as administrator
chain/scripts/install.ps1

{% hint style=“info” %} If you prefer or have problems, you can refer to the following guide to manually install
protobuf on your system. {% endhint %}

Build and run

The next step is to build Boilerplate and all the contracts to ensure everything is working correctly. Once everything
is built, we’ll run Boilerplate’s internal node.

enter the Launcher folder and build
cd chain/src/AElf.Boilerplate.Launcher/

build
dotnet build

run the node
dotnet run --no-build bin/Debug/net6.0/AElf.Boilerplate.Launcher

{% hint style=“warning” %} When running Boilerplate, you might see some errors related to an incorrect password,
to solve this, you need to backup your data-dir/keys/ folder and start with an empty keys folder. Once you’ve
cleaned the keys, stop and restart the node with the dotnet run command shown above. {% endhint %}

At this point, the smart contracts have been deployed and are ready to be called (Boilerplate has a functioning API).
You should see the node’s logs in the terminal and see the node producing blocks. You can now stop the node by
killing the process (usually control-c or ctrl-c in the terminal).

Run tests

Boilerplate makes it easy to write unit tests for your contracts. Here we’ll take the tests of the Hello World contract
included in Boilerplate as an example. To run the tests, navigate to the AElf.Contracts.HelloWorldContract.Test
folder and run:

27.2. Development 571

https://code.visualstudio.com/docs/editor/integrated-terminal
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md

AElf, Release release/1.2.3

cd ../../test/AElf.Contracts.HelloWorldContract.Test/
dotnet test

The output should look somewhat like this, meaning that the tests have successfully executed:

Test Run Successful.
Total tests: 1

Passed: 1
Total time: 2.8865 Seconds

At this point, you have successfully downloaded, built, and run Boilerplate. You have also run the HelloWorld con-
tract’s tests that are included in Boilerplate. Later articles will show you how to add a contract and its tests and add it
to the deployment process.

More on Boilerplate

Boilerplate is an environment that is used to develop smart contracts and dApps. After writing and testing your
contract on Boilerplate, you can deploy it to a running AElf chain. Internally Boilerplate will run an AElf node that
will automatically have your contract deployed on it at genesis.

Boilerplate is composed of two root folders: chain and web. This series of tutorial articles focuses on contract
development so we’ll only go into the details of the chain part of Boilerplate. Here is a brief overview of the folders:

.
chain

src
contract

AElf.Contracts.HelloWorldContract
AElf.Contracts.HelloWorldContract.csproj
HelloWorldContract.cs
HelloWorldContractState.cs
...

protobuf
hello_world_contract.proto
...

test
AElf.Contracts.HelloWorldContract.Test

AElf.Contracts.HelloWorldContract.Test.csproj
HelloWorldContractTest.cs

...

The hello world contract and its tests are split between the following folders: - contract: this folder contains the csharp
projects (.csproj) along with the contract implementation (.cs files). - protobuf: contains the .proto definition of the
contract. - test: contains the test project and files (basic xUnit test project).

You can use this layout as a template for your future smart contracts. Before you do, we recommend you follow
through all the articles of this series.

{% hint style=“info” %} You will also notice the src folder. This folder contains Boilerplate’s modules and the
executable for the node. {% endhint %}

Next

You’ve just seen a short introduction on how to run a smart contract that is already included in Boilerplate. The next
article will show you a complete smart contract and extra content on how to organize your code and test files.

572 Chapter 27. Developing smart contracts

AElf, Release release/1.2.3

{% hint style=“warning” %} All production contracts (contracts destined to be deployed to a live chain) must go
through a complete review process by the contract author and undergo proper testing. It is the author’s responsibility
to check the validity and security of his contract. The author should not simply copy the contracts contained in
Boilerplate; it’s the author’s responsibility to ensure the security and correctness of his contracts. {% endhint %}

27.2.2 Transaction execution context

This article will present some of the functionality available to smart contract developers that can help them implement
common scenarios.

When executing, transactions trigger the logic contained inside smart contracts. The smart contract execution is mostly
sandboxed (it’s an isolated environment), but some elements are accessible to the smart contract author through the
execution context.

Before we get started with the examples, it’s important to know a little about the execution model of transactions; this
will help you understand some concepts explained in this article. As a reminder this is what a transaction in AElf looks
like (simplified):

message Transaction {
Address from = 1; // the address of the signer
Address to = 2; // the address of the target contract
int64 ref_block_number = 3; // the block number
bytes ref_block_prefix = 4; // the block prefix info
string method_name = 5; // the method to execute
bytes params = 6; // the parameters to pass to the method
bytes signature = 10000; // the signature of this transaction (by the Sender)

}

When users create and send a transaction to a node, it will eventually be packaged in a block. When this block is
executed, the transactions it contains are executed one by one.

Each transaction can generate new transactions called inline transactions (more on this in the next article). When this
happens, the generated inline transactions are executed right after the transaction that generated them. For example,
let’s consider the following scenario: a block with two transactions, let’s say tx1 and tx2, where tx1 performs two
inline calls. In this situation, the order of execution will be the following:

‘”

1. execute tx1

2. • Execute first inline

3. • Execute second Inline

4. execute tx2 ‘”

This is important to know because, as we will see next, some of the execution context’s values change based on this
logic.

Origin, Sender and Self

• Origin: the address of the sender (signer) of the transaction being executed. Its type is an AElf address. It
corresponds to the From field of the transaction. This value never changes, even for nested inline calls. This
means that when you access this property in your contract, it’s value will be the entity that created the transaction
(user or smart contract through an inline call)

• Self: the address of the contract currently being executed. This changes for every transaction and inline trans-
action.

27.2. Development 573

AElf, Release release/1.2.3

• Sender: the address sending the transaction. If the transaction execution does not produce any inline transac-
tions, this will always be the same. But if one contract calls another with an inline transaction, the sender will
be the contract that is calling.

To use these values, you can access them through the Context property.

Context.Origin
Context.Sender
Context.Self

Useful properties

There are other properties that can be accessed through the context:

• transaction ID: this is the id of the transaction that is currently being executed. Note that inline transactions have
their own ID.

• chain ID: the ID of the current chain, this can be useful in the contract that needs to implement cross-chain
scenarios.

• current height: the height of the block that contains the transaction currently executing.

• current block time: the time included in the header of the current block.

• previous block hash: the hash of the block that precedes the current.

Useful methods

Logging and events:

Fire log event - these are logs that can be found in the transaction result after execution.

public override Empty Vote(VoteMinerInput input)
{

// for example the election system contract will fire a 'voted' event
// when a user calls vote.
Context.Fire(new Voted
{

VoteId = input.VoteId,
VotingItemId = votingRecord.VotingItemId,
Voter = votingRecord.Voter
//...

});
}

Application logging - when writing a contract, it is useful to be able to log some elements in the applications log file to
simplify development. Note that these logs are only visible when the node executing the transaction is build in debug
mode.

private Hash AssertValidNewVotingItem(VotingRegisterInput input)
{

// this is a method in the voting contract that will log to the applications log
→˓file

// when a 'voting item' is created.
Context.LogDebug(() => "Voting item created by {0}: {1}", Context.Sender,

→˓votingItemId.ToHex());

(continues on next page)

574 Chapter 27. Developing smart contracts

AElf, Release release/1.2.3

(continued from previous page)

// ...
}

Get contract address

It’s sometimes useful to get the address of a system contract; this can be done as follows:

public override Empty AddBeneficiary(AddBeneficiaryInput input)
{

// In the profit contract, when adding a 'beneficiary', the method will get
→˓the address of the token holder

// contract from its name, to perform an assert.

Assert(Context.Sender == Context.
→˓GetContractAddressByName(SmartContractConstants.TokenHolderContractSystemName),

"Only manager can add beneficiary.");
}

Recovering the public key

Recovering the public key: this can be used for recovering the public key of the transaction Sender.

public override Empty Vote(VoteMinerInput input)
{

// for example the election system contract will use the public key of the sender
// to keep track of votes.
var recoveredPublicKey = Context.RecoverPublicKey();

}

27.2.3 Internal contract interactions

There are essentially two reasons for interacting with other contracts:

1. to query their state.

2. to create an inline transaction, that is, a new transaction which will be executed after the original transaction.

Both of the two operations can be done in two ways:

1. using the transaction execution context.

2. adding a Contract Reference State to the contract, then using CSharpSmartContract.State to call methods.

Using the Context

Query state from other contracts

Let’s see how to call the GetCandidates method of the Election Contract and get the return value directly in your
contract code with the Context property that is available in every smart contract.

27.2. Development 575

AElf, Release release/1.2.3

using AElf.Sdk.CSharp;
using AElf.Contracts.Election;
...
// your contract code needs the candidates
var electionContractAddress =

Context.GetContractAddressByName(SmartContractConstants.
→˓ElectionContractSystemName);

// call the method
var candidates = Context.Call<PubkeyList>(electionContractAddress, "GetCandidates",
→˓new Empty());

// use **candidates** to do other stuff...

There are several things to know before writing such code:

• Because this code references a type (PubkeyList) originally defined in the Election Contract (types are defined
in a proto file, in this case, election_contract.proto), you at least need to reference messages defined in the
.proto file in your contracts project.

Add these lines to your csproj file:

<ItemGroup>
<ContractMessage Include="..\..\protobuf\election_contract.proto">

<Link>Protobuf\Proto\reference\election_contract.proto</Link>
</ContractMessage>

</ItemGroup>

The ContractMessage tag means you just want to reference the messages defined in the specified .proto file.

• The Call method takes the three following parameters:

– address: the address of the contract you’re seeking to interact with.

– methodName: the name of the method you want to call.

– message: the argument for calling that method.

• Since the Election Contract is a system contract which deployed at the very beginning of AElf
blockchain, we can get its address directly from the Context property. If you want to call contracts deployed
by users, you may need to obtain the address in another way (like hard code).

To send an inline transaction

Imagine you want to transfer some tokens from the contract you’re writing, the necessary step is sending an inline
transaction to MultiToken Contract, and the MethodName of this inline transaction needs to be Transfer
.

var tokenContractAddress = Context.GetContractAddressByName(SmartContractConstants.
→˓TokenContractSystemName);
Context.SendInline(tokenContractAddress, "Transfer", new TransferInput
{

To = toAddress/* The address you wanna transfer to*/,
Symbol = Context.Variables.NativeSymbol,// You will get "ELF" if this contract is

→˓deployed in AElf main chain.
Amount = 100_000_00000000,// 100000 ELF tokens.
Memo = "Gift."// Optional

});

576 Chapter 27. Developing smart contracts

AElf, Release release/1.2.3

Again, because you have to reference a message defined by the m=Multi-Token contract proto file, you need to add
these lines to the csproj file of your contract project.

<ItemGroup>
<ContractMessage Include="..\..\protobuf\token_contract.proto">

<Link>Protobuf\Proto\reference\token_contract.proto</Link>
</ContractMessage>

</ItemGroup>

This inline transaction will be executed after the execution of the original transaction. Check other documentation for
more details about the inline transactions.

Using Contract Reference State

Using Contract Reference State is more convenient than using Context to do the interaction with another
contract. Follow these three steps of preparation:

1. Add a related proto file(s) of the contract you want to call or send inline transactions to and rebuild the contract
project. (like before, but we need to change the MSBUILD tag name, we’ll see this later.)

2. Add an internal property of XXXContractReferenceState type to the State class of your contract.

3. Set the contract address to the Value of property you just added in step 2.

Let’s see a demo that implements these steps: check the balance of ELF token of the current contract, if the balance is
more significant than 100 000, request a random number from AEDPoS Contract.

First, reference proto files related to MultiToken Contract and acs6.proto (random number generation).

<ItemGroup>
<ContractReference Include="..\..\protobuf\acs6.proto">

<Link>Protobuf\Proto\reference\acs6.proto</Link>
</ContractReference>
<ContractReference Include="..\..\protobuf\token_contract.proto">

<Link>Protobuf\Proto\reference\token_contract.proto</Link>
</ContractReference>

</ItemGroup>

After rebuilding the contract project, we’ll see following files appear in the Protobuf/Generated folder:

• Acs6.c.cs

• Acs6.g.cs

• TokenContract.c.cs

• TokenContract.g.cs

As you may guess, the entities we will use are defined in files above.

Here we will define two Contract Reference States, one for the token contract and one for the random
number provider.

using AElf.Contracts.MultiToken;
using Acs6;

...

// Define these properties in the State file of current contract.

(continues on next page)

27.2. Development 577

AElf, Release release/1.2.3

(continued from previous page)

internal TokenContractContainer.TokenContractReferenceState TokenContract { get; set;
→˓}
internal RandomNumberProviderContractContainer.
→˓RandomNumberProviderContractReferenceState ACS6Contract { get; set }

Life becomes very easy if we have these XXXContractReferenceState instances. Check the implementation.

// Set the Contract Reference States address before using it (again here, we already
→˓have the system addresses for the token and ac6 contracts).
if (State.TokenContract.Value == null)
{

State.TokenContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenContractSystemName);
}
if (State.ACS6Contract.Value == null)
{

// This means we use the random number generation service provided by `AEDPoS
→˓Contract`.

State.ACS6Contract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓ConsensusContractSystemName);
}

// Use `Call` method to query states from multi-token contract.
var balance = State.TokenContract.GetBalance.Call(new GetBalanceInput
{

Owner = Context.Self,// The address of current contract.
Symbol = "ELF"// Also, you can use Context.Variables.NativeSymbol if this

→˓contract will deployed in AElf main chain.
});
if (balance.Balance > 100_000)
{

// Use `Send` method to generate an inline transaction.
State.ACS6Contract.RequestRandomNumber.Send(new RequestRandomNumberInput());

}

As you can see, it is convenient to call a method by using state property like this: State.Contract.method.Call(input).

578 Chapter 27. Developing smart contracts

	Welcome to AElf’s official documentation.
	Development Environment
	Install
	Node

	Smart Contract Development
	Greeter Contract
	Smart contract deployment

	AElf Blockchain Boot Sequence
	Start initial nodes
	Run full node
	Be a candidate node
	User vote election
	Become production node
	Add more production nodes

	How to join the testnet
	Setup the database
	Node configuration
	Running a full node with Docker
	Running a full node with the binary release
	Running a full node with the source
	Check the node
	Run side-chains

	How to join the mainnet
	Setup the database
	Node configuration
	Running a full node with Docker
	Running a full node with the binary release
	Running a full node with the source
	Check the node
	Run side-chains

	Running a side chain
	Requesting the creation of a side chain
	Running a side chain (after its release)

	Running AElf on the cloud
	Getting started with Google cloud

	Smart Contract Developing Demos
	Bingo Game

	Consensus
	Overview
	AEDPoS Process
	Irreversible Block

	Network
	Introduction
	Architecture
	Protocol

	Address
	Overview
	User Address
	Contract Address
	Contract Virtual Address

	Overview
	Smart Contract
	Action & View
	Transaction Instance
	Transaction Id

	Core
	Application pattern
	Design principles:

	Cross Chain
	Introduction
	Overview
	Cross chain verification
	Cross chain verify
	Cross chain transfer

	Smart contract
	Smart contract architecture
	Smart contract service
	Smart contract events
	Smart contract messages
	Development Requirements and Restrictions

	AELF API 1.0
	Chain API
	Net API

	Chain SDK
	aelf-sdk.js - AELF JavaScript API
	aelf-sdk.cs - AELF C# API
	aelf-sdk.go - AELF Go API
	aelf-sdk.java - AELF Java API
	aelf-sdk.php - AELF PHP API
	aelf-sdk.py - AELF Python API

	C# reference
	AElf.Sdk.CSharp
	AElf.CSharp.Core

	Smart Contract APIs
	AElf.Contracts.Association
	AElf.Contracts.Referendum
	AElf.Contracts.Parliament
	AElf.Contracts.Consensus.AEDPoS
	AElf.Contracts.Election
	AElf.Contracts.Genesis
	AElf.Contracts.MultiToken
	AElf.Contracts.Profit
	AElf.Contracts.CrossChain
	AElf.Contracts.Treasury
	AElf.Contracts.Vote
	AElf.Contracts.TokenHolder
	AElf.Contracts.Economic
	AElf.Contracts.TokenConverter
	AElf.Contracts.Configuration

	Acs Introduction
	ACS0 - Contract Deployment Standard
	ACS1 - Transaction Fee Standard
	ACS2 - Parallel Execution Standard
	ACS3 - Contract Proposal Standard
	ACS4 - Consensus Standard
	ACS5 - Contract Threshold Standard
	ACS6 - Random Number Provider Standard
	ACS7 - Contract CrossChain Standard
	ACS8 - Transaction Resource Token Fee Standard
	ACS9 - Contract profit dividend standard
	ACS10 - Dividend Pool Standard
	ACS11 - Cross Chain Consensus Standard

	Command line interface
	Introduction to the CLI
	Commands

	Wallet and Block Explorer
	Explorer
	iOS/Android Wallet
	Web Wallet

	aelf-web-extension
	For User
	For Dapp Developers
	Data Format
	For Extension Developers
	Project Information

	DevOps
	Open source development
	Deployment
	Testing
	Monitoring

	QuickStart
	Manual build & run the sources

	Developing smart contracts
	Contracts in AElf
	Development

