
AElf
Release release/1.0.0-preview3

Dec 18, 2020

Contents

1 Welcome to AElf’s official documentation. 1

2 Development Environment 3
2.1 Dependencies . 3
2.2 Running a node with Docker . 9
2.3 Running multi-nodes with Docker . 10
2.4 QuickStart . 14

3 Smart Contract Development 19
3.1 Greeter Contract . 19
3.2 Smart contract deployment . 30

4 AElf Blockchain Boot Sequence 35
4.1 1. Start initial nodes . 35
4.2 2. Run full node . 35
4.3 3. Be a candidate node . 37
4.4 4. User vote election . 37
4.5 5. Become production node . 39
4.6 6. Add more production nodes . 39

5 How to join the testnet 41
5.1 Setup the database . 41
5.2 Node configuration . 42
5.3 Running a full node with Docker . 44
5.4 Running a full node with the binary release . 44
5.5 Running a full node with the source . 44
5.6 Check the node . 45
5.7 Run side-chains . 45

6 Running a side chain 47
6.1 Requesting the creation of a side chain . 47
6.2 Running a side chain (after its release) . 56

7 Running AElf on the cloud 59
7.1 Getting started with Google cloud . 59

8 Smart Contract Developing Demos 63

i

8.1 Bingo Game . 63

9 Consensus 69
9.1 Overview . 69
9.2 AEDPoS Process . 70
9.3 Irreversible Block . 72

10 Network 73
10.1 1. Introduction . 73
10.2 2. Architecture . 73
10.3 3. Protocol . 75

11 Address 81
11.1 Overview . 81
11.2 User Address . 81
11.3 Contract Address . 82
11.4 Contract Virtual Address . 82

12 Overview 85
12.1 Smart Contract . 85
12.2 Action & View . 85
12.3 Transaction Instance . 86
12.4 Transaction Execution . 87

13 Core 89
13.1 Application pattern . 89
13.2 Design principles: . 90

14 Cross Chain 93
14.1 introduction . 93
14.2 Overview . 94
14.3 Cross chain verification . 96
14.4 Cross chain verify . 98
14.5 Cross chain transfer . 99

15 Smart contract 103
15.1 Smart contract architecture . 103
15.2 Smart contract service . 105
15.3 Smart contract events . 106
15.4 Smart contract messages . 106
15.5 Development Requirements and Restrictions . 107

16 AELF API 1.0 115
16.1 Chain API . 115
16.2 Net API . 127

17 Chain SDK 135
17.1 aelf-sdk.js - AELF JavaScript API . 135
17.2 aelf-sdk.cs - AELF C# API . 147
17.3 aelf-sdk.go - AELF Go API . 147
17.4 aelf-sdk.java - AELF Java API . 147
17.5 aelf-sdk.php - AELF PHP API . 147
17.6 aelf-sdk.py - AELF Python API . 147

18 C# reference 149
18.1 AElf.Sdk.CSharp . 149

ii

18.2 AElf.CSharp.Core . 171

19 Smart Contract APIs 185
19.1 Association Contract . 185
19.2 Referendum Contract . 194
19.3 Parliament Contract . 202
19.4 Consensus Contract . 212
19.5 Election Contract . 218
19.6 Genesis Contract . 232
19.7 multi-token . 239
19.8 Profit Contract . 256
19.9 Cross Chain Contract . 263
19.10 Treasury Contract . 277
19.11 Vote Contract . 282
19.12 Token Holder Contract . 290
19.13 Economic Contract . 293
19.14 TokenConvert Contract . 296
19.15 Configuration Contract . 302

20 Acs Introduction 307
20.1 ACS1 - Transaction Fee Standard . 307
20.2 ACS2 - Parallel Execution Standard . 312
20.3 ACS3 - Contract Proposal Standard . 315
20.4 ACS4 - Consensus Standard . 321
20.5 ACS5 - Contract Threshold Standard . 323
20.6 todo . 326
20.7 ACS7 - Contract CrossChain Standard . 326
20.8 ACS8 - Transaction Resource Token Fee Standard . 327
20.9 ACS9 - Contract profit dividend standard . 329
20.10 ACS10 - Dividend Pool Standard . 338

21 Command line interface 345
21.1 Introduction to the CLI . 345
21.2 Commands . 349

22 Wallet and Block Explorer 363
22.1 Explorer . 363
22.2 iOS/Android Wallet . 363
22.3 Web Wallet . 363

23 aelf-web-extension 369
23.1 For User . 369
23.2 For Dapp Developers . 369
23.3 Data Format . 370
23.4 For Extension Developers . 377
23.5 Project Information . 377

24 DevOps 379
24.1 Open source development . 379
24.2 Deployment . 379
24.3 Testing . 380
24.4 Monitoring . 380

25 QuickStart 381
25.1 Manual build & run the sources . 381

iii

26 todo 385

27 Developing smart contracts 387
27.1 Contracts in AElf . 387
27.2 Development . 388

iv

CHAPTER 1

Welcome to AElf’s official documentation.

This GitBook is where we centralize our guides, documents and api references. Wether you’re a dApp developer
looking to build some awesome apps on top of AElf or simply just interested in seeing what a running node looks like,
this place is for you!

As of today the documentation is correct but still a work in progress so we invite you to frequently visit and discover
any new content.

1

AElf, Release release/1.0.0-preview3

2 Chapter 1. Welcome to AElf’s official documentation.

CHAPTER 2

Development Environment

2.1 Dependencies

Before you jump in to the getting started and tutorials you’ll need to install the following tools and frameworks.

For most of these dependencies we provide ready-to-use command line instructions. In case of problems or if you
have more complex needs, we provide the official link with full instructions.

This page is divided into two sections: the first concerns the common dependencies that are needed for running a node.
The second shows the extra dependencies needed for building the sources and development tools.

2.1.1 Common dependencies

Pre-setup for Windows users

A convenient tool for Windows users is Chocolatey for installing dependencies. Follow the installation instructions
below (see here for more details Chocolatey installation):

Open and administrative Powershell and enter the following commands:

Set-ExecutionPolicy AllSigned
or
Set-ExecutionPolicy Bypass -Scope Process

Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.
→˓WebClient).DownloadString('https://chocolatey.org/install.ps1'))

Later, Chocolatey can be very useful for installing dependencies on Windows systems.

Pre-setup for macOS users

It is highly recommended that you install Homebrew (or simply Brew) to quickly and easily setup dependencies (see
here for more details Homebrew install page). Open a terminal and execute the following command:

3

https://chocolatey.org/install
https://www.digitalcitizen.life/ways-launch-powershell-windows-admin
https://brew.sh/

AElf, Release release/1.0.0-preview3

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

Node js

Next install nodejs by following the instructions here (see here for more details Nodejs):

On macOS:

brew install node

On Windows:

choco install nodejs

On Linux:

sudo apt-get install nodejs

Database

We currently support two key-value databases to store our nodes data: Redis or SSDB. Both work well, it’s your
decision:

Redis (recommended for the tutorials):

Depending on your platform, enter one of the following commands (see here for more details Redis download page):

On Windows:

choco install redis-64

On macOS:

brew install redis

On Linux:

sudo apt install redis-server

To test the installation (all platforms) you can just open a terminal and type redis-server. This will show you the
servers welcome page as well as the port it’s listening on:

4 Chapter 2. Development Environment

https://nodejs.org/en/download/
https://redis.io/

AElf, Release release/1.0.0-preview3

SSDB

Depending on your platform, enter one of the following commands (see here for more details SSDB):

NOTE: On a Windows machine we highly recommend you use Redis. This is an extract from the official website:

Do not run SSDB server on Windows system for a production environment. If you wish to
→˓stick with Windows system, please run a Linux virtual machine on Windows, and run
→˓SSDB server on that Linux.

On macOS:

brew install ssdb

On Linux:

wget --no-check-certificate https://github.com/ideawu/ssdb/archive/master.zip
unzip master
cd ssdb-master
make
optional, install ssdb in /usr/local/ssdb
sudo make install

2.1.2 Building sources and development tools

You only need to follow this section if you intend to build aelf from the sources available on Github or if you plan on
doing smart contract development.

2.1. Dependencies 5

http://ssdb.io/?lang=en

AElf, Release release/1.0.0-preview3

Windows build tools

A dependency needed to build AElf from the command line under Windows is Visual Studio Build Tools. The easiest
way is to use the Visual Studio Installer:

If you already have an edition of Visual Studio installed, open the Visual Studio Installer and add the Desktop
development with C++ workload:

If you don’t have any of the Visual Studio editions installed:

• you can download it here Visual Studio Community Edition for free and after the installation add the Desktop
development with C++ workload.

• or if you don’t need or want a full blown installation of Visual Studio, you can download the build tools here:
Download Page. Scroll down and under the section Tools for Visual Studio 2019 download the build tools for
Visual Studio:

After the installation open Visual Studio Installer, locate and install the C++ build tools.

6 Chapter 2. Development Environment

https://visualstudio.microsoft.com/fr/downloads/?rr=https%3A%2F%2Fwww.google.com%2F
https://visualstudio.microsoft.com/downloads/#other

AElf, Release release/1.0.0-preview3

Git

If you want to run a node or use our custom smart contract environment, at some point you will have to clone (download
the source code) from AElf’s repository. For this you will have to use Git since we host our code on GitHub.

Click the following link to download Git for your platform (see here for more details Getting Started - Installing Git):

On macOS:

brew install git

On Windows:

choco install git

On Linux:

sudo apt install git-all

Development framework - dotnet core sdk

Most of AElf is developed with dotnet core, so you will need to download and install the .NET Core SDK before you
start:

Download .NET Core 3.1

For now AElf depends on version 3.1 of the SDK, on the provided link find the download for your platform (for
Windows and macOS the installer for x64 is the most convenient if your platform is compatible - most are these days),
the page looks like this:

2.1. Dependencies 7

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://dotnet.microsoft.com/download/dotnet-core/3.1

AElf, Release release/1.0.0-preview3

Wait for the download to finish, launch the installer and follow the instructions (for AElf all defaults provided in the
installer should be correct).

To check the installation, you can open a terminal and run the dotnet command. If everything went fine it will show
you dotnet options for the command line.

Protobuf

Depending on your platform, enter one of the following commands (see here for more details Protobuf Github):

On Windows, open a Powershell and enter the following commands:

choco install protoc --version=3.11.4 -y
choco upgrade unzip -y

8 Chapter 2. Development Environment

https://github.com/protocolbuffers/protobuf

AElf, Release release/1.0.0-preview3

On Linux:

Make sure you grab 3.11.4 for protoc
curl -OL https://github.com/google/protobuf/releases/download/v3.11.4/protoc-3.11.4-
→˓linux-x86_64.zip

Unzip
unzip protoc-3.11.4-linux-x86_64.zip -d protoc3

Move protoc to /usr/local/bin/
sudo mv protoc3/bin/* /usr/local/bin/

Move protoc3/include to /usr/local/include/
sudo mv protoc3/include/* /usr/local/include/

Optional: change owner
sudo chown ${USER} /usr/local/bin/protoc
sudo chown -R ${USER} /usr/local/include/google

on macOS:

Make sure you grab 3.11.4 for protoc
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v3.11.4/protoc-
→˓3.11.4-osx-x86_64.zip

Unzip
unzip protoc-3.11.4-osx-x86_64.zip -d protoc3

Move protoc to /usr/local/bin/
sudo mv protoc3/bin/* /usr/local/bin/

Move protoc3/include to /usr/local/include/
sudo mv protoc3/include/* /usr/local/include

Optional: change owner
sudo chown ${USER} /usr/local/bin/protoc
sudo chown -R ${USER} /usr/local/include/google

2.2 Running a node with Docker

A pre-requisite to this tutorial is to install Docker on your system.

2.2.1 Pull AElf Docker image

After you have completed the Docker installation, you can pull the latest version of the official AElf image with the
following command:

docker pull aelf/node

While downloading you can make sure your Redis database instance is ready.

2.2.2 Create configuration

First, choose a location for the configuration, for this tutorial we’ll create a directory called singleNode.

2.2. Running a node with Docker 9

AElf, Release release/1.0.0-preview3

mkdir singleNode
cd singleNode

Next in the directory place appsettings.json and appsettings.MainChain.MainNet.json files. An example of appset-
tings.json can be found here. And an example of appsettings.MainChain.MainNet.json can be found here

Then you can modify appsettings.json file. And the only fields you have to change are the IP and port of your Redis
instance :

{
"ConnectionStrings": {
"BlockchainDb": "redis://192.168.1.70:6379?db=1",
"StateDb": "redis://192.168.1.70:6379?db=1"

},
}

Replace “192.168.1.70” and 6379 with whatever host your Redis server is on.

2.2.3 Starting the container

Once you have finished downloading the latest version of the AElf image, you can start the container:

docker run -it -p 8000:8000 -v <path/to/singleNode>:/opt/aelf-node -w /opt/aelf-node
→˓aelf/node:latest dotnet /app/AElf.Launcher.dll

2.2.4 Access the node’s Swagger

You now should have a node that’s running, to check this open the browser and enter the address:

http://your-ip:8000/swagger/index.html

The ip should be localhost if you browser is local.

From here you can try out any of the available API commands on the Swagger page. You can also have a look at the
API reference here.

2.3 Running multi-nodes with Docker

This section will walk you through the steps for launching three nodes or more by repeating the steps. It is largely
based on the section about running a single node (quickstart), so following the fist tutorial is highly recommended. A
pre-requisite for this tutorial is to install Docker on your system.

Here’s the main points of the tutorial:

• set up some folders that will contain the configuration files for each node.

• use aelf-command create to create a key-pair for all nodes.

• modify the NodeAccount, NodeAccountPassword values in the appsettings.json.

• add the key-pair public key as a miner in the InitialMinerList.

• launch the nodes with Docker.

Make sure your Redis instance is ready, this tutorial requires three clean instances (we’ll use db1, db2 and db3).

10 Chapter 2. Development Environment

https://github.com/AElfProject/AElf/blob/dev/src/AElf.Launcher/appsettings.json
https://github.com/AElfProject/AElf/blob/dev/src/AElf.Launcher/appsettings.MainChain.MainNet.json

AElf, Release release/1.0.0-preview3

2.3.1 Pull AElf Docker image

You can start by opening three terminals, in one of them make sure you have the latest version of the image:

docker pull aelf/node

Wait for any update to finish.

Create configuration

First, choose a location for the folders, for this tutorial we’ll create a directory called MultiNodeTutorial, that will
become your workspace and navigate inside it.

mkdir MultiNodeTutorial
cd MultiNodeTutorial

Create three folders in the workspace folder, one for each miner (lets say miner1, miner2 and miner3).

mkdir miner1 miner2 miner3

Next in each of these folders place appsettings.json and appsettings.MainChain.MainNet.json files. An example of
appsettings.json can be found here. And an example of appsettings.MainChain.MainNet.json can be found here

We’ll modify these later in the next steps.

Accounts

Each node will have it’s own account, because they will be independent miners.

Generate three accounts, one for each miner, be sure to keep the addresses and the password as well as the password.

aelf-command create

Be sure to note the public-key and address of all accounts.

Configuration

In this section we will modify the configuration for each miner.

Miners list

Modify each miner’s configuration with their respective accounts (NodeAccount and NodeAccountPassword).

Once this is done you should update config files with public keys, so the configuration for InitialMinerList will look
something like this in miner1, miner2 and miner3’s configuration files:

• MultiNodeTutorial/miner{1, 2 and 3}/appsettings.json:

{
"InitialMinerList" : [

→˓"0499d3bb14337961c4d338b9729f46b20de8a49ed38e260a5c19a18da569462b44b820e206df8e848185dac6c139f05392c268effe915c147cde422e69514cc927
→˓",

→˓"048397dfd9e1035fdd7260329d9492d88824f42917c156aef93fd7c2e3ab73b636f482b8ceb5cb435c556bfa067445a86e6f5c3b44ae6853c7f3dd7052609ed40b
→˓", (continues on next page)

2.3. Running multi-nodes with Docker 11

https://github.com/AElfProject/AElf/blob/dev/src/AElf.Launcher/appsettings.json
https://github.com/AElfProject/AElf/blob/dev/src/AElf.Launcher/appsettings.MainChain.MainNet.json

AElf, Release release/1.0.0-preview3

(continued from previous page)

→˓"041cc962a51e7bbdd829a8855eca8a03fda708fdf31969251321cb31edadd564bf3c6e7ab31b4c1f49f0f206be81dbe68a75c70b293bf9d04d867ee5e415d3bf8a
→˓"
],

}

Note you need to replace these three public keys with the ones you previously created.

Network

The next section we need to configure is the network options. Following is miner1’s configuration of the Network
section:

{
"Network": {

"BootNodes": ["x.x.x.x:x"],
"ListeningPort": 0000,

},
}

Only two options need to be changed for this tutorial, BootNodes and ListeningPort. The listening port the node will
be using to be reachable on the network: other nodes will use this to connect to the node. The boot nodes field is a list
of peer addresses that the node will connect to on when it’s started. So in order for three nodes to connect to others
replace the configurations like following:

• MultiNodeTutorial/miner1/appsettings.json:

{
"Network": {
"BootNodes": ["192.168.1.70:6801","192.168.1.70:6802"],
"ListeningPort": 6800

},
}

• MultiNodeTutorial/miner2/appsettings.json:

{
"Network": {
"BootNodes": ["192.168.1.70:6800","192.168.1.70:6802"],
"ListeningPort": 6801

},
}

• MultiNodeTutorial/miner3/appsettings.json:

{
"Network": {
"BootNodes": ["192.168.1.70:6800","192.168.1.70:6801"],
"ListeningPort": 6802

},
}

Replace “192.168.1.70” with the correct addresses of each node.

12 Chapter 2. Development Environment

AElf, Release release/1.0.0-preview3

Redis

Each node will need it’s own database, so in miner2 and miner3 you’ll need to change the database number:

• MultiNodeTutorial/miner1/appsettings.json:

{
"ConnectionStrings": {
"BlockchainDb": "redis://192.168.1.70:6379?db=1",
"StateDb": "redis://192.168.1.70:6379?db=1"

},
}

• MultiNodeTutorial/miner2/appsettings.json:

{
"ConnectionStrings": {
"BlockchainDb": "redis://192.168.1.70:6379?db=2",
"StateDb": "redis://192.168.1.70:6379?db=2"

},
}

• MultiNodeTutorial/miner3/appsettings.json:

{
"ConnectionStrings": {
"BlockchainDb": "redis://192.168.1.70:6379?db=3",
"StateDb": "redis://192.168.1.70:6379?db=3"

},
}

Replace “192.168.1.70” and 6379 with whatever host your Redis server is on.

RPC endpoint

The last configuration option we need to change is the RPC endpoint at which the node’s API is reachable.

{
"Kestrel": {
"EndPoints": {

"Http": {
"Url": "http://*:8000/"

}
}

},
}

The example shows that the port is 8000, for miner1 you can keep this value but since we’re running this tutorial on a
single machine, miner2 and miner3’s port must be different, lets say 8001 and 8002.

Start docker - node one

docker run -it -p 8000:8000 -p 6800:6800 -v <your/local/keystore/path>:/root/.local/
→˓share/aelf/keys -v <path/to/MultiNodeTutorial/miner1>:/opt/aelf-node -w /opt/aelf-
→˓node aelf/node:latest dotnet /app/AElf.Launcher.dll

2.3. Running multi-nodes with Docker 13

AElf, Release release/1.0.0-preview3

Here 8000 will be the API endpoint port and 6800 the listening port and both are mapped in docker. You will need
to replace “your/local/keystore/path” to the location of you key store (aelf-command create will show you where your
keys are currently stored).

You also need to map the configuration files we created, in the miner1, miner2 and miner3 directories, so replace
“path/to/MultiNodeTutorial/miner1” with your local path.

The next step is the same, but with a second container.

Start docker - node two

docker run -it -p 8001:8001 -p 6801:6801 -v <your/local/keystore/path>:/root/.local/
→˓share/aelf/keys -v <path/to/MultiNodeTutorial/miner2>:/opt/aelf-node -w /opt/aelf-
→˓node aelf/node:latest dotnet

Here 8001 will be the API endpoint port and 6801 the listening port and both are mapped in docker. Like for the
previous node,you will need to replace “your/local/keystore/path” to the location of you key store.

You also need to map the configuration files we created for miner2, in the miner2 directory, so replace
“path/to/MultiNodeTutorial/miner2” with your local path.

The next step is the same, but with a third container.

Start docker - node three

docker run -it -p 8002:8002 -p 6802:6802 -v <your/local/keystore/path>:/root/.local/
→˓share/aelf/keys -v <path/to/MultiNodeTutorial/miner3>:/opt/aelf-node -w /opt/aelf-
→˓node aelf/node:latest dotnet

Here 8002 will be the API endpoint port and 6802 the listening port and both are mapped in docker. Like for the
previous node,you will need to replace “your/local/keystore/path” to the location of you key store.

You also need to map the configuration files we created for miner3, in the miner3 directory, so replace
“path/to/MultiNodeTutorial/miner3” with your local path.

2.3.2 Access the node’s Swagger

You can now check all nodes with the Swagger interface. Open the following addresses in your browser:

http://your-ip:8000/swagger/index.html
http://your-ip:8001/swagger/index.html
http://your-ip:8002/swagger/index.html

The ip should be localhost if your browser and docker are running local.

From here you can try out any of the available API commands on the Swagger page. You can also have a look at the
API reference here.

2.4 QuickStart

2.4.1 Manual build & run the sources

This tutorial is only if you are interested in building the sources and running the node from the build.

14 Chapter 2. Development Environment

AElf, Release release/1.0.0-preview3

This method is not as straightforward as the docker quickstart but is a lot more flexible. If your aim is to develop
some dApps it’s better you follow these more advanced ways of launching a node. This section will walk you through
configuring, running and interacting with an AElf node.

First, if you haven’t already done it, clone our repository

git clone https://github.com/AElfProject/AElf.git aelf
cd aelf/src

Navigate into the newly created aelf directory.

Generating the nodes account

First you need to install the aelf-command command packet. Open a terminal and enter the following command:

npm i -g aelf-command

Windows Note: it’s possible that you get some errors about python not being installed, you can safely ignore these.

After installing aelf-command you can use the following command to create an account/key-pair:

aelf-command create

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

Your wallet info is :
Mnemonic : great mushroom loan crisp ... door juice embrace
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea
Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Save account info into a file? ... no / yes
XXX Enter a password ... ********
XXX Confirm password ... ********
XXX
Account info has been saved to "/Users/xxx/.local/share/**aelf**/keys/
→˓2Ue31YTuB5Szy7cnr...Gi5uMQBYarYUR5oGin1sys6H.json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf is the data
directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

Node configuration

We have one last step before we can run the node, we have to set up some configuration. Navigate into the
AElf.Launcher directory:

cd AElf.Launcher/

This folder contains the default appsettings.json file, with some default values already given. There’s still some fields
that are empty and that need configuring. This will require the information printed during the creation of the account.
Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

2.4. QuickStart 15

https://github.com/AElfProject/AElf

AElf, Release release/1.0.0-preview3

{
"Account":
{

"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H",
"NodeAccountPassword": "********"

},
}

The NodeAccount field corresponds to the address, you also have to enter the password that you entered earlier.

{
"InitialMinerList" : [

"0478903d96aa2c8c0...6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea"
],

}

This is a configuration that is used to specify the initial miners for the DPoS consensus, for now just configure one,
it’s the accounts public key that was printed during the account creation.

Note that if your Redis server is on another host listening on a different port than the default, you will also have to
configure the connection strings (port/db number):

{
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

},
}

We’ve created an account/key-pair and modified the configuration to use this account for the node and mining, we’re
now ready to launch the node.

Launch and test

Now we build and run the node navigate into the aelf directory and build the solution with the following commands:

dotnet build AElf.Launcher.csproj --configuration Release
dotnet bin/Release/netcoreapp3.1/AElf.Launcher.dll > aelf-logs.logs &
cd ..

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

aelf-command get-blk-height -e http://127.0.0.1:8000

Cleanup

To stop the node you can simply find and kill the process with:

On mac/Linux:

ps -f | grep [A]Elf.Launcher.dll | awk '{print $2}'

On Windows (Powershell):

16 Chapter 2. Development Environment

AElf, Release release/1.0.0-preview3

Get-CimInstance Win32_Process -Filter "name = 'dotnet.exe'" | select CommandLine,
→˓ProcessId | Where-Ob
ject {$_.CommandLine -like "*AElf.Launcher.dll"} | Stop-Process -ID {$_.ProcessId}

If needed you should also clean your redis database, with either of the following commands:

redis-cli FLUSHALL (clears all dbs)

redis-cli -n <database_number> FLUSHDB (clear a specified db)

Extra

For reference and after you’ve started a node, you can get infos about an account with the aelf-command console
command:

aelf-command console -a 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H

XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk
aelf | the instance of an aelf-sdk, connect to

| http://127.0.0.1:8000
_account | the instance of an AElf wallet, address

| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

2.4. QuickStart 17

AElf, Release release/1.0.0-preview3

18 Chapter 2. Development Environment

CHAPTER 3

Smart Contract Development

3.1 Greeter Contract

3.1.1 Smart contract implementation

This article will guide you through how to use AElf Boilerplate to implement a smart contract. It takes an example
on the Greeter contract that’s already included in Boilerplate. Based on the concepts this article presents, you’ll be
able to create your own basic contract.

Greeter contract

The following content will walk you through the basics of writing a smart contract; this process contains essentially
four steps:

• create the project: generate the contract template using AElf Boilerplate’s code generator.

• define the contract and its types: the methods and types needed in your contract should be defined in a protobuf
file, following typical protobuf syntax.

• generate the code: build the project to generate the base contract code from the proto definition.

• extend the generated code: implement the logic of the contract methods.

The Greeter contract is a very simple contract that exposes a Greet method that simply logs to the console and
returns a “Hello World” message and a more sophisticated GreetTo method that records every greeting it receives
and returns the greeting message as well as the time of the greeting.

This tutorial shows you how to develop a smart contract with the C# contract SDK; you can find you more here.
Boilerplate will automatically add the reference to the SDK.

Create the project

With AElf Boilerplate’s code generator, you can easily and quickly set up a contract project. See here for details.

19

https://aelf-boilerplate-docs.readthedocs.io/en/latest/usage/index.html

AElf, Release release/1.0.0-preview3

Defining the contract

After creating the contract project, you can define the methods and types of your contract. AElf defines smart contracts
as services that are implemented using gRPC and Protobuf. The definition contains no logic; at build time the proto
file is used to generate C# classes that will be used to implement the logic and state of the contract.

We recommend putting the contract’s definition in Boilerplate’s protobuf folder so that it can easily be in-
cluded in the build/generation process and also that you name the contract with the following syntax con-
tract_name_contract.proto:

.
Boilerplate

chain
protobuf

aelf
options.proto // contract options
core.proto // core blockchain types

greeter_contract.proto
another_contract.proto
token_contract.proto // system contracts
acs0.proto // AElf contract standard
...

The “protobuf” folder already contains a certain amount of contract definitions, including tutorial examples, system
contracts. You’ll also notice it contains AElf Contract Standard definitions that are also defined the same way as
contracts. Lastly, it also contains options.proto and core.proto that contain fundamental types for developing smart
contracts, more on this later.

Best practices:

• place your contract definition in Boilerplate’s protobuf folder.

• name your contract with contractname_contract.proto, all lower case.

Now let’s take a look a the Greeter contract’s definition:

// protobuf/greeter_contract.proto

syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) {

option (aelf.is_view) = true;
}

(continues on next page)

20 Chapter 3. Smart Contract Development

AElf, Release release/1.0.0-preview3

(continued from previous page)

}

message GreetToOutput {
string name = 1;
google.protobuf.Timestamp greet_time = 2;

}

message GreetedList {
repeated string value = 1;

}

Above is the full definition of the contract; it is mainly composed of three parts:

• imports: the dependencies of your contract.

• the service definition: the methods of your contract.

• types: some custom defined types used by the contract.

Let’s have a deeper look at the three different parts.

Syntax, imports and namespace

syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

The first line specifies the syntax that this protobuf file uses, we recommend you always use proto3 for your contracts.
Next, you’ll notice that this contract specifies some imports, let’s analyze them briefly:

• aelf/options.proto : contracts can use AElf specific options; this file contains the definitions. One example is
the is_view options that we will use later.

• empty.proto, timestamp.proto and wrappers.proto : these are proto files imported directly from protobuf’s
library. They are useful for defining things like an empty return value, time, and wrappers around some common
types such as string.

The last line specifies an option that determines the target namespace of the generated code. Here the generated code
will be in the AElf.Contracts.Greeter namespace.

The service definition

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

(continues on next page)

3.1. Greeter Contract 21

AElf, Release release/1.0.0-preview3

(continued from previous page)

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) {

option (aelf.is_view) = true;
}

}

The first line here uses the aelf.csharp_state option to specify the name (full name) of the state class. This
means that the state of the contract should be defined in the GreeterContractState class under the AElf.
Contracts.Greeter namespace.

Next, two action methods are defined: Greet and GreetTo. A contract method is defined by three things: the
method name, the input argument(s) type(s) and the output type. For example, Greet requires that the input
type is google.protobuf.Empty that is used to specify that this method takes no arguments and the output type
will be a google.protobuf.StringValue is a traditional string. As you can see with the GreetTo method, you can use
custom types as input and output of contract methods.

The service also defines a view method, that is, a method used only to query the contracts state, and that has no side
effect on the state. For example, the definition of GetGreetedList uses the aelf.is_view option to make it a view
method.

Best practice:

• use google.protobuf.Empty to specify that a method takes no arguments (import google/protobuf/
empty.proto).

• use google.protobuf.StringValue to use a string (import google/protobuf/wrappers.proto).

• use the aelf.is_view option to create a view method (import aelf/options.proto).

• use the aelf.csharp_state to specify the namespace of your contracts state (import aelf/options.proto).

Custom types

message GreetToOutput {
string name = 1;
google.protobuf.Timestamp greet_time = 2;

}

message GreetedList {
repeated string value = 1;

}

The protobuf file also includes the definition of two custom types. The GreetToOutput is the type returned by the
GreetTo method and GreetedList is the return type of the GetGreetedList view method. You’ll notice the
repeated keyword the GreetedList message. This is protobuf syntax to represent a collection.

Best practice:

• use google.protobuf.Timestamp to represent a point in time (import google/protobuf/timestamp.
proto).

• use repeated to represent a collection of items of the same type.

Extend the generated code

After defining and generating the code from the definition, the contract author extends the generated code to implement
the logic of his contract. Two files are presented here:

22 Chapter 3. Smart Contract Development

AElf, Release release/1.0.0-preview3

• GreeterContract: the actual implementation of the logic, it inherits from the contract base generated by proto-
buf.

• GreeterContractState: the state class that contains properties for reading and writing the state. This class
inherits the ContractState class from the C# SDK.

// contract/AElf.Contracts.GreeterContract/GreeterContract.cs

using Google.Protobuf.WellKnownTypes;

namespace AElf.Contracts.Greeter
{

public class GreeterContract : GreeterContractContainer.GreeterContractBase
{

public override StringValue Greet(Empty input)
{

Context.LogDebug(() => "Hello World!");
return new StringValue {Value = "Hello World!"};

}

public override GreetToOutput GreetTo(StringValue input)
{

// Should not greet to empty string or white space.
Assert(!string.IsNullOrWhiteSpace(input.Value), "Invalid name.");

// State.GreetedList.Value is null if not initialized.
var greetList = State.GreetedList.Value ?? new GreetedList();

// Add input.Value to State.GreetedList.Value if it's new to this list.
if (!greetList.Value.Contains(input.Value))
{

greetList.Value.Add(input.Value);
}

// Update State.GreetedList.Value by setting it's value directly.
State.GreetedList.Value = greetList;

Context.LogDebug(() => "Hello {0}!", input.Value);

return new GreetToOutput
{

GreetTime = Context.CurrentBlockTime,
Name = input.Value.Trim()

};
}

public override GreetedList GetGreetedList(Empty input)
{

return State.GreetedList.Value ?? new GreetedList();
}

}
}

// contract/AElf.Contracts.GreeterContract/GreeterContractState.cs

using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter
(continues on next page)

3.1. Greeter Contract 23

AElf, Release release/1.0.0-preview3

(continued from previous page)

{
public class GreeterContractState : ContractState
{

public SingletonState<GreetedList> GreetedList { get; set; }
}

}

Let’s briefly explain what is happening in the GreetTo method:

Asserting

Assert(!string.IsNullOrWhiteSpace(input.Value), "Invalid name.");

When writing a smart contract, it is often useful (and recommended) to validate the input. AElf smart contracts can
use the Assert method defined in the base smart contract class to implement this pattern. For example, here, the
method validates that the input string is null or composed only of white spaces. If the condition is false, this line will
abort the execution of the transaction.

Accessing and saving state

var greetList = State.GreetedList.Value ?? new GreetedList();
...
State.GreetedList.Value = greetList;

From within the contract methods, you can easily access the contracts state through the State property of the con-
tract. Here the state property refers to the GreeterContractState class in which is defined the GreetedList
collection. The second effectively updates the state (this is needed; otherwise, the method would have no effect on the
state).

Note that because the GreetedList type is wrapped in a SingletonState you have to use the Value property
to access the data (more on this later).

Logging

Context.LogDebug(() => "Hello {0}!", input.Value);

It is also possible to log from smart contract methods. The above example will log “Hello” and the value of the input.
It also prints useful information like the ID of the transaction.

More on state

As a reminder, here is the state definition in the contract (we specified the name of the class and a type) as well as the
custom type GreetedList:

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";
...

}

(continues on next page)

24 Chapter 3. Smart Contract Development

AElf, Release release/1.0.0-preview3

(continued from previous page)

// ...

message GreetedList {
repeated string value = 1;

}

The aelf.csharp_state option allows the contract author to specify in which namespace and class name the
state will be. To implement a state class, you need to inherit from the ContractState class that is contained in the
C# SDK (notice the using statement here below).

Below is the state class that we saw previously:

using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter
{

public class GreeterContractState : ContractState
{

public SingletonState<GreetedList> GreetedList { get; set; }
}

}

The state uses the custom GreetedList type, which was generated from the Protobuf definition at build time and
contained exactly one property: a singleton state of type GreetedList.

The SingletonState is part of the C# SDK and is used to represent exactly one value. The value can be of any
type, including collection types. Here we only wanted our contract to store one list (here a list of strings).

Note that you have to wrap your state types in a type like SingletonState (others are also available like
MappedState) because behind the scene, they implement the state read and write operations.

Next

This article showed you how to set up the contract’s definition and implementation, next, we’ll see how to test it.

3.1.2 Unit testing a contract

The previous article exposed how to add the proto definition and implement the logic of your contract. This article
expands on the previous and will show you how to test your contract.

AElf Contract TestKit is a testing framework specifically used to test AElf smart contracts. With this framework, you
can simulate the execution of a transaction by constructing a stub of a smart contract and using the methods provided
by the Stub instance (corresponding to the contract’s Action methods) and query (corresponding to the View methods
of the contract), and then get the transaction execution results in the test case.

Test project

AElf Boilerplate’s code generator has automatically generated test project for you, you just need to add your test
cases.

As you can see, tests are placed in the test folder. Each test folder usually contains a project file (.csproj) and at least
four .cs files. The project file is a basic C# xUnit test project file, to which we’ve added some references.

3.1. Greeter Contract 25

AElf, Release release/1.0.0-preview3

.
chain

contract
protobuf
src
test

AElf.Contracts.GreeterContract.Tests
AElf.Contracts.GreeterContract.Tests.csproj // xUnit test project
GreeterContractTestBase.cs
GreeterContractTestModule.cs
GreeterContractTests.cs
GreeterContractInitializationProvider.cs

...

Test your contract

Now for the easy part, the test class only needs to inherit from the test base. After this you can go ahead and create the
test cases you need.

GreeterContractTest.cs

public class GreeterContractTests : GreeterContractTestBase
{

// declare the method as a xUnit test method
[Fact]
public async Task GreetTest()
{

// Use the contracts stub to call the 'Greet' method and get a reference to
// the transaction result.
var txResult = await GetGreeterContractStub(_defaultKeyPair).Greet.

→˓SendAsync(new Empty());

// check that the transaction was mined
txResult.TransactionResult.Status.ShouldBe(TransactionResultStatus.Mined);

// parse the result (return from the contract)
var text = new StringValue();
text.MergeFrom(txResult.TransactionResult.ReturnValue);

// check that the value is correct
text.Value.ShouldBe("Hello World!");

}

// ...
}

From the previous code snippet you can note several things:

• the test case is a classic xUnit test class.

• you can use the contracts stub to call the contract and check returns.

Feel free to have a look at the full test class in the Boilerplate source code.

26 Chapter 3. Smart Contract Development

AElf, Release release/1.0.0-preview3

Next

We’ve seen how to add the tests for a contract. The next step is to run the node where the contract is deployed to
actually be able to interact with the contract from external sources.

3.1.3 Run the node

Next you can run Boilerplate (and it’s an internal node). This will automatically deploy the Greeter contract. Open a
terminal in the root Boilerplate directory and navigate to the launcher project:

cd chain/src/AElf.Boilerplate.GreeterContract.Launcher

Next, run the node:

dotnet run AElf.Boilerplate.GreeterContract.Launcher.csproj

From here, you should see the build and eventually the nodes logs.

Boilerplate will deploy your contract when the node starts. You can call the Boilerplate node API:

aelf-command get-chain-status
? Enter the the URI of an AElf node: http://127.0.0.1:1235
XXX Succeed
{

"ChainId": "AELF",
"Branches": {
"6032b553ec9a5c81713cf8410f426dfc1ca0f43e64d56f527fc7a9c60b90e694": 3073

},
"NotLinkedBlocks": {},
"LongestChainHeight": 3073,
"LongestChainHash":

→˓"6032b553ec9a5c81713cf8410f426dfc1ca0f43e64d56f527fc7a9c60b90e694",
"GenesisBlockHash":

→˓"c3bddca1909ebf37b95be7f26b990e07916790913e0f48da1a831b3c777d59ff",
"GenesisContractAddress": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"LastIrreversibleBlockHash":

→˓"85fee024d156de3be665c296c567423026e0e3369ad7dc5ee81dbb2a15dfe2f2",
"LastIrreversibleBlockHeight": 3042,
"BestChainHash": "6032b553ec9a5c81713cf8410f426dfc1ca0f43e64d56f527fc7a9c60b90e694",
"BestChainHeight": 3073

}

This enables further testing of the contract, including testing it from a dApp.

Next

We’ve just seen through this and the previous articles how to use Boilerplate in order to develop and test a smart
contract. That said, these articles only show a subset of the possibilities.

The next article will demonstrate how to build a small front-end for the greeter contract.

3.1.4 Front end

This tutorial will show you how to develop a front-end app (JavaScript in our case) that will demonstrate how to
interact with a contract that was developed with Boilerplate.

3.1. Greeter Contract 27

AElf, Release release/1.0.0-preview3

At the top-level Boilerplate contains two folders:

• chain : used for developing the contracts.

• web : used for developing the front-end.

The web folder already contains some projects that can serve as examples. This tutorial presents a front-end for the
Greeter contract shown in the previous tutorials.

Run the front-end

After you run Boilerplate, open another terminal at the repo’s root and navigate to the greeter project:

cd web/greeter

From here, you can install and run the Greeter’s front end:

npm i
npm start

And a page will be opened by webpack in your default browser.

Front-end code

The code is straightforward, it uses aelf-sdk + webpack. You can check out more here.

Warning: be careful, this code is in no way production-ready and is for demonstration purposes only.

It demonstrates the following capabilities of the js sdk:

• getting the chain status.

• getting a contract object.

• calling a contract method.

• calling a view method.

Getting the chain status

The following code snippet shows how to call the nodes API to get the chains status:

aelf.chain.getChainStatus()
.then(res => {

if (!res) {
throw new Error('Error occurred when getting chain status');

}
// use the chain status

})
.catch(err => {

console.log(err);
});

For more information about the chain status API : GET /api/blockChain/chainStatus.

As we will see next, the chain status is very useful for retrieving the genesis contract.

28 Chapter 3. Smart Contract Development

https://github.com/AElfProject/aelf-sdk.js

AElf, Release release/1.0.0-preview3

getting a contract object

The following code snippet shows how to get a contract object with the js-sdk:

async function getContract(name, walletInstance) {

// if not loaded, load the genesis
if (!genesisContract) {

const chainStatus = await aelf.chain.getChainStatus();
if (!chainStatus) {

throw new Error('Error occurred when getting chain status');
}
genesisContract = await aelf.chain.contractAt(chainStatus.

→˓GenesisContractAddress, walletInstance);
}

// if the contract is not already loaded, get it by name.
if (!contract[name]) {

const address = await genesisContract.GetContractAddressByName.
→˓call(sha256(name));

contract = {
...contract,
[name]: await aelf.chain.contractAt(address, walletInstance)

};
}
return contract[name];

}

As seen above, the following steps will enable you to build a contract object:

• use getChainStatus to get the genesis contract’s address.

• use contractAt to build an instance of the genesis contract.

• use the genesis contract to get the address of the greeter contract with the GetContractAddressByName
method.

• with the address use contractAt again to build a greeter contract object.

Once you have a reference to the greeter contract, you can use it to call the methods.

calling a contract method

The following snippet shows how to send a transaction to the contract:

greetToButton.onclick = () => {

getContract('AElf.ContractNames.Greeter', wallet)
.then(greeterContract => greeterContract.GreetTo({

value: "SomeName"
}))
.then(tx => pollMining(tx.TransactionId))
.then(ret => {

greetToResponse.innerHTML = ret.ReadableReturnValue;
})
.catch(err => {

console.log(err);

(continues on next page)

3.1. Greeter Contract 29

AElf, Release release/1.0.0-preview3

(continued from previous page)

});
};

Here the getContract retrieves the greeter contract instance. On the instance it calls GreetTo that will send a trans-
action to the node. The pollMining method is a helper method that will wait for the transaction to be mined. After
mined the transaction results, ReadableReturnValue will be used to see the result.

calling a view method

The following snippet shows how to call a view method on the contract:

getGreeted.onclick = () => {

getContract('AElf.ContractNames.Greeter', wallet)
.then(greeterContract => greeterContract.GetGreetedList.call())
.then(ret => {

greeted.innerHTML = JSON.stringify(ret, null, 2);
})
.catch(err => {

console.log(err);
});

};

Here the getContract retrieves the greeter contract instance. On the instance, it calls GetGreetedList with “.call”
appended to it, which will indicate a read-only execution (no broadcasted transaction).

Next

This first series of tutorials showed you an end-to-end example of a dApp implemented with Boilerplate. Further
tutorials will give more in-depth explanations about some aspect of the contracts.

3.2 Smart contract deployment

After the contract has been compiled, the user must register this contract with the blockchain. Generally, to deploy a
contract, there must be transactions sent to Smart contract zero, which is one of AElf’s genesis contracts. The node
will then broadcast these transactions, and it will eventually get included in a block when the block gets executed the
smart contract will be deployed.

For contract deployment, what matters is the ContractDeploymentAuthorityRequired option in the
ContractOptions for this network. It is determined since the launch of the chain.

• if ContractDeploymentAuthorityRequired is false, anyone can directly deploy contract with trans-
action

• Only account with specific authority is permitted to deploy contract if
ContractDeploymentAuthorityRequired is true

This part will introduce contract deployment pipeline for different chain type on AElf mainnet/testnet/customnet net-
work.

30 Chapter 3. Smart Contract Development

AElf, Release release/1.0.0-preview3

3.2.1 ContractDeploymentAuthorityRequired is false

Anyone can directly deploy contract with transaction if ContractDeploymentAuthorityRequired is false.
It is usually set as false especially when it is for contract unit test or custom network.

rpc DeploySmartContract (ContractDeploymentInput) returns (aelf.Address) {
}

message ContractDeploymentInput {
sint32 category = 1;
bytes code = 2;

}

The return value of this transaction indicates the address of the deployed contract. Note that you should specific 0 as
category for c# contract and provide your contract dll bytes.

3.2.2 ContractDeploymentAuthorityRequired is true

ContractDeploymentAuthorityRequired is always true when it comes to public net-
works(Mainnet/Testnet). And contract pipelines are distinguished for different chain types. But for sure, no
one can directly deploy.

For public network, no matter it is mainnet or testnet, things are going more complex. No one can directly deploy on
the chain but few authorities have the permission to propose.

• Main Chain: only current miners have the permission to propose contract

• Exclusive Side Chain: only side chain creator are allowed to propose contract

• Shared Side Chain: anyone can propose contract

And contract proposing steps are provided as below

rpc ProposeNewContract (ContractDeploymentInput) returns (aelf.Hash) {
}
message ContractDeploymentInput {

sint32 category = 1;
bytes code = 2;

}

message ContractProposed
{

option (aelf.is_event) = true;
aelf.Hash proposed_contract_input_hash = 1;

}

Event ContractProposed will be fired containing proposed_contract_input_hash and this will also
trigger the first proposal for one parliament organization, which is specified as contract deployment controller since
the beginning of the chain. This proposal would be expired in 24 hours. Once the proposal can be released (refer to
Parliament contract for detail), proposer should send transaction to

rpc ReleaseApprovedContract (ReleaseContractInput) returns (google.protobuf.
→˓Empty) {

}
message ReleaseContractInput {

aelf.Hash proposal_id = 1;
aelf.Hash proposed_contract_input_hash = 2;

}

3.2. Smart contract deployment 31

AElf, Release release/1.0.0-preview3

This will trigger the second proposal for one parliament organization, which is specified as contract code-check con-
troller since the beginning of the chain. This proposal would be expired in 10 min. Once the proposal can be released,
proposer should send transaction to

rpc ReleaseCodeCheckedContract (ReleaseContractInput) returns (google.protobuf.
→˓Empty) {

}
message ReleaseContractInput {

aelf.Hash proposal_id = 1;
aelf.Hash proposed_contract_input_hash = 2;

}

message ContractDeployed
{

option (aelf.is_event) = true;
aelf.Address author = 1 [(aelf.is_indexed) = true];
aelf.Hash code_hash = 2 [(aelf.is_indexed) = true];
aelf.Address address = 3;
int32 version = 4;
aelf.Hash Name = 5;

}

Finally, the contract would be deployed. Event ContractDeployed containing new contract address will be fired
and it is available in TransactionResult.Logs.

3.2.3 Use aelf-command send or aelf-command proposal to deploy

If you set ContractDeploymentAuthorityRequired: true in appsetting.json, please use aelf-command
proposal.

$ aelf-command send <GenesisContractAddress> DeploySmartContract # aelf-command send
$ aelf-command send <GenesisContractAddress> ProposeNewContract # aelf-command
→˓proposal
Follow the instructions

• You must input contract method parameters in the prompting way, note that you can input a relative or absolute
path of contract file to pass a file to aelf-command, aelf-command will read the file content and encode it as a
base64 string.

• After call ProposeNewContract, you need to wait for the organization members to approve your
proposal and you can release your proposal by calling ReleaseApprovedContract and
ReleaseCodeCheckedContract in this order.

The deploy command(This command has been deprecated)

The deploy command on the cli will help you deploy the contract:

aelf-command deploy <category> <code>

The deploy command will create and send the transaction to the nodes RPC. Here the code is the path to the compiled
code. This will be embedded in the transaction as a parameter to the DeploySmartContract method on smart contract
zero. The command will return the ID of the transaction that was sent by the command. You will see in the next
section how to use it.

32 Chapter 3. Smart Contract Development

AElf, Release release/1.0.0-preview3

verify the result

When the deployment transaction gets included in a block, the contract should be deployed. To check this, you can use
the transaction ID returned by the deploy command. When the status of the transaction becomes mined: "Status":
"Mined", then the contract is ready to be called.

The ReadableReturnValue field indicates the address of the deployed contract. You can use this address to call the
contract methods.

3.2. Smart contract deployment 33

AElf, Release release/1.0.0-preview3

34 Chapter 3. Smart Contract Development

CHAPTER 4

AElf Blockchain Boot Sequence

This section mainly explains how the AElf Blockchain starts from the initial nodes, and gradually replaces the initial
nodes with true production nodes through elections, thus completing the complete process of AElf Blockchain startup.

4.1 1. Start initial nodes

We need to start at least one or more initial nodes to start the AElf Blockchain, and 1-5 initial nodes are recommended.

In the Getting Started section, we described the steps to start multiple nodes, you can follow the Running multi-nodes
with Docker to complete the initial nodes startup (this section also takes the example of starting three initial nodes).

Since the default period of election time is 604800 seconds(7 days), if you want to see the result of the election
more quickly, modify the configuration file appsettings.json before starting the boot nodes to set the PeriodSeconds to
smaller:

{
"Consensus": {
"PeriodSeconds": 604800

},
}

4.2 2. Run full node

4.2.1 Create an account for the full node:

aelf-command create

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : major clap hurdle hammer push slogan ranch quantum
→˓reunion hope enroll repeat

(continues on next page)

35

AElf, Release release/1.0.0-preview3

(continued from previous page)

AElf [Info]: Private Key :
→˓2229945cf294431183fd1d8101e27b17a1a590d3a1f7f2b9299850b24262ed8a
AElf [Info]: Public Key :
→˓04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
AElf [Info]: Address : Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC

4.2.2 Start full node:

The startup steps for the full node are similar to the initial node startup, but the configuration file section notes that the
InitialMinerList needs to be consistent with the initial node:

{
"InitialMinerList" : [

→˓"0499d3bb14337961c4d338b9729f46b20de8a49ed38e260a5c19a18da569462b44b820e206df8e848185dac6c139f05392c268effe915c147cde422e69514cc927
→˓",

→˓"048397dfd9e1035fdd7260329d9492d88824f42917c156aef93fd7c2e3ab73b636f482b8ceb5cb435c556bfa067445a86e6f5c3b44ae6853c7f3dd7052609ed40b
→˓",

→˓"041cc962a51e7bbdd829a8855eca8a03fda708fdf31969251321cb31edadd564bf3c6e7ab31b4c1f49f0f206be81dbe68a75c70b293bf9d04d867ee5e415d3bf8a
→˓"
],

}

4.2.3 Full node started successfully:

By checking the current node state, it can be seen that the full node is synchronizing, and the BestChainHeight and
the LastIrreversibleBlockHeight are growing up. After catching up with the height of the initial node, the subsequent
steps can be carried out.

aelf-command get-chain-status

{
"ChainId": "AELF",
"Branches": {
"fb749177c2f43db8c7d73ea050240b9f870c40584f044b13e7ec146c460b0eff": 2449

},
"NotLinkedBlocks": {},
"LongestChainHeight": 2449,
"LongestChainHash":

→˓"fb749177c2f43db8c7d73ea050240b9f870c40584f044b13e7ec146c460b0eff",
"GenesisBlockHash":

→˓"ea9c0b026bd638ceb38323eb71174814c95333e39c62936a38c4e01a8f18062e",
"GenesisContractAddress": "pykr77ft9UUKJZLVq15wCH8PinBSjVRQ12sD1Ayq92mKFsJ1i",
"LastIrreversibleBlockHash":

→˓"66638f538038bd56357f3cf205424e7393c5966830ef0d16a75d4a117847e0bc",
"LastIrreversibleBlockHeight": 2446,
"BestChainHash": "fb749177c2f43db8c7d73ea050240b9f870c40584f044b13e7ec146c460b0eff",
"BestChainHeight": 2449

}

36 Chapter 4. AElf Blockchain Boot Sequence

AElf, Release release/1.0.0-preview3

4.3 3. Be a candidate node

Full nodes need to call Election contract to become candidate nodes. The nodes need to mortgage 10W ELF to
participate in the election, please make sure that the account of the nodes has enough tokens.

To facilitate the quick demonstration, we directly transfer the token from the first initial node account to the full node
account:

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELF", "to":
→˓"Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC", "amount": "20000000000000"}'

By checking the balance of the full node account, we can see that the full node account has enough tokens, 20W ELF:

aelf-command call AElf.ContractNames.Token GetBalance '{"symbol": "ELF", "owner":
→˓"Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC"}'

Result:
{

"symbol": "ELF",
"owner": "Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC",
"balance": "2000000000000"

}

Full node announce election:

aelf-command send AElf.ContractNames.Election AnnounceElection '{}' -a
→˓Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPdRC

By inquiring candidate information, we can see the full node is already candidates:

aelf-command call AElf.ContractNames.Election GetCandidateInformation '{"value":
→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓"}'

Result:
{

"terms": [],
"pubkey":

→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓",
"producedBlocks": "0",
"missedTimeSlots": "0",
"continualAppointmentCount": "0",
"announcementTransactionId":

→˓"8cc8eb5de35e390e4f7964bbdc7edc433498b041647761361903c6165b9f8659",
"isCurrentCandidate": true

}

4.4 4. User vote election

For the simulated user voting scenario, we create a user account:

aelf-command create

AElf [Info]: Your wallet info is :

(continues on next page)

4.3. 3. Be a candidate node 37

AElf, Release release/1.0.0-preview3

(continued from previous page)

AElf [Info]: Mnemonic : walnut market museum play grunt chuckle hybrid
→˓accuse relief misery share meadow
AElf [Info]: Private Key :
→˓919a220fac2d80e674a256f2367ac840845f344269f4dcdd56d37460de17f947
AElf [Info]: Public Key :
→˓04794948de40ffda2a6c884d7e6a99bb8e42b8b96b9ee5cc4545da3a1d5f7725eec93de62ddbfb598ef6f04fe52aa310acc7d17abeeea3946622573c4b0b2433ac
AElf [Info]: Address : ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei

After the user account is created successfully, we will first trsnfer some tokens to the account for voting.

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELF", "to":
→˓"ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei", "amount": "200000000000"}'

Confirm the tokens has been received:

aelf-command call AElf.ContractNames.Token GetBalance '{"symbol": "ELF", "owner":
→˓"ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei"}'

Result:
{

"symbol": "ELF",
"owner": "ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei",
"balance": "200000000000"

}

Users vote on candidate nodes through the election contract.

aelf-command send AElf.ContractNames.Election Vote '{"candidatePubkey":
→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓","amount":2000000000,"endTimestamp":{"seconds":1600271999,"nanos":999000}}' -a
→˓ZBBPU7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8g1ei

By inquiring the votes of candidates, we can see that the full node has successfully obtained 20 votes.

aelf-command call AElf.ContractNames.Election GetCandidateVote '{"value":
→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓"}'

Result:
{

"obtainedActiveVotingRecordIds": [
"172375e9cee303ce60361aa73d7326920706553e80f4485f97ffefdb904486f1"

],
"obtainedWithdrawnVotingRecordIds": [],
"obtainedActiveVotingRecords": [],
"obtainedWithdrawnVotesRecords": [],
"obtainedActiveVotedVotesAmount": "2000000000",
"allObtainedVotedVotesAmount": "2000000000",
"pubkey":

→˓"BO7QDrAJzNKDeY44Yngc69Je1qRkHg4bfQ47a1kCUEBnn8TcDtyd4Wa9YwxyVRiKmurfyDL9rggoJw93xu8meQU=
→˓"
}

38 Chapter 4. AElf Blockchain Boot Sequence

AElf, Release release/1.0.0-preview3

4.5 5. Become production node

At the next election, the candidate nodes with votes in the first 17 are automatically elected as production nodes, and
the current production node list can be viewed through consensus contracts.

Quantity 17 is the default maximum production node quantity, which can be modified by proposal. Please refer to the
Consensus and Proposal Contract API for details.

aelf-command call AElf.ContractNames.Consensus GetCurrentMinerPubkeyList '{}'

Result:
{

"pubkeys": [

→˓"0499d3bb14337961c4d338b9729f46b20de8a49ed38e260a5c19a18da569462b44b820e206df8e848185dac6c139f05392c268effe915c147cde422e69514cc927
→˓",

→˓"048397dfd9e1035fdd7260329d9492d88824f42917c156aef93fd7c2e3ab73b636f482b8ceb5cb435c556bfa067445a86e6f5c3b44ae6853c7f3dd7052609ed40b
→˓",

→˓"041cc962a51e7bbdd829a8855eca8a03fda708fdf31969251321cb31edadd564bf3c6e7ab31b4c1f49f0f206be81dbe68a75c70b293bf9d04d867ee5e415d3bf8a
→˓",

→˓"04eed00eb009ccd283798e3862781cebd25ed6a4641e0e1b7d0e3b6b59025040679fc4dc0edc9de166bd630c7255188a9aeadfc832fdae0828270f77c6ef267905
→˓"
]

}

4.6 6. Add more production nodes

Repeat steps 2-4 to add more production nodes. When the number of initial nodes plus the number of candidate nodes
exceeds the maximum number of production node, the replacement will replace the initial nodes step by step, and
the replaced initial nodes are not allowed to run for election again. At this time, the initial node has completed its
responsibility of starting AElf Blockchain.

4.5. 5. Become production node 39

AElf, Release release/1.0.0-preview3

40 Chapter 4. AElf Blockchain Boot Sequence

CHAPTER 5

How to join the testnet

There’s two ways to run a AElf node: you can either use Docker (recommended method) or run the binaries available
on Github. Before you jump into the guides and tutorials you’ll need to install the following tools and frameworks.
For most of these dependencies we provide ready-to-use command line instructions. In case of problems or if you
have more complex needs, we provide more information in the Environment setup section.

Summary of the steps to set up a node:

1. Execute the snapshot download script and load the snapshot into the database.

2. Download our template setting files and docker run script.

3. Modify the appsettings according to your needs.

4. Run and check the node.

Hardware suggestion: for the AElf testnet we use the following Amazon configuration: c5.large instance with 2
vCPUs, 4GiB RAM and a 200GiB hard drive for each node we run. We recommend using something similar per node
that you want to run (one for the mainchain node and one per side chain node).

Note: any server you use to run a node should be time synced via NTP. Failing to do this will prevent your node from
syncing.

5.1 Setup the database

We currently support two key-value databases to store our nodes data: Redis and SSDB, but for the testnet we only
provide snapshots for SSDB. We will configure two SSDB instances, one for chain database and one for the state
database (run these on different machines for better performances).

5.1.1 Import the snapshot data

After you’ve finished setting up the database, download the latest snapshots. The following gives you the template for
the download URL,but you have to specify the snapshot date. We recommend you get the latest.

Restore the chain database from snapshot:

41

AElf, Release release/1.0.0-preview3

>> mkdir snapshot
>> cd snapshot

fetch the snapshot download script
>> curl -O -s https://aelf-node.s3-ap-southeast-1.amazonaws.com/snapshot/testnet/
→˓download-mainchain-db.sh

execute the script, you can optionally specify a date by appending “yyyymmdd” as
→˓parameter
>> sh download-mainchain-db.sh

chain database: decompress and load the chain database snapshot
>> tar xvzf aelf-testnet-mainchain-chaindb-*.tar.gz
>> stop your chain database instance (ssdb server)
>> cp -r aelf-testnet-mainchain-chaindb-*/* /path/to/install/chaindb/ssdb/var/
>> start your chain database instance
>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has
→˓been imported)

state database : decompress and load the state database
>> tar xvzf aelf-testnet-mainchain-statedb-*.tar.gz
>> stop your state database instance (ssdb server)
>> cp -r aelf-testnet-mainchain-statedb-*/* /path/to/install/ssdb/var/
>> start your state database instance
>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has
→˓been imported)

5.2 Node configuration

5.2.1 Generating the nodes account

This section explains how to generate an account for the node. First you need to install the aelf-command npm package.
Open a terminal and enter the following command to install aelf-command:

>> npm i -g aelf-command

After installing the package, you can use the following command to create an account/key-pair:

>> aelf-command create

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

AElf [Info]: Your wallet info is :
AElf [Info]: Mnemonic : term jar tourist monitor melody tourist catch sad
→˓ankle disagree great adult
AElf [Info]: Private Key :
→˓34192c729751bd6ac0a5f18926d74255112464b471aec499064d5d1e5b8ff3ce
AElf [Info]: Public Key :
→˓04904e51a944ab13b031cb4fead8caa6c027b09661dc5550ee258ef5c5e78d949b1082636dc8e27f20bc427b25b99a1cadac483fae35dd6410f347096d65c80402
AElf [Info]: Address : 29KM437eJRRuTfvhsB8QAsyVvi8mmyN9Wqqame6TsJhrqXbeWd
? Save account info into a file? Yes
? Enter a password: *********

(continues on next page)

42 Chapter 5. How to join the testnet

AElf, Release release/1.0.0-preview3

(continued from previous page)

? Confirm password: *********
XXX Account info has been saved to "/usr/local/share/aelf/keys/
→˓29KM437eJRRuTfvhsB8QAsyVvi8mmyN9Wqqame6TsJhrqXbeWd.json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf directory is the
data directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

5.2.2 Prepare node configuration

download the settings template and docker script
>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-
→˓preview3/aelf-testnet-mainchain.zip
>> unzip aelf-testnet-mainchain.zip
>> mv aelf-testnet-mainchain /opt/aelf-node

Update the appsetting.json file with your account. This will require the information printed during the creation of the
account. Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

{
"Account": {

"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H",
"NodeAccountPassword": "********"

}
}

You also have to configure the database connection strings (port/db number):

{
"ConnectionStrings": {

"BlockchainDb": "redis://your chain database server ip address:port",
"StateDb": "redis://your state database server ip address:port"

},
}

If you use docker to run the node and it is on the same server as the database, please do not use 127.0.0.1 as the
database monitoring ip.

Next add the testnet mainchain nodes as peer (bootnode peers):

{
"Network": {

"BootNodes": [
"testnet-mainchain-1.aelf.io:6800",
"testnet-mainchain-2.aelf.io:6800"

],
"ListeningPort": 6800,
"NetAllowed": "",
"NetWhitelist": []

}
}

5.2. Node configuration 43

AElf, Release release/1.0.0-preview3

Note: if your infrastructure is behind a firewall you need to open the P2P listening port of the node. You also need to
configure your listening ip and port for the side chain connections:

{
"CrossChain": {

"Grpc": {
"LocalServerPort": 5000,
"LocalServerHost": "your server ip address",
"ListeningHost": "0.0.0.0"

}
},

}

5.3 Running a full node with Docker

To run the node with Docker, enter the following commands:

pull AElf’s image and navigate to the template folder to execute the start script
>> docker pull aelf/node:testnet-v1.0.0-preview3
>> cd /opt/aelf-node
>> sh aelf-node.sh start aelf/node:testnet-v1.0.0-preview3

to stop the node you can run:

>> sh aelf-node.sh stop

5.4 Running a full node with the binary release

Most of AElf is developed with dotnet core, so to run the binaries you will need to download and install the .NET Core
SDK before you start: Download .NET Core 3.1. For now AElf depends on version 3.1 of the SDK, on the provided
link find the download for your platform, and install it.

Get the latest release with the following commands:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-
→˓preview3/aelf-v1.0.0-preview3.zip
>> unzip aelf-v1.0.0-preview3.zip
>> mv aelf-v1.0.0-preview3 /opt/aelf-node/

Enter the configuration folder and run the node:

>> cd /opt/aelf-node
>> dotnet aelf-v1.0.0-preview3/AElf.Launcher.dll

5.5 Running a full node with the source

The most convenient way is to directly use docker or the binary packages, but if you want you can compile from
source code. First make sure the code version is consistent (current is release AELF v1.0.0-preview3), and secondly
make sure to compile on a Ubuntu Linux machine (we recommend Ubuntu 18.04.2 LTS) and have dotnet core SDK
version 3.1 installed. This is because different platforms or compilers will cause the dll hashes to be inconsistent with
the current chain.

44 Chapter 5. How to join the testnet

https://dotnet.microsoft.com/download/dotnet-core/3.1

AElf, Release release/1.0.0-preview3

5.6 Check the node

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

aelf-command get-blk-height -e http://your node ip address:8000

5.7 Run side-chains

This section explains how to set up a side-chain node, you will have to repeat these steps for all side chains (currently
only one is running):

1. Fetch the appsettings and the docker run script.

2. Download and restore the snapshot data with the URLs provided below (steps are the same as in A - Setup the
database).

3. Run the side-chain node.

Running a side chain is very much like running a mainchain node, only configuration will change. Here you can find
the instructions for sidechain1:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-
→˓preview3/aelf-testnet-sidechain1.zip
>> unzip aelf-testnet-sidechain1.zip
>> mv aelf-testnet-sidechain1 /opt/aelf-node

In order for a sidechain to connect to a mainchain node you need to modify the configuration with the remote infor-
mation.

{
"CrossChain": {

"Grpc": {
"RemoteParentChainServerPort": 5000,
"LocalServerHost": "you local ip address",
"LocalServerPort": 5001,
"RemoteParentChainServerHost": "your mainchain ip address",
"ListeningHost": "0.0.0.0"

},
"ParentChainId": "AELF"

}
}

Here you can find the snapshot data for the only current side-chain running, optionally you can specify the date, but
we recommend you get the latest:

>> curl -O -s https://aelf-node.s3-ap-southeast-1.amazonaws.com/snapshot/testnet/
→˓download-sidechain1-db.sh

Here you can find the list of templates folders (appsettings and docker run script) for the side-chain:

wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-preview3/aelf-
→˓testnet-sidechain1.zip

Each side chain has its own P2P network, you can find here some bootnodes that are available:

5.6. Check the node 45

AElf, Release release/1.0.0-preview3

sidechain1 bootnode → ["testnet-sidechain1-1.aelf.io:6800", "testnet-sidechain1-2.
→˓aelf.io:6800"]

{
"Network": {

"BootNodes": [
"Add the right boot node according sidechain"

],
"ListeningPort": 6800,
"NetAllowed": "",
"NetWhitelist": []

}
}

46 Chapter 5. How to join the testnet

CHAPTER 6

Running a side chain

6.1 Requesting the creation of a side chain

Side chains can be created in the AELF ecosystem to enable scalability. This part is going to introduce these periods
in detail.

6.1.1 Side chain creation api

Anyone can request the side chain creation in the AELF ecosystem. The proposer/creator of a new side chain will
need to request the creation of the side chain through the cross-chain contract on the main-chain. The request contains
different fields that will determine the type of side chain that will be created.

This section show the API to use in order to propose the creation of a side chain. The fields that are in the SideChain-
CreationRequest will determine the type of side chain that is created. For more api details, you can follow the request
side chain creation.

rpc RequestSideChainCreation(SideChainCreationRequest) returns (google.protobuf.
→˓Empty) { }
message SideChainCreationRequest {

int64 indexing_price = 1;
int64 locked_token_amount = 2;
bool is_privilege_preserved = 3;
string side_chain_token_symbol = 4;
string side_chain_token_name = 5;
int64 side_chain_token_total_supply = 6;
int32 side_chain_token_decimals = 7;
bool is_side_chain_token_burnable = 8;
bool is_side_chain_token_profitable = 9;
repeated SideChainTokenInitialIssue side_chain_token_initial_issue_list = 10;
map<string, int32> initial_resource_amount = 11;

}

message SideChainTokenInitialIssue{
(continues on next page)

47

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Address address = 1;
int64 amount = 2;

}
message ProposalCreated{

option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

A new proposal about the side chain creation would be created and the event ProposalCreated containing pro-
posal id would be fired. A parliament organization which is specified since the chain launched is going to approve this
proposal in 24 hours(refer to Parliament contract for detail). Proposer is able to release the side chain creation request
with proposal id once the proposal can be released.

rpc ReleaseSideChainCreation(ReleaseSideChainCreationInput) returns (google.protobuf.
→˓Empty){}

message ReleaseSideChainCreationInput {
aelf.Hash proposal_id = 1;

}

message SideChainCreatedEvent {
option (aelf.is_event) = true;
aelf.Address creator = 1;
int32 chainId = 2;

}

New side chain would be created and the event SideChainCreatedEvent containing chain id would be fired.

Side chain node can be launched since it is already created on main chain. Side chain id from the creation result should
be configured correctly before launching the side chain node. Please make sure cross chain communication context
is correctly set, because side chain node is going to request main chain node for chain initialization data. For more
details, check side chain node running tutorial.

6.1.2 Side chain types

Two types of side-chain’s currently exist: exclusive or shared. An exclusive side-chain is a type of dedicated side-
chain (as opposed to shared) that allows developers to choose the transaction fee model and set the transaction fee
price. The developer has exclusive use of this side-chain. Developers of an exclusive side-chain pay the producers
for running it by paying CPU, RAM, DISK, NET resource tokens: this model is called charge-by-time. The amount
side chain creator must share with the producers is set after creation of the chain. The exclusive side-chain is priced
according to the time used. The unit price of the fee is determined through negotiation between the production node
and the developer.

See Economic whitepaper - 4.3 Sidechain Developer Charging Model for more information.

6.1.3 Simple demo for side chain creation request

When a user (usually a developer) feels the need to create a new side chain on AElf he must call the cross-chain
contract and request a side chain creation. After requested, parliament organization members will either approve this
creation or reject it. If the request is approved, the developer must then release the proposal.

Throughout this tutorial we’ll give step-by-step code snippets that use the aelf-js-sdk to create a new side chain, the
full script will be given at the end of the tutorial.

This creation of a side chain (logical, on-chain creation) is done in four steps:

48 Chapter 6. Running a side chain

https://aelf.io/gridcn/aelf_economic_system_whitepaper_en_v1.0.pdf?time=1
https://github.com/AElfProject/aelf-sdk.js/tree/master

AElf, Release release/1.0.0-preview3

• the developer must allow/approve some tokens to the cross-chain contract of the main chain.

• the developer calls the cross-chain contract of the main chain, to request the creation.

• the parliament organization members must approve this request.

• finally the developer must release the request to finalize the creation.

Keep in mind that this is just the logical on-chain creation of the side chain. After the side chain is released there’s
extra steps needed for it to be a fully functional blockchain, including the producers running the side chain’s nodes.

Set-up

If you want to test the creation process you will need a producer node running and the following:

• you need a key-pair (account) created, this will be your Producer (in this tutorial we also use the producer to
create the creation request).

• the node needs to be configured with an API endpoint, account and miner list that correspond to what is in the
script.

The following snippet shows constants and initialization code used in the script:

const AElf = require('aelf-sdk');
const Wallet = AElf.wallet;

const { sha256 } = AElf.utils;

// set the private key of the block producer.
// REPLACE
const defaultPrivateKey =
→˓'e119487fea0658badc42f089fbaa56de23d8c0e8d999c5f76ac12ad8ae897d76';
const defaultPrivateKeyAddress = 'HEtBQStfqu53cHVC3PxJU6iGP3RGxiNUfQGvAPTjfrF3ZWH3U';

// load the wallet associated with your block producers account.
const wallet = Wallet.getWalletByPrivateKey(defaultPrivateKey);

// API link to the node
// REPLACE
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1234'));

// names of the contracts that will be used.
const tokenContractName = 'AElf.ContractNames.Token';
const parliamentContractName = 'AElf.ContractNames.Parliament';
const crossChainContractName = 'AElf.ContractNames.CrossChain';

...

const createSideChain = async () => {

console.log('Starting side chain creation script\n');

// check the chain status to make sure the node is running
const chainStatus = await aelf.chain.getChainStatus({sync: true});
const genesisContract = await aelf.chain.contractAt(chainStatus.

→˓GenesisContractAddress, wallet)
.catch((err) => {
console.log(err);
});

(continues on next page)

6.1. Requesting the creation of a side chain 49

AElf, Release release/1.0.0-preview3

(continued from previous page)

// get the addresses of the contracts that we'll need to call
const tokenContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(tokenContractName));
const parliamentContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(parliamentContractName));
const crossChainContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(crossChainContractName));

// build the aelf-sdk contract instance objects
const parliamentContract = await aelf.chain.contractAt(parliamentContractAddress,

→˓wallet);
const tokenContract = await aelf.chain.contractAt(tokenContractAddress, wallet);
const crossChainContract = await aelf.chain.contractAt(crossChainContractAddress,

→˓wallet);

...
}

When running the script, the createSideChain will be executed and automatically will run through the full process of
creating the side chain.

Creation of the side chain

Set the Allowance.

First the developer must approve some ELF tokens for use by the cross-chain contract.

var setAllowance = async function(tokenContract, crossChainContractAddress)
{

console.log('\n>>>> Setting allowance for the cross-chain contract.');

// set some allowance to the cross-chain contract
const approvalResult = await tokenContract.Approve({

symbol:'ELF',
spender: crossChainContractAddress,
amount: 20000
});

let approveTransactionResult = await pollMining(approvalResult.TransactionId);
}

Creation request

In order to request a side chain creation the developer must call RequestSideChainCreation on the cross-chain
contract, this will create a proposal with the Parliament contract. After calling this method, a ProposalCreated log
will be created in which the ProposalId be found. This ID will enable the producers to approve it.

rpc RequestSideChainCreation(SideChainCreationRequest) returns (google.protobuf.Empty)
→˓{}

message SideChainCreationRequest {
int64 indexing_price = 1;

(continues on next page)

50 Chapter 6. Running a side chain

AElf, Release release/1.0.0-preview3

(continued from previous page)

int64 locked_token_amount = 2;
bool is_privilege_preserved = 3;
string side_chain_token_symbol = 4;
string side_chain_token_name = 5;
int64 side_chain_token_total_supply = 6;
int32 side_chain_token_decimals = 7;
bool is_side_chain_token_burnable = 8;
bool is_side_chain_token_profitable = 9;
repeated SideChainTokenInitialIssue side_chain_token_initial_issue_list = 10;
map<string, int32> initial_resource_amount = 11;

}

message SideChainTokenInitialIssue{
aelf.Address address = 1;
int64 amount = 2;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

In order for the creation request to succeed, some assertions must pass:

• the Sender can only have one pending request at any time.

• the locked_token_amount cannot be lower than the indexing price.

• if is_privilege_preserved is true, which means it requests exclusive side chain, the token initial issue list cannot
be empty and all with an amount greater than 0.

• if is_privilege_preserved is true, which means it requests exclusive side chain, the initial_resource_amount
must contain all resource tokens of the chain and the value must be greater than 0.

• the allowance approved to cross chain contract from the proposer (Sender of the transaction) cannot be lower
than the locked_token_amount.

• no need to provide data about side chain token if is_privilege_preserved is false, and side chain token won’t be
created even you provide token info.

console.log('\n>>>> Requesting the side chain creation.');
const sideChainCreationRequestTx = await crossChainContract.RequestSideChainCreation({

indexingPrice: 1,
lockedTokenAmount: '20000',
isPrivilegePreserved: true,
sideChainTokenDecimals: 8,
sideChainTokenName: 'SCATokenName',
sideChainTokenSymbol: 'SCA',
sideChainTokenTotalSupply: '100000000000000000',
isSideChainTokenBurnable: true,
sideChainTokenInitialIssueList: [

{
address: '28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK',
amount: '1000000000000000'

}
],
initialResourceAmount: { CPU: 2, RAM: 4, DISK: 512, NET: 1024 },
isSideChainTokenProfitable: true

(continues on next page)

6.1. Requesting the creation of a side chain 51

AElf, Release release/1.0.0-preview3

(continued from previous page)

});

let sideChainCreationRequestTxResult = await pollMining(sideChainCreationRequestTx.
→˓TransactionId);

// deserialize the log to get the proposal's ID.
let deserializedLogs = parliamentContract.
→˓deserializeLog(sideChainCreationRequestTxResult.Logs, 'ProposalCreated');
console.log(`>> side chain creation request proposal id ${JSON.
→˓stringify(deserializedLogs[0].proposalId)}`);

The last line will print the proposal ID and this is what will be used for approving by the producers.

Approval from producers

This is where the parliament organization members approve the proposal:

console.log('\n>>>> Approving the proposal.');

var proposalApproveTx = await parliamentContract.Approve(deserializedLogs[0].
→˓proposalId);
await pollMining(proposalApproveTx.TransactionId);

Note: when calling Approve it will be the Sender of the transaction that approves. Here the script is set to use the key
of one parliament organization member, see full script at the end.

Release

This part of the script releases the proposal:

console.log('\n>>>> Release the side chain.');

var releaseResult = await crossChainContract.ReleaseSideChainCreation({
proposalId: deserializedLogs[0].proposalId

});

let releaseTxResult = await pollMining(releaseResult.TransactionId);

// Parse the logs to get the chain id.
let sideChainCreationEvent = crossChainContract.deserializeLog(releaseTxResult.Logs,
→˓'SideChainCreatedEvent');
console.log('Chain chain created : ');
console.log(sideChainCreationEvent);

This is the last step involved in creating a side chain, after this the chain id of the new side chain is accessible in the
SideChainCreatedEvent event log.

Full script

This section presents the full script. Remember that in order to run successfully, a node must be running, configured
with one producer. The configured producer must match the defaultPrivateKey and defaultPrivateKeyAddress of
the script.

52 Chapter 6. Running a side chain

AElf, Release release/1.0.0-preview3

Also, notice that this script by default tries to connect to the node’s API at the following address http://127.0.0.1:1234,
if your node is listening on a different address you have to modify the address.

If you haven’t already installed it, you need the aelf-sdk:

npm install aelf-sdk

You can simply run the script from anywhere:

node sideChainProposal.js

sideChainProposal.js:

const AElf = require('aelf-sdk');
const Wallet = AElf.wallet;

const { sha256 } = AElf.utils;

// set the private key of the block producer
const defaultPrivateKey =
→˓'e119487fea0658badc42f089fbaa56de23d8c0e8d999c5f76ac12ad8ae897d76';
const defaultPrivateKeyAddress = 'HEtBQStfqu53cHVC3PxJU6iGP3RGxiNUfQGvAPTjfrF3ZWH3U';
const wallet = Wallet.getWalletByPrivateKey(defaultPrivateKey);

// link to the node
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1234'));

if (!aelf.isConnected()) {
console.log('Could not connect to the node.');

}

const tokenContractName = 'AElf.ContractNames.Token';
const parliamentContractName = 'AElf.ContractNames.Parliament';
const crossChainContractName = 'AElf.ContractNames.CrossChain';

var pollMining = async function(transactionId) {
console.log('>> Waiting for ${transactionId} the transaction to be mined.');

for (i = 0; i < 10; i++) {
const currentResult = await aelf.chain.getTxResult(transactionId);
// console.log('transaction status: ' + currentResult.Status);

if (currentResult.Status === 'MINED')
return currentResult;

await new Promise(resolve => setTimeout(resolve, 2000))
.catch(function () {

console.log("Promise Rejected");
});;

}
}

var setAllowance = async function(tokenContract, crossChainContractAddress)
{

console.log('\n>>>> Setting allowance for the cross-chain contract.');

// set some allowance to the cross-chain contract
const approvalResult = await tokenContract.Approve({

(continues on next page)

6.1. Requesting the creation of a side chain 53

http://127.0.0.1:1234

AElf, Release release/1.0.0-preview3

(continued from previous page)

symbol:'ELF',
spender: crossChainContractAddress,
amount: 20000
});

let approveTransactionResult = await pollMining(approvalResult.TransactionId);
//console.log(approveTransactionResult);

}

var checkAllowance = async function(tokenContract, owner, spender)
{

console.log('\n>>>> Checking the cross-chain contract\'s allowance');

const checkAllowanceTx = await tokenContract.GetAllowance({
symbol: 'ELF',
owner: owner,
spender: spender

});

let checkAllowanceTxResult = await pollMining(checkAllowanceTx.TransactionId);
let txReturn = JSON.parse(checkAllowanceTxResult.ReadableReturnValue);

console.log('>> allowance to the cross-chain contract: ${txReturn.allowance} $
→˓{txReturn.symbol}');
}

const createSideChain = async () => {

// get the status of the chain in order to get the genesis contract address
console.log('Starting side chain creation script\n');

const chainStatus = await aelf.chain.getChainStatus({sync: true});
const genesisContract = await aelf.chain.contractAt(chainStatus.

→˓GenesisContractAddress, wallet)
.catch((err) => {

console.log(err);
});

// get the addresses of the contracts that we'll need to call
const tokenContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(tokenContractName));
const parliamentContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(parliamentContractName));
const crossChainContractAddress = await genesisContract.GetContractAddressByName.

→˓call(sha256(crossChainContractName));

console.log('token contract address: ' + tokenContractAddress);
console.log('parliament contract address: ' + parliamentContractAddress);
console.log('cross chain contract address: ' + crossChainContractAddress);

// build the aelf-sdk contract object
const parliamentContract = await aelf.chain.contractAt(parliamentContractAddress,

→˓wallet);
const tokenContract = await aelf.chain.contractAt(tokenContractAddress, wallet);
const crossChainContract = await aelf.chain.contractAt(crossChainContractAddress,

→˓wallet);

(continues on next page)

54 Chapter 6. Running a side chain

AElf, Release release/1.0.0-preview3

(continued from previous page)

console.log();

// 1. set and check the allowance, spender is the cross-chain contract
await setAllowance(tokenContract, crossChainContractAddress);
await checkAllowance(tokenContract, defaultPrivateKeyAddress,

→˓crossChainContractAddress);

// 2. request the creation of the side chain with the cross=chain contract
console.log('\n>>>> Requesting the side chain creation.');
const sideChainCreationRequestTx = await crossChainContract.

→˓RequestSideChainCreation({
indexingPrice: 1,
lockedTokenAmount: '20000',
isPrivilegePreserved: true,
sideChainTokenDecimals: 8,
sideChainTokenName: 'SCATokenName',
sideChainTokenSymbol: 'SCA',
sideChainTokenTotalSupply: '100000000000000000',
isSideChainTokenBurnable: true,
sideChainTokenInitialIssueList: [

{
address: '28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK',
amount: '1000000000000000'

}
],
initialResourceAmount: { CPU: 2, RAM: 4, DISK: 512, NET: 1024 },
isSideChainTokenProfitable: true

});

let sideChainCreationRequestTxResult = await
→˓pollMining(sideChainCreationRequestTx.TransactionId);

// deserialize the log to get the proposal's ID.
let deserializedLogs = parliamentContract.

→˓deserializeLog(sideChainCreationRequestTxResult.Logs, 'ProposalCreated');
console.log('>> side chain creation request proposal id ${JSON.

→˓stringify(deserializedLogs[0].proposalId)}');

// 3. Approve the proposal
console.log('\n>>>> Approving the proposal.');

var proposalApproveTx = await parliamentContract.Approve(deserializedLogs[0].
→˓proposalId);

await pollMining(proposalApproveTx.TransactionId);

// 3. Release the side chain
console.log('\n>>>> Release the side chain.');

var releaseResult = await crossChainContract.ReleaseSideChainCreation({
proposalId: deserializedLogs[0].proposalId

});

let releaseTxResult = await pollMining(releaseResult.TransactionId);

// Parse the logs to get the chain id.
let sideChainCreationEvent = crossChainContract.deserializeLog(releaseTxResult.

→˓Logs, 'SideChainCreatedEvent');
(continues on next page)

6.1. Requesting the creation of a side chain 55

AElf, Release release/1.0.0-preview3

(continued from previous page)

console.log('Chain chain created : ');
console.log(sideChainCreationEvent);

};

createSideChain();

6.2 Running a side chain (after its release)

This tutorial will explain how to run a side chain node after it has been approved by the producers and released by the
creator. After the creation of the side chain, the producers need to run a side chain node.

A side chain node is usually very similar to a main-chain node because both are based on AElf software and have
common modules. The main difference is the configuration which varies depending on if the node is a side chain or
not.

Note: this tutorial assumes the following:

• you already have a main-chain node running.

• the creation of the side chain has already been approved and released.

It’s also important to know that the key-pair (account) used for mining on the side chain must be the same as the one
you use for on the main-chain node. Said in another way both production nodes need to be launched with the same
key-pair.

Note: for more information about the side chain creation, refer to the document in the request-side-chain section.

6.2.1 Side chain configuration

Two configuration files must be placed in the configuration folder of the side chain, this is also the folder from which
you will launch the node:

• appsettings.json

• appsettings.SideChain.MainNet.json

After the release of the side chain creation request, the ChainId of the new side chain will be accessible in the
SideChainCreatedEvent logged by the transaction that released.

In this example, we will set up the side chain node with tDVV (1866392 converted to base58) as it’s chain id, con-
necting to Redis’ db2. The web API port is 1235. Don’t forget to change the account, password and initial miner.

If at the time of launching the side chain the P2P addresses of the other peers is known, they should be added to the
bootnodes in the configuration of the side chain.

In appsettings.json change the following configuration sections:

{
"ChainId":"tDVV",
"ChainType":"SideChain",
"NetType": "MainNet",
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=2",
"StateDb": "redis://localhost:6379?db=2"

},
"Account": {

(continues on next page)

56 Chapter 6. Running a side chain

AElf, Release release/1.0.0-preview3

(continued from previous page)

"NodeAccount": "YOUR PRODUCER ACCOUNT",
"NodeAccountPassword": "YOUR PRODUCER PASSWORD"

},
"Kestrel": {
"EndPoints": {

"Http": {
"Url": "http://*:1235/"

}
}

},
"Consensus": {
"MiningInterval": 4000,
"StartTimestamp": 0

},
}

In appsettings.SideChain.MainNet.json change the following configuration sections:

{
"CrossChain": {
"Grpc": {

"ParentChainServerPort": 5010,
"ListeningPort": 5000,
"ParentChainServerIp": "127.0.0.1"

},
"ParentChainId": "AELF",

}
}

Change ParentChainServerIp and ParentChainServerPort depending on the listening address of your mainchain
node.

6.2.2 Launch the side chain node

Open a terminal and navigate to the folder where you created the configuration for the side chain.

dotnet ../AElf.Launcher.dll

You can try out a few commands from another terminal to check if everything is fine, for example:

aelf-command get-blk-height -e http://127.0.0.1:1235

6.2. Running a side chain (after its release) 57

AElf, Release release/1.0.0-preview3

58 Chapter 6. Running a side chain

CHAPTER 7

Running AElf on the cloud

This section provides resources for AElf on the cloud.

7.1 Getting started with Google cloud

This guide will run you through the steps required to run an AElf node on Google cloud (click the images for a more
detailed view).

First go to the Google Cloud Market Place and search for “aelf blockchain for enterprise”, find the image and select
it, this will direct you to the image’s page.

Click on the “LAUNCH ON COMPUTE ENGINE”. This should bring you to the following deployment page:

59

https://console.cloud.google.com/marketplace

AElf, Release release/1.0.0-preview3

You can keep the default settings, they are sufficient to get started. If you’re satisfied with the settings, just click
“DEPLOY” (bottom left of the page).

This will bring you to the deployment page (wait a short moment for the instance to load), when finished you should
see deployment information about the instance:

60 Chapter 7. Running AElf on the cloud

AElf, Release release/1.0.0-preview3

Next, login to the launched VM instance via SSH. To start the easiest way is to login to the instance directly from this
deployment page. To do this click the SSH drop down and select “Open in browser window”:

After loading the session, you’ll get a shell to the deployed instance where you can run the chain itself.

First you’ll need to execute sudo bash to elevate your privileges. Next, start the chain with one of the following
commands (for this tutorial we’ll use the second method): - either run it in the foreground: -bash root@test:/#
cd /opt/aelf-node && docker-compose up

• or run it in the background: -bash root@test:/# cd /opt/aelf-node && docker-compose
up -d

These commands will start redis and an AElf node (the command prints ‘done’ when finished).

7.1. Getting started with Google cloud 61

AElf, Release release/1.0.0-preview3

Finally to verify that the node is correctly working, enter the following command that will send an http request to the
node in order to get the current status of the chain:

curl -X GET "http://127.0.0.1:8001/api/blockChain/chainStatus" -H "accept: text/plain;
→˓ v=1.0"

If everything is working normally you should be able to see the chain increase by repeating the last command.

62 Chapter 7. Running AElf on the cloud

CHAPTER 8

Smart Contract Developing Demos

8.1 Bingo Game

8.1.1 Requirement Analysis

Basic Requirement

Only one ruleUsers can bet a certain amount of ELF on Bingo contract, and then users will gain more ELF or to lose
all ELF bet before in the expected time.

For users, operation steps are as follows:

1. Send an Approve transaction by Token Contract to grant Bingo Contract amount of ELF.

2. Bet by Bingo Contract, and the outcome will be unveiled in the expected time.

3. After a certain time, or after the block height is reached, the user can use the Bingo contract to query the results,
and at the same time, the Bingo contract will transfer a certain amount of ELF to the user (If the amount at this
time is greater than the bet amount, it means that the user won; vice versa).

8.1.2 API List

In summary, two basic APIs are needed:

1. Play, corresponding to step 2;

2. Bingo, corresponding to step 3.

In order to make the Bingo contract a more complete DApp contract, two additional Action methods are added:

1. Register, which creates a file for users, can save the registration time and user’s eigenvalues (these eigenvalues
participate in the calculation of the random number used in the Bingo game);

2. Quit, which deletes users’ file.

In addition, there are some View methods for querying information only:

63

AElf, Release release/1.0.0-preview3

1. GetAward, which allows users to query the award information of a bet;

2. GetPlayerInformation, used to query player’s information.

Method Parameters Return function
Register Empty Empty register player infor-

mation
Quit Empty Empty delete player informa-

tion
Play Int64Value

anount you debt
Int64Value
the resulting
block height

debt

Bingo Hash
the transaction
id of Play

Empty
True indicates
win

query the game’s re-
sult

GetAward Hash
the transaction
id of Play

Int64Value
award

query the amount of
award

GetPlayerInformationAddress
player’s address

Player-
Information

query player’s infor-
mation

8.1.3 Write Contract

Use the code generator to generate contracts and test projects

Open the AElf.Boilerplate.CodeGenerator project in the AElf.Boilerplate solution, and modify the Contents node in
appsetting.json under this project:

{
"Contents": [
{
"Origin": "AElf.Contracts.HelloWorldContract",
"New": "AElf.Contracts.BingoContract"

},
{
"Origin": "HelloWorld",
"New": "Bingo"

},
{
"Origin": "hello_world",
"New": "bingo"

}
],

}

Then run the AElf.Boilerplate.CodeGenerator project. After running successfully, you will see a
AElf.Contracts.BingoContract.sln in the same directory as the AElf.Boilerplate.sln is in. After opening the sln, you
will see that the contract project and test case project of the Bingo contract have been generated and are included in
the new solution.

Define Proto

Based on the API list in the requirements analysis, the bingo_contract.proto file is as follows:

64 Chapter 8. Smart Contract Developing Demos

AElf, Release release/1.0.0-preview3

syntax = "proto3";
import "aelf/core.proto";
import "aelf/options.proto";
import "google/protobuf/empty.proto";
import "google/protobuf/wrappers.proto";
import "google/protobuf/timestamp.proto";
option csharp_namespace = "AElf.Contracts.BingoContract";
service BingoContract {

option (aelf.csharp_state) = "AElf.Contracts.BingoContract.BingoContractState";

// Actions
rpc Register (google.protobuf.Empty) returns (google.protobuf.Empty) {
}
rpc Play (google.protobuf.Int64Value) returns (google.protobuf.Int64Value) {
}
rpc Bingo (aelf.Hash) returns (google.protobuf.BoolValue) {
}
rpc Quit (google.protobuf.Empty) returns (google.protobuf.Empty) {
}

// Views
rpc GetAward (aelf.Hash) returns (google.protobuf.Int64Value) {

option (aelf.is_view) = true;
}
rpc GetPlayerInformation (aelf.Address) returns (PlayerInformation) {

option (aelf.is_view) = true;
}

}
message PlayerInformation {

aelf.Hash seed = 1;
repeated BoutInformation bouts = 2;
google.protobuf.Timestamp register_time = 3;

}
message BoutInformation {

int64 play_block_height = 1;
int64 amount = 2;
int64 award = 3;
bool is_complete = 4;
aelf.Hash play_id = 5;
int64 bingo_block_height = 6;

}

Contract Implementation

Here only talk about the general idea of the Action method, specifically need to turn the code:

https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/
BingoGameContract.cs

Register & Quit

Register

1. Determine the Seed of the user, Seed is a hash value, participating in the calculation of the random number, each
user is different, so as to ensure that different users get different results on the same height;

8.1. Bingo Game 65

https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs
https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs

AElf, Release release/1.0.0-preview3

2. Record the user’s registration time.

QuitJust delete the user’s information.

Play & Bingo

Play

1. Use TransferFrom to deduct the user’s bet amount;

2. At the same time add a round (Bount) for the user, when the Bount is initialized, record three messages 1.PlayId,
the transaction Id of this transaction, is used to uniquely identify the Bout (see BoutInformation for its data
structure in the Proto definition); 2.AmountRecord the amount of the bet 3.Record the height of the block in
which the Play transaction is packaged.

Bingo

1. Find the corresponding Bout according to PlayId, if the current block height is greater than PlayBlockHeight +
number of nodes * 8, you can get the result that you win or lose;

2. Use the current height and the user’s Seed to calculate a random number, and then treat the hash value as a bit
Array, each of which is added to get a number ranging from 0 to 256.

3. Whether the number is divisible by 2 determines the user wins or loses;

4. The range of this number determines the amount of win/loss for the user, see the note of GetKind method for
details.

8.1.4 Write Test

Because the token transfer is involved in this test, in addition to constructing the stub of the bingo contract, the stub of
the token contract is also required, so the code referenced in csproj for the proto file is:

<ItemGroup>
<ContractStub Include="..\..\protobuf\bingo_contract.proto">
<Link>Protobuf\Proto\bingo_contract.proto</Link>

</ContractStub>
<ContractStub Include="..\..\protobuf\token_contract.proto">
<Link>Protobuf\Proto\token_contract.proto</Link>

</ContractStub>
</ItemGroup>

Then you can write test code directly in the Test method of BingoContractTest. Prepare the two stubs mentioned
above:

// Get a stub for testing.
var keyPair = SampleECKeyPairs.KeyPairs[0];
var stub = GetBingoContractStub(keyPair);
var tokenStub =

GetTester<TokenContractContainer.TokenContractStub>(
GetAddress(TokenSmartContractAddressNameProvider.StringName), keyPair);

The stub is the stub of the bingo contract, and the tokenStub is the stub of the token contract.

In the unit test, the keyPair account is given a large amount of ELF by default, and the bingo contract needs a certain
bonus pool to run, so first let the account transfer ELF to the bingo contract:

66 Chapter 8. Smart Contract Developing Demos

AElf, Release release/1.0.0-preview3

// Prepare awards.
await tokenStub.Transfer.SendAsync(new TransferInput
{

To = DAppContractAddress,
Symbol = "ELF",
Amount = 100_00000000

});

Then you can start using the Bingo contract. Register

await stub.Register.SendAsync(new Empty());

After registration, take a look at PlayInformation:

// Now I have player information.
var address = Address.FromPublicKey(keyPair.PublicKey);
{

var playerInformation = await stub.GetPlayerInformation.CallAsync(address);
playerInformation.Seed.Value.ShouldNotBeEmpty();
playerInformation.RegisterTime.ShouldNotBeNull();

}

Bet, but before you can bet, you need to Approve the bingo contract:

// Play.
await tokenStub.Approve.SendAsync(new ApproveInput
{

Spender = DAppContractAddress,
Symbol = "ELF",
Amount = 10000

});
await stub.Play.SendAsync(new Int64Value {Value = 10000});

See if Bout is generated after betting.

Hash playId;
{

var playerInformation = await stub.GetPlayerInformation.CallAsync(address);
playerInformation.Bouts.ShouldNotBeEmpty();
playId = playerInformation.Bouts.First().PlayId;

}

Since the outcome requires eight blocks, you need send seven invalid transactions (these transactions will fail, but the
block height will increase) :

// Mine 7 more blocks.
for (var i = 0; i < 7; i++)
{

await stub.Bingo.SendWithExceptionAsync(playId);
}

Last check the award, and that the award amount is greater than 0 indicates you win.

await stub.Bingo.SendAsync(playId);
var award = await stub.GetAward.CallAsync(playId);
award.Value.ShouldNotBe(0);

8.1. Bingo Game 67

AElf, Release release/1.0.0-preview3

68 Chapter 8. Smart Contract Developing Demos

CHAPTER 9

Consensus

9.1 Overview

The process of reaching consensus is an essential part of every blockchain, since its what determines which transactions
get included in the block and in what order. A stable and efficient Block formation mechanism is the foundation of the
AElf system. The operation and maintenance of AElf is more complicated than Bitcoin and Ethereum, because AElf
Block formation requires the Main Chain to record information from Side Chains, and AElf is designed to provide
cloud-based enterprise services in a more complex structure. In addition, miners need to update information from
multiple parallel Chains. The Main Chain will adopt AEDPoS consensus to ensure high frequency and predictability
of Block formation, which will improve user experience.

In an AElf blockchain, consensus protocol is split into two parts: election and scheduling. Election is the process that
determines who gets to produce and scheduling decides on the when.

9.1.1 Core Data Center

Core Data Centers aka Miners or Block Producers, act as members of parliament in the world of AElf blockchain.

The AElf blockchain delegates 2N+1 Core Data Centers. N starts with 8 and increases by 1 every year.

These nodes in the AElf system enforce all of consensus rules of AElf. The purpose of these delegated mining nodes
is to enable transaction relay, transaction confirmation, packaging blocks and data transfer. As AElf adopts multi-Side

69

AElf, Release release/1.0.0-preview3

Chain architecture, Core Data Centers have to work as miners for some Side Chains. 2N+1 nodes will go through a
randomized order calculation each week.

All the Core Data Centers are elected by the ELF token hodlers. Electors can lock their ELF tokens to vote to one
Validate Data Center, thus enhance the competitiveness of certain Validate Data Center in the election process.

9.1.2 Validate Data Center

In the AElf blockchain, everyone can lock an amount of ELF tokens to announce himself joining the election. Among
all the nodes who announced joining election, top (2N+1)*5 nodes will become Validate Data Center. N starts with 8
and increases by 1 every year.

9.2 AEDPoS Process

9.2.1 Round

The AElf blockchain is running along the timeline within processing units we call a “round”.

In a round, one node (Core Data Center) will produce one block each time, while one node will have one extra
transaction at the end of the round.

Each mining node has three main properties in a specific round t:

• Private key, in_node(t), which is a value inputted from the mining node and kept privately by the mining node
itself in round t. It will become public after all block generations in round t are completed;

• Public key, out_node(t), which is the hash value of in_node(t). Every node in the aelf network can look up this
value at any time;

• Signature, sig_node(t), which is a value generated by the mining node itself in the first round. After the first
round, it can only be calculated once the previous round is completed. It is used as the signature of this mining
node in this round and it is also opened to public at all times like the out_node(t).

9.2.2 Main Processes

Pre-Verification

Before a node starts its block generation in round (t+1), it has to have its status verified in round t. In round (t+1),
in_node(t) is already published as public, and out_node(t) can be queried at any time. So to verify the status of in

70 Chapter 9. Consensus

AElf, Release release/1.0.0-preview3

round , other nodes can check hash(in_node(t)) = out_node(t).

Order Calculation

In each round N, Core Data Centers have (N+1) block generation time slots, each time slot have 1 to 8 blocks genera-
tion based on current running status in the AElf blockchain.

In the first round, the ordering of block generations as well as the signature (sig) for each node are totally arbitrary.

In the second round, the block generations are again arbitrarily ordered. However, from the second round, the sig-

nature will be calculated by sig_node(t+1) = hash(in_node(t) + all_t) where here
node[i][t], means the node is processing the i-th transaction in round t.

From round 3, the ordering within a round is generated from the ordering and the node signature from the previous
round.

In round (t+1), we traverse the signature of nodes at round t in order. The ordering of a node in (t+1) is calculated by

For cases of conflict, i.e. results pointed to places which are not empty, we point the node to the next available place.
If the node conflict is at the n-th place, we will find the available place from the first place.

9.2. AEDPoS Process 71

AElf, Release release/1.0.0-preview3

The node that processes the one extra transaction is calculated from the signature of the node in first place of the
previous round.

sig_node[0][t] is decided by:

• all the signatures from previous round (t-1);

• the in value of itself in round (t-1);

• which node generate the extra block.

So it can only be calculated after the previous round (t-1) completed. Moreover, as it needs all the signatures from the
previous round and the in value is input by each node independently, there is no way to control the ordering. The extra
block generation is used to increase the randomness. In general, we create a random system that relies on extra inputs
from outside. Based on the assumption that no node can know all other nodes’ inputs in a specific round, no one node
could control the ordering.

If one node cannot generate a block in round t, it also cannot input in its for this round. In such a case, the previous in
will be used. Since all mining nodes are voted to be reliable nodes, such a situation should not happen often. Even if
this situation does happen, the above-mentioned strategy is more than sufficient at dealing with it.

Every node only has a certain time T seconds to process transactions. Under the present network condition, T=4 is
a reasonable time consideration, meaning that every node only has 4 seconds to process transactions and submit the
result to the network. Any delegate who fails to submit within 4 seconds is considered to be abandoning the block. If
a delegate failed two times consecutively, there will be a window period calculated as W hours (W=2^N, N stands for
the number of failure) for that node.

In the systematic design, aelf defines that only one node generates blocks within a certain period. Therefore, it is
unlikely for a fork to happen in an environment where mining nodes are working under good connectivity. If multiple
orphan node groups occur due to network problems, the system will adopt the longest chain since that is 19 the chain
that most likely comes from the orphan node group with largest number of mining nodes. If a vicious node mines in
two forked Blockchains simultaneously to attack the network, that node would be voted out of the entire network.

AEDPoS mining nodes are elected in a way that resembles representative democracy. The elected nodes decide how
to hand out bonuses to the other mining nodes and stakeholders.

9.3 Irreversible Block

todo

72 Chapter 9. Consensus

CHAPTER 10

Network

10.1 1. Introduction

The role that the network layer plays in AElf is very important, it maintains active and healthy connections to other
peers of the network and is of course the medium through which nodes communicate and follow the chain protocol.
The network layer also implements interfaces for higher-level logic like the synchronization code and also exposes
some functionality for the node operator to administer and monitor network operations.

The design goals when designing AElf’s network layer was to avoid “reinventing the wheel” and keep things as
simply possible, we ended up choosing gRPC to implement the connections in AElf. Also, it was important to isolate
the actual implementation (the framework used) from the contract (the interfaces exposed to the higher-level layers)
to make it possible to switch implementation in the future without breaking anything.

10.2 2. Architecture

This section will present a summary of the different layers that are involved in network interactions.

The network is split into 3 different layers/projects, namely:

• AElf.OS

– Defines event handles related to the network.

– Defines background workers related to the network.

• AElf.OS.Core.Network

– Defines service layer exposed to higher levels.

– Contains the definitions of the infrastructure layer.

– Defines the component, types.

• AElf.OS.Network.Grpc

– The implementation of the infrastructure layer.

73

AElf, Release release/1.0.0-preview3

– Launches events defined in the core

– Low-level functionality: serialization, buffering, retrying. . .

10.2.1 2.1 AElf.OS

At the AElf.OS layer, the network monitors events of interest to the network through event handlers, such as kernel
layer transaction verification, block packaging, block execution success, and discovery of new libs. The handler will
call NetworkService to broadcast this information to its connected peer. And it will run background workers to process
network tasks regularly.

Currently, the AElf.OS layer handles those events related to the network:

• Transaction Accepted Eventthe event that the transaction pool receives the transaction and passes verification

• Block Mined Eventwhen the current node is BP, the event that the block packaging is completed.

• Block Accepted Eventthe event that the node successfully executes the block.

• New Irreversible Block Found Eventthe event that the chain found the new irreversible block.

Currently, the AElf.OS layer will periodically process the following tasks.

• Peer health check: regularly check whether the connected peer is healthy and remove the abnormally connected
peer.

• Peer retry connection: peer with abnormal connection will try to reconnect.

• Network node discovery: regularly discover more available nodes through the network.

10.2.2 2.2 AElf.OS.Core.Network

AElf.OS.Core.Network is the core module of the networkcontains services(service layer exposed to higher levels (OS))
and definitions (abstraction of the Infrastructure layer).

• Application layer implementation:

– NetworkService: this service exposes and implements functionality that is used by higher layers like the
sync and RPC modules. It takes care of the following:

* sending/receiving: it implements the functionality to request a block(s) or broadcast items to peers
by using an IPeerPool to select peers. This pool contains references to all the peers that are currently
connected.

* handling network exceptions: the lower-level library that implements the Network layer is expected
to throw a NetworkException when something went wrong during a request.

• Infrastructure layer implementation and definition:

– IPeerPool/PeerPool: manages active connections to peers.

– IPeer: an active connection to a peer. The interface defines the obvious request/response methods, it
exposes a method for the NetworkService to try and wait for recovery after some network failure. It
contains a method for getting metrics associated with the peer. You can also access information about the
peer itself (ready for requesting, IP, etc.).

– IAElfNetworkServer: manages the lifecycle of the network layer, implements listening for connections,
it is the component that accepts connections. For now, it is expected that this component launches Net-
workInitializationFinishedEvent when the connection to the boot nodes is finished.

• Definitions of types (network_types.proto and partial).

74 Chapter 10. Network

AElf, Release release/1.0.0-preview3

• Defines the event that should be launched from the infrastructure layer’s implementation.

10.2.3 2.3 AElf.OS.Network.Grpc

The AElf.OS.Network.Grpc layer is the network infrastructure layer that we implement using the gRPC framework.

• GrpcPeerimplemented the interface IPeer defined by the AElf.OS.Core.Network layer

• GrpcNetworkServer: implemented the interface IAElfNetworkServer defined by the AElf.OS.Core.Network
layer

• GrpcServerService: implemented network service interfaces, including interfaces between nodes and data ex-
change.

• Extra functionality:

– Serializing requests/deserializing responses (protobuf).

– Some form of request/response mechanism for peers (optionally with the timeout, retry, etc).

– Authentification.

In fact, gRPC is not the only option. Someone could if they wanted to replace the gRPC stack with a low-level
socket API (like the one provided by the dotnet framework) and re-implement the needed functionality. As long as the
contract (the interface) is respected, any suitable framework can be used if needed.

10.3 3. Protocol

Each node implements the network interface protocol defined by AElf to ensure normal operation and data synchro-
nization between nodes.

10.3.1 3.1 Connection

3.1.1 DoHandshake Interface

When a node wants to connect with the current node, the current node receives the handshake information of the target
node through the interface DoHandshake. After the current node verifies the handshake information, it returns the
verification result and the handshake information of the current node to the target node.

The handshake information, in addition to being used in the verification of the connection process, will also record the
status of the other party’s chain after the connection is successful, such as the current height, Lib height, etc.

rpc DoHandshake (HandshakeRequest) returns (HandshakeReply) {}

• Handshake Message

message Handshake {
HandshakeData handshake_data = 1;
bytes signature = 2;
bytes session_id = 3;

}

– handshake_data: the data of handshake.

– signature: the signatrue of handshake data.

– session_id: randomly generated ids when nodes connect.

10.3. 3. Protocol 75

AElf, Release release/1.0.0-preview3

• HandshakeData Message

message HandshakeData {
int32 chain_id = 1;
int32 version = 2;
int32 listening_port = 3;
bytes pubkey = 4;
aelf.Hash best_chain_hash = 5;
int64 best_chain_height = 6;
aelf.Hash last_irreversible_block_hash = 7;
int64 last_irreversible_block_height = 8;
google.protobuf.Timestamp time = 9;

}

– chain_id: the id of current chain.

– version: current version of the network.

– listening_port: the port number at which the current node network is listening.

– pubkey: the public key of the current node used by the receiver to verify the data signature.

– best_chain_hash: the lastest block hash of the best branch.

– best_chain_height: the lastest block height of the best branch.

– last_irreversible_block_hash: the hash of the last irreversible block.

– last_irreversible_block_height: the height of the last irreversible block.

– time: the time of handshake.

• HandshakeRequest Message

message HandshakeRequest {
Handshake handshake = 1;

}

– handshake: complete handshake information, including handshake data and signature.

• HandshakeReply Message

message HandshakeReply {
Handshake handshake = 1;
HandshakeError error = 2;

}

– handshake: complete handshake information, including handshake data and signature.

– error: handshake error enum.

• HandshakeError Enum

enum HandshakeError {
HANDSHAKE_OK = 0;
CHAIN_MISMATCH = 1;
PROTOCOL_MISMATCH = 2;
WRONG_SIGNATURE = 3;
REPEATED_CONNECTION = 4;
CONNECTION_REFUSED = 5;
INVALID_CONNECTION = 6;
SIGNATURE_TIMEOUT = 7;

}

76 Chapter 10. Network

AElf, Release release/1.0.0-preview3

– HANDSHAKE_OK: indicate no error actually; the default value.

– CHAIN_MISMATCH: the chain ID does not match.

– PROTOCOL_MISMATCH: the network version does not match.

– WRONG_SIGNATURE: the signature cannot be verified.

– REPEATED_CONNECTION: multiple connection requests were sent by the same peer.

– CONNECTION_REFUSED: peer actively rejects the connection, either because the other party’s connec-
tion pool is slow or because you have been added to the other party’s blacklist.

– INVALID_CONNECTION: connection error, possibly due to network instability, causing the request to
fail during the connection.

– SIGNATURE_TIMEOUT: the signature data has timed out.

3.1.2 ConfirmHandshake Interface

When the target node verifies that it has passed the current node’s handshake message, it sends the handshake confir-
mation message again.

rpc ConfirmHandshake (ConfirmHandshakeRequest) returns (VoidReply) {}

message ConfirmHandshakeRequest {
}

10.3.2 3.2 Broadcasting

3.2.1 BlockBroadcastStream Interface

The interface BlockCastStream is used to receive information about the block and its complete transaction after the
BP node has packaged the block.

rpc BlockBroadcastStream (stream BlockWithTransactions) returns (VoidReply) {}

message BlockWithTransactions {
aelf.BlockHeader header = 1;
repeated aelf.Transaction transactions = 2;

}

• header:

• transactions:

3.2.2 TransactionBroadcastStream Interface

Interface TransactionBroadcastStream used to receive other nodes forward transaction information.

rpc TransactionBroadcastStream (stream aelf.Transaction) returns (VoidReply) {}

10.3. 3. Protocol 77

AElf, Release release/1.0.0-preview3

3.2.3 AnnouncementBroadcastStream Interface

Interface AnnouncementBroadcastStream used to receive other nodes perform block after block information broadcast.

rpc AnnouncementBroadcastStream (stream BlockAnnouncement) returns (VoidReply) {}

message BlockAnnouncement {
aelf.Hash block_hash = 1;
int64 block_height = 2;

}

• block_hash: the announced block hash.

• block_height: the announced block height.

3.2.4 LibAnnouncementBroadcastStream Interface

Interface LibAnnouncementBroadcastStream used to receive other nodes Lib changed Lib latest information broad-
cast.

rpc LibAnnouncementBroadcastStream (stream LibAnnouncement) returns (VoidReply) {}

message LibAnnouncement{
aelf.Hash lib_hash = 1;
int64 lib_height = 2;

}

• lib_hash: the announced last irreversible block hash.

• lib_height: the announced last irreversible block height.

10.3.3 3.3 Block Request

3.3.1 RequestBlock Interface

The interface RequestBlock requests a single block in response to other nodes. Normally, the node receives block
information packaged and broadcast by BP. However, if the block is not received for some other reason. The node
may also receive BlockAnnouncement messages that are broadcast after the block has been executed by other nodes,
so that the complete block information can be obtained by calling the RequestBlock interface of other peers.

rpc RequestBlock (BlockRequest) returns (BlockReply) {}

• BlockRequest Message

message BlockRequest {
aelf.Hash hash = 1;

}

– hash: the block hash that you want to request.

• BlockReply Message

78 Chapter 10. Network

AElf, Release release/1.0.0-preview3

message BlockReply {
string error = 1;
BlockWithTransactions block = 2;

}

– error: error message.

– block: the requested block, including complete block and transactions information.

3.3.2 RequestBlocks Interface

The interface RequestBlock requests blocks in bulk in response to other nodes. When a node forks or falls behind, the
node synchronizes blocks by bulk fetching a specified number of blocks to the RequestBlocks interface through which
the target node is called.

rpc RequestBlocks (BlocksRequest) returns (BlockList) {}

• BlocksRequest Message

message BlocksRequest {
aelf.Hash previous_block_hash = 1;
int32 count = 2;

}

– previous_block_hash: the previous block hash of the request blocks, and the result does not contain this
block.

– count: the number of blocks you want to request.

• BlockList Message

message BlockList {
repeated BlockWithTransactions blocks = 1;

}

– blocks: the requested blocks, including complete blocks and transactions information.

10.3.4 3.4 Peer Management

3.4.1 Ping Interface

Interface Ping is used between nodes to verify that each other’s network is available.

rpc Ping (PingRequest) returns (PongReply) {}

message PingRequest {
}

message PongReply {
}

10.3. 3. Protocol 79

AElf, Release release/1.0.0-preview3

3.4.2 CheckHealth Interface

The interface CheckHealth is invoked for other nodes’ health checks, and each node periodically traverses the available
peers in its own Peer Pool to send health check requests and retries or disconnects if an exception in the Peer state is
found.

rpc CheckHealth (HealthCheckRequest) returns (HealthCheckReply) {}

message HealthCheckRequest {
}

message HealthCheckReply {
}

80 Chapter 10. Network

CHAPTER 11

Address

11.1 Overview

The changes of the state of an AElf blockchain are driven by the execution of transactions. An Address can identify
one of the participants of a transaction, that is, either transaction sender or destination. The sender is marked as From
in a transaction, and the destination is marked as To.

Actually, From can be a User Address, a Contract Address, or a Virtual Address, but To can only be a Contract
Address, which means the transaction sender wants to construct a transaction to execute a certain method in that Smart
Contract.

Here are some further explanations of all kinds of Address in an AElf blockchain.

11.2 User Address

A User Address is generated by an instance of a implementation of interface IAElfAsymmetricCipherKeyPair. We call
this instance as a key pair. One key pair is possessed by a real user of this AElf blockchain.

This is the defination of interface IAElfAsymmetricCipherKeyPair.

public interface IAElfAsymmetricCipherKeyPair
{

byte[] PrivateKey { get; }
byte[] PublicKey { get; }

}

Currently, in AElf blockchain, we use ECKeyPair to implement this interface, just like most of other blockchain
systems. Users can use aelf-command tool to generate themselves a valid ECKeyPair, thus generate a unique User
Address.

User can easily create a key pair with command line tool with the create command.

81

AElf, Release release/1.0.0-preview3

aelf-command create

Creation will be successful after you provide a valid passwrod. When creating the key-pair (that we sometimes refer
to as the “account”) it will generate a file with the “.json” extension. This file will contain the public and private key
and will be encrypted with the password you provided before.

If you are writing a dApp you can also use the following method in the js-sdk, it is based on bip39 for generating a
deterministic key pair with a “mnemonic sentence” (here for more on this):

import Aelf from 'aelf-sdk';
Aelf.wallet.createNewWallet();

This will return an object containing the mnemonic used, the key-pair and the address. In AElf we usually encode the
address in base58. This address is derived from the public, we calculate it as the first 30 bytes of the double sha256
hash. The AElf js-sdk provides the following, that returns the address:

import Aelf from 'aelf-sdk';
const address = aelf.wallet.getAddressFromPubKey(pubKey);

Finally here is the Protobuf message we use for representing an address, it is often used by other types to represent
addresses:

option csharp_namespace = "AElf.Types";
message Address
{

bytes value = 1;
}

Also, the structure of Hash is very similar to Address.

11.3 Contract Address

Contract Address can identify a Smart Contract in an AElf blockchain. The Contract Address is calculated with chain
id and a serial number during the deployment of related Smart Contract.

private static Address BuildContractAddress(Hash chainId, long serialNumber)
{

var hash = HashHelper.ConcatAndCompute(chainId, HashHelper.
→˓ComputeFrom(serialNumber));

return Address.FromBytes(hash.ToByteArray());
}
public static Address BuildContractAddress(int chainId, long serialNumber)
{

return BuildContractAddress(HashHelper.ComputeFrom(chainId), serialNumber);
}

11.4 Contract Virtual Address

As an extended function, every contract can be added with a Hash value based on its Address, then it can obtain
unlimited virtual Addresses, this newly created address is called Virtual Address.

For example, the account transfer in AEif blockchain is to send the Transfer transaction to the MultiToken contract
along with the parameters of the recipient, transfer currency and amount, etc. One account transfer involves the sender

82 Chapter 11. Address

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

AElf, Release release/1.0.0-preview3

and recipient, and both parties are identified by the Address. In this situation, the Virtual Address, which is created
by Address and Hash algorithm, can be either party of the account transfer like the normal Address for the user or
contract. What’s more, Virtual Address can only be controlled by the primary contract, this enables the contract to
custody transactions or fundings independently for every user.

In essence, the characteristic of Virtual Address is a unique identification. As a result, the Virtual Address, which is
generated by a business action on this contract, is reliable to be used for token transferring.

11.4. Contract Virtual Address 83

AElf, Release release/1.0.0-preview3

84 Chapter 11. Address

CHAPTER 12

Overview

Transactions ultimately are what will change the state of the blockchain by calling methods on smart contracts. A
transaction is either sent to the node via RPC or received from the network. When broadcasting a transaction and if
valid it will be eventually included in a block. When this block is received and executed by the node, it will potential
change the state of contracts.

12.1 Smart Contract

In AElf blockchain, smart contracts contains a set of state definitions and a set of methods which aiming at modifing
these states.

12.2 Action & View

In AElf blockchain, there are two types of smart contract methods, actions and views. Action methods will actually
modify the state of one contract if a related transaction has included in a block and executed successfully. View
methods cannot modify the state of this contract in any case.

Developers can claim a action method in proto file like this:

rpc Vote (VoteInput) returns (google.protobuf.Empty) {
}

And claim a view method like this:

rpc GetVotingResult (GetVotingResultInput) returns (VotingResult) {
option (aelf.is_view) = true;

}

85

AElf, Release release/1.0.0-preview3

12.3 Transaction Instance

Here’s the defination of the Transaction.

option csharp_namespace = "AElf.Types";

message Transaction {
Address from = 1;
Address to = 2;
int64 ref_block_number = 3;
bytes ref_block_prefix = 4;
string method_name = 5;
bytes params = 6;
bytes signature = 10000;

}

In the js sdk theres multiple methods to work with transactions. One important method is the getTransaction method
that will build a transaction object for you:

import Aelf from 'aelf-sdk';
var rawTxn = proto.getTransaction('65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9'
→˓'65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9', 'SomeMethod', encodedParams);

This will build the transaction to the contract at address “65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9”
that will call SomeMethod with encoded params.

12.3.1 From

The address of the sender of a transaction.

Note that the From is not currently useful because we derive it from the signature.

12.3.2 To

The address of the contract when calling a contract.

12.3.3 MethodName

The name of a method in the smart contract at the To address.

12.3.4 Params

The parameters to pass to the aforementioned method.

12.3.5 Signature

When signing a transaction it’s actually a subset of the fields: from/to and the target method as well as the parameter
that were given. It also contains the reference block number and prefix.

You can use the js-sdk to sign the transaction with the following method:

86 Chapter 12. Overview

AElf, Release release/1.0.0-preview3

import Aelf from 'aelf-sdk';
var txn = Aelf.wallet.signTransaction(rawTxn, wallet.keyPair);

12.3.6 RefBlockNumber & RefBlockPrefix

These are security measures, to know when the transaction broadcasted and whether this transaction has expired.

12.3.7 Transaction Id

The unique identity of a transaction.

Note that if the sender broadcasted several transaction with same parameters at the same time, the Transaction Id of
these transactions will be the same, thus these transactions will be regarded as one transaction but broadcasted several
times.

12.4 Transaction Execution

todo

12.4. Transaction Execution 87

AElf, Release release/1.0.0-preview3

88 Chapter 12. Overview

CHAPTER 13

Core

13.1 Application pattern

We follow generally accepted good practices when it comes to programming, especially those practices that make
sense to our project. Some practices are related to C# and others are more general to OOP principles (like SOLID,
DRY. . .).

Even though it’s unusual for blockchain projects, we follow a domain driven design (DDD) approach to our devel-
opment style. Part of the reason for this is that one of our main frameworks follows this approach and since the
framework is a good fit for our needs, it’s natural that we take the same design philosophy.

A few key points concerning DDD:

• traditionally, four layers: presentation, application, domain and infrastructure.

• presentation for us corresponds to any type of dApp.

• application represents exposed services mapped to the different domains.

• domain represents the specific events related to our blockchain system and also domain objects.

• finally infra are the third party libraries we use for database, networking. . .

We also have a Github issue where we list some of the coding standards that we follow while developing AElf.

13.1.1 Frameworks and libraries:

The main programming language used to code and build AElf is C# and is built with the dotnet core framework. It’s
a choice that was made due to the excellent performances observed with the framework. Dotnet core also comes with
the benefit of being cross platform, at least for the three main ones that are Windows, MacOS and Linux. Dotnet
core also is a dynamic and open source framework and comes with many advantages of current modern development
patterns and is backed by big actors in the IT space.

At a higher level we use an application framework named ABP. From a functional point of view, a blockchain node is
a set of endpoints, like RPC, P2P and cross-chain and some higher level protocol on top of this. So ABP is a natural
fit for this, because it offers a framework for building these types of applications.

89

https://github.com/AElfProject/AElf/issues/1040
https://abp.io/documents/abp/latest/Index

AElf, Release release/1.0.0-preview3

We use the XUnit framework for our unit tests. We also have some custom made frameworks for testing smart
contracts.

For lower level, we use gRPC for the cross-chain and p2p network communication. Besides for gRPC, we also use
Protobuf for serialization purposes.

13.2 Design principles:

{.align-
center width=”300px”}

The above diagram shows the conceptual structure of the node and the separation between OS and Kernel.

13.2.1 OS

The OS layer implements the application and infrastructure layer for the network. It also implements the high level
handlers for network events and job, like for example synchronizing the chain in reaction to a block announcement.
The OS layer also contains the RPC implementation for the exposed API.

Kernel

The kernel contains the smart contract and execution primitives and definitions. The kernel also defines the components
necessary for accessing the blockchain’s data. Various managers will use the storage layer to access the underlying
database.

The kernel also defines the notion of plugins. The diagram show that the side chain modules are implemented as
plugins.

90 Chapter 13. Core

AElf, Release release/1.0.0-preview3

Structure of the project:

To help follow AElf’s structure this section will present you with an overview of the solution.

Conceptually, AElf is built on two main layers: OS and Kernel. The OS contains the high level definition for a node
and the endpoints like RPC and p2p, whereas the kernel mainly contains logic and definitions for smart contracts and
consensus.

AElf has a native runtime for smart contracts which is implemented in C# and for contracts written in C#. The
implementation is the AElf.Runtime.CSharp.* projects.

A big part of AElf is the side chain framework. It is mainly implemented in the AElf.CrossChain namespace and
defines the main abstractions in the core project and an implementation with grpc in the AElf.Crosschain.Grpc project.

The AElf.Test solution folder contains all the tests, coverage of the main functional aspects must be at a maximum to
ensure the quality of our system.

Finally there are other projects that implement either libraries we use, like the crypto library and others for infrastruc-
ture like the database library, that are not as important but are still worth looking into.

13.2.2 Jobs and event handlers

Event handlers implement the logic that reacts to external in internal events. They are in a certain sense the higher
levels of the application (they are called by the framework in purely domain agnostic way). An event handler, mostly
using other services will influence the state of the chain.

13.2.3 Modules

We currently base our architecture on modules that get wired together at runtime. Any new module must inherit
AElfModule.

Give the need to implement a new module, it usually follows the following steps: 1. Write the event handler or the
job. 2. implement the interface and create manager or infrastructure layer interface that is needed. 3. implement the
infrastructure layer interface in the same project in it do not need add dependency. 4. implement the infrastructure
layer interface in another project, if it need third party dependency, for example, you can add GRPC / MongoDB /
MySQL in the new project.

Example: the p2p network module.

The networking code is defined amongst 2 modules: CoreOSAElfModule and GrpcNetworkModule. The OS core
defines the application service (used by other components of the node) and also implements it since it is applica-
tion/domain logic. Whereas the infrastructure layer (like the server endpoint), is defined in the OS core modules but is
implemented in another project that relies on a third party - gRPC in this case.

13.2.4 Testing

When writing a new component, event handler, method. . . It’s important for AElf’s quality to consider the correspond-
ing unit test. As said previously we have a solution-wide test folder where we place all the tests.

13.2. Design principles: 91

AElf, Release release/1.0.0-preview3

92 Chapter 13. Core

CHAPTER 14

Cross Chain

14.1 introduction

One of the major issues with current blockchain systems is scalability. Mainly because of congestion problems of
current blockchains, the problem is that when a single chain needs to sequentially order and process transactions, in
the event of a popular dApp taking up a lot of resources, it has negative side effects on other dApps.

This is why AElf side chains were introduced in the initial design. It’s envisioned that one side-chain is responsible
for handling one or more similar business scenarios, distributing different tasks on multiple chains and improving the
overall processing efficiency.

The main idea is that the side-chains are independent and specialized to ensure that the dapps running on them can
perform efficiently and smoothly. A network link will exist between main-chain node and side-chain nodes, but the
communication is indirectly done through what’s called a Merkle root.

93

AElf, Release release/1.0.0-preview3

The diagram above illustrates the conceptual idea behind side chains.

Side chains are isolated but still need a way to interact with each other for this AElf introduces a communication
mechanism through merkle roots and indexing to enable cross chain verification scenarios.

The following sections of this documentation will give you an overview of the architecture of AElf’s side chains.
There will also be a guide explaining how to set up a main-chain and a side chain node.

14.2 Overview

Conceptually a side chain node and main chain node are similar, they are both independent blockchains, with their
own peer-to-peer network and possibly their own ecosystem. It is even possible to have this setup on multiple levels.
In terms of peer-to-peer networks, all side chains work in parallel to each other but they are linked to a main chain
node through a cross-chain communication mechanism.

Through this link, messages are exchanged and indexing is performed to ensure that transactions from the main-chain
or other side chains are verifiable in the side chain. Implementers can use AElf libraries and frameworks to build
chains.

One important aspect is the key role that the main chain plays, because its main purpose is to index the side chains.
Only the main chain indexes data about all the side chains. Side chains are independent and do not have knowledge
about each other. This means that when they need to verify what happened in other chains, they need the main chain
as a bridge to provide the cross chain verification information.

14.2.1 Node level architecture

In the current architecture, both the side chain node and the main chain node has one server and exactly one client.
This is the base for AElf’s two-way communication between main chain and side chains. Both the server and the client
are implemented as a node plugins (a node has a collection of plugins). Interaction (listening and requesting) can start
when both the nodes have started.

94 Chapter 14. Cross Chain

AElf, Release release/1.0.0-preview3

The diagram above illustrates two nodes run by an entity: one main chain node and one side chain node. Note that the
nodes don’t have to be in the same physical location.

Side chain lifetime

Side chain lifetime involves the following steps.

• Request side chain creation.

• Wait for accept on main chain.

• Start and initialize side chain and it will be indexed by main chain automatically.

• It is allowed to do cross chain verification iff side chain is indexed correctly.

The next section describes what happens once the side chain node has been started.

Communication

When the side chain node starts it will initiate a number of different communications, here are the main points of the
protocol:

• When the side chain node is started for the first time it will request the main chain node for a chain initialization
context.

14.2. Overview 95

AElf, Release release/1.0.0-preview3

• After initialization the side chain is launched and will perform a handshake with main chain node to signal that
it is ready to be indexed.

• During the indexing process, the information of irreversible blocks will be exchanged between side chain and
main chain. The main chain will write the final result in block which is calculated with the cross chain data from
all side chains. Side chain is also recording the data in contract from main chain.

AElf provides the cross chain communication implementation with grpc.

rpc RequestIndexingFromParentChain (CrossChainRequest) returns (stream acs7.
→˓ParentChainBlockData) {}

rpc RequestIndexingFromSideChain (CrossChainRequest) returns (stream acs7.
→˓SideChainBlockData) {}

Cache

For effective indexing, a cache layer is used to store cross chain data received from remote nodes, and make it available
and correct. Cross chain data is cached by chain id and block height with a count limit. The cache layer can give the
data if cached when the node needs it. So cache layer decouples the communication part and node running logic.

Cross chain contract

Apart from the data in block, most cross chain data will be stored by the cross chain contract. Cross chain data cached
by the node is packed in transaction during the mining process and the calculated result is stored by the contract.
Actually, the cross chain data in the block is the side chain indexing result of calculations in this contract. Only with
data in this contract can cross chain verification work correctly.

Data flow

Conceptually the node is like described in the following diagram:

14.3 Cross chain verification

Verification is the key feature that enables side chains. Because side chains do not have direct knowledge about other
side chains, they need a way to verify information from other chains. Side chains need the ability to verify that a
transaction was included in another side chains block.

96 Chapter 14. Cross Chain

AElf, Release release/1.0.0-preview3

14.3.1 Indexing

The role of the main chain node is to index all the side chains blocks. This way it knows exactly the current state of all
the side chains. Side chains also index main chain blocks and this is how they can gain knowledge about the inclusion
of transactions in other chains.

Indexing is a continuous process, the main chain is permanently gathering information from the side chains and the
side chains are permanently getting information from the main chain. When a side chain wants to verify a transaction
from another side chain it must wait until the correct main chain block has been indexed.

14.3.2 Merkle tree

Merkle tree is a basic binary tree structure. For cross-chain in AElf, leaf value is the hash from transaction data. Node
value (which is not a leaf node) is the hash calculated from its children values until to the tree root.

14.3.3 Merkle roots

When a transaction gets included in a side chain’s block the block will also include a merkle root of the transactions
of this block. This root is local to this side chain’s blockchain and by itself of little value to other side chains because
they follow a different protocol. So communication between side chains goes through the main chain in the form of a
merkle path. During indexing process, main chain is going to calculate the root with the data from side chains, and side
chains in turn get the root in future indexing. This root is used for final check in cross chain transaction verification.

14.3.4 Merkle path

Merkle path is the node collection for one leaf node to calculate with to the root. Correct merkle path is necessary to
complete any work related to cross chain verification. For the transaction tx from chain A, you need the whole merkle
path root for tx to calculate the final root if you want to verify the existence of this transaction on other chains, and
verify the root by checking whether it is equal to the one obtained from indexing before.

14.3. Cross chain verification 97

AElf, Release release/1.0.0-preview3

14.4 Cross chain verify

This section will explain how to verify a transaction across chains. It assumes a side chain is already deployed and
been indexed by the main-chain.

14.4.1 Send a transaction

Any transaction with status Mined can be verified, the only pre-condition is that the transaction was indexed.

14.4.2 Verify the transaction

There’s basically two scenarios that can be considered:

• verifying a main-chain transaction on a side chain.

• verifying a side-chain transaction on the main-chain or another side-chain.

rpc VerifyTransaction (VerifyTransactionInput) returns (google.protobuf.BoolValue) {
option (aelf.is_view) = true;

}

message VerifyTransactionInput {
aelf.Hash transaction_id = 1;
aelf.MerklePath path = 2;
sint64 parent_chain_height = 3;
int32 verified_chain_id = 4;

}

VerifyTransaction is the view method of the cross-chain contract and that will be used to perform the verification.
It returns whether the transaction was mined and indexed by the destination chain. This method will be used in both
scenarios, what differs is the input:

98 Chapter 14. Cross Chain

AElf, Release release/1.0.0-preview3

Verify transaction from main-chain on the side-chain

Verifying a transaction sent on the main-chain on a side chain, you can call VerifyTransaction on the side-chain with
the following input values:

• parent_chain_height - the height of the block, on the main-chain, in which the transaction was packed.

• transaction_id - the ID of the transaction that you want to verify.

• path - the merkle path from the main-chain’s web api with the GetMerklePathByTransactionIdAsync with
the ID of the transaction.

• verified_chain_id - the source chainId, here the main chain’s.

You can get the MerklePath of transaction in one block which packed it by chain’s web api with the Get-
MerklePathByTransactionIdAsync (See web api reference).

Verify transaction from side-chain on the main-chain or another side-chain

Before you can verify a transaction sent on a side-chain, on the main-chain or on another side-chain, you need use
another contract api GetBoundParentChainHeightAndMerklePathByHeight from cross chain contract,
on the source chain, in which the transaction was packed.

The input of this api is the height of block which packed the transaction. And it will return merkle proof context

rpc GetBoundParentChainHeightAndMerklePathByHeight (google.protobuf.Int64Value)
→˓returns (CrossChainMerkleProofContext) {

option (aelf.is_view) = true;
}

message CrossChainMerkleProofContext {
int64 bound_parent_chain_height = 1;
aelf.MerklePath merkle_path_from_parent_chain = 2;

}

With the result returned by above api, you can call VerifyTransaction on the main-chain (or the other side-chain) with
the following input values:

• transaction_id - the ID of the transaction that you want to verify.

• parent_chain_height - use the bound_parent_chain_height field of CrossChainMerkleProofContext .

• path - the concatenation of 2 merkle paths, in order:

– the merkle path of the transaction, use the web api method GetMerklePathByTransactionIdAsync.

– next, use GetBoundParentChainHeightAndMerklePathByHeight and use the
merkle_path_from_parent_chain field from the CrossChainMerkleProofContext object.

• verified_chain_id - the source chainId, here the side chain on which the transaction was mined.

14.5 Cross chain transfer

Cross chain transfer is one of mostly used cases when it comes to cross chain verification. AElf already supports cross
chain transfer functionality in contract. This section will explain how to transfer tokens across chains. It assumes a
side chain is already deployed and been indexed by the main chain.

The transfer will always use the same contract methods and the following two steps: - initiate the transfer - receive the
tokens

14.5. Cross chain transfer 99

AElf, Release release/1.0.0-preview3

14.5.1 Prepare

Few preparing steps are required before cross chain transfer, which is to be done only once for one chain. Just ignore
this preparing part if already completed.

Let’s say that you want to transfer token FOO from chain A to chain B. Note that please make sure you are already
clear about how cross chain transaction verification works before you start. Any input containsMerklePath in the
following steps means the cross chain verification processing is needed. See cross chain verification for more details.

• Validate Token Contract address on chain A.

Send transaction tx_1 to Genesis Contract with method ValidateSystemContractAddress. You should provide
system_contract_hash_name and address of Token Contract . tx_1 would be packed in block successfully.

rpc ValidateSystemContractAddress(ValidateSystemContractAddressInput) returns
→˓(google.protobuf.Empty){}

message ValidateSystemContractAddressInput {
aelf.Hash system_contract_hash_name = 1;
aelf.Address address = 2;

}

• Register token contract address of chain A on chain B.

Create a proposal, which is proposed to RegisterCrossChainTokenContractAddress, for the default parlia-
ment organization (check Parliament contract for more details) on chain B. Apart from cross chain verification
context, you should also provide the origin data of tx_1 and Token Contract address on chain A.

rpc RegisterCrossChainTokenContractAddress
→˓(RegisterCrossChainTokenContractAddressInput) returns (google.protobuf.Empty) {}

message RegisterCrossChainTokenContractAddressInput{
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;
aelf.Address token_contract_address = 5;

}

• Validate TokenInfo of FOO on chain A.

Send transaction tx_2 to Token Contract with method ValidateTokenInfoExists on chain A. You should
provide TokenInfo of FOO. tx_2 would be packed in block successfully.

rpc ValidateTokenInfoExists(ValidateTokenInfoExistsInput) returns (google.
→˓protobuf.Empty){}

message ValidateTokenInfoExistsInput{
string symbol = 1;
string token_name = 2;
int64 total_supply = 3;
int32 decimals = 4;
aelf.Address issuer = 5;
bool is_burnable = 6;
int32 issue_chain_id = 7;
bool is_profitable = 8;

}

• Create token FOO on chain B.

100 Chapter 14. Cross Chain

AElf, Release release/1.0.0-preview3

Send transaction tx_2 to Token Contract with method CrossChainCreateToken on chain B. You should pro-
vide the origin data of tx_2 and cross chain verification context of tx_2.

rpc CrossChainCreateToken(CrossChainCreateTokenInput) returns (google.protobuf.
→˓Empty) {}

message CrossChainCreateTokenInput {
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

}

14.5.2 Initiate the transfer

On the token contract of source chain, it’s the CrossChainTransfer method that is used to trigger the transfer:

rpc CrossChainTransfer (CrossChainTransferInput) returns (google.protobuf.Empty) { }

message CrossChainTransferInput {
aelf.Address to = 1;
string symbol = 2;
sint64 amount = 3;
string memo = 4;
int32 to_chain_id = 5;
int32 issue_chain_id = 6;

}

The fields of the input: - to : the target address to receive token - symbol : symbol of token to be transferred - amount
: amount of token to be transferred - memo: memo field in this transfer - to_chain_id : destination chain id on which
the tokens will be received - issue_chain_id : the chain on which the token was issued

14.5.3 Receive on the destination chain

On the destination chain tokens need to be received, it’s the CrossChainReceiveToken method that is used to trigger
the reception:

rpc CrossChainReceiveToken (CrossChainReceiveTokenInput) returns (google.protobuf.
→˓Empty) { }

message CrossChainReceiveTokenInput {
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transfer_transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

}

rpc GetBoundParentChainHeightAndMerklePathByHeight (aelf.SInt64Value) returns
→˓(CrossChainMerkleProofContext) {

option (aelf.is_view) = true;
}

message CrossChainMerkleProofContext {
int64 bound_parent_chain_height = 1;

(continues on next page)

14.5. Cross chain transfer 101

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.MerklePath merkle_path_from_parent_chain = 2;
}

Let’s review the fields of the input:

• from_chain_id: the source chain id on which cross chain transfer launched

• parent_chain_height

– for the case of transfer from main chain to side chain: this parent_chain_height is the height of the block
on the main chain that contains the CrossChainTransfer transaction.

– for the case of transfer from side chain to side chain or side chain to main-chain: this parent_chain_height
is the result of GetBoundParentChainHeightAndMerklePathByHeight (input is the height of the Cross-
ChainTransfer, see cross chain verification) - accessible in the bound_parent_chain_height field.

• transfer_transaction_bytes: the serialized form of the CrossChainTransfer transaction.

• merkle_path

– for the case of transfer from main chain to side chain: for this you just need the merkle path from the
main chain’s web api with the GetMerklePathByTransactionIdAsync method (CrossChainTransfer
transaction ID as input).

– for the case of transfer from side chain to side chain or from side chain to main chain: for this
you also need to get the merkle path from the source node (side chain here). But you also have
to complete this merkle path with GetBoundParentChainHeightAndMerklePathByHeight with the
CrossChainTransfer transaction’s block height (concat the merkle path nodes). The nodes are in the
merkle_path_from_parent_chain field of the CrossChainMerkleProofContext object.

102 Chapter 14. Cross Chain

CHAPTER 15

Smart contract

15.1 Smart contract architecture

At its core, a blockchain platform can be viewed as a distributed multi-tenant database that holds the state of all the
smart contracts deployed on it. After deployment, each smart contract will have a unique address. The address is used
to scope the state and as the identifier for state queries and updates. The methods defined in the smart contract code
provides the permission checks and logics for queries and updates.

In aelf, a smart contract essentially has three parts: the interface, the state, and the business logic.

1. the interface - aelf supports smart contracts coded in multiple languages. Protobuf format is adopted as the
cross-language definition of the contract.

2. the state - the language specific SDK provides some prototypes for the state of different types, after the defi-
nation of properties of certain prototype, developers could query and update state database via accessing the
properties directly.

3. the business logic - aelf provides protobuf plugins to generate the smart contract skeleton from the contract’s
proto definition. Developers just need to fill the logics for each method by override.

Smart contracts in AElf are spread across the Kernel, the runtime and the SDK. The kernel defines the fundamental
components and infrastructure associated with smart contracts. It also defines the abstractions for execution. Smart
contract also heavily rely on the runtime modules and the sdk project.

Smart contracts, along with the blockchain’s data, form the heart of a blockchain system. They define through some
predefined logic how and according to what rules the state of the blockchain is modified.

A smart contract is a collection of methods that each act upon a particular set of state variables.

Transactions trigger the logic contained in smart contracts. If a user of the blockchain wants to modify some state, he
needs to build a transaction that will call a specific method on some contract. When the transaction is included in a
block and this block is executed, the modifications will be executed.

Smart contracts are a part of what makes dApps possible. They implement a part of the business layer: the part that
gets included in the blockchain.

103

AElf, Release release/1.0.0-preview3

What follows in this section will give you a general overview of how AElf implements smart contracts. The other
sections will walk you through different notions more specifically.

15.1.1 Architecture overview

In AElf, Smart Contracts are defined like micro-services. This makes Smart Contracts independent of specific pro-
gramming languages. This implies, for example, that our Consensus Protocol essentially becomes a service because it
is defined through Smart Contract.

As showed in the diagram above, smart contracts functionality is defined within the kernel. The kernel defines the
fundamental components and infrastructure associated with establishing smart contracts as a service: * SDK abstracts
- high-level entities that provide a hook for smart contract services to interact with the chain. * Execution - high-level
primitives defined for execution

15.1.2 Chain interactions

Smart contract need to interact with the chain and have access to contextual information. For this AElf defines a bridge
and a bridge host. Usually the programming SDK corresponding to the specific language will implement features to
communicate with/through the bridge.

One of the major functionalities provided by the bridge is the ability to provide contextual information to the smart
contract being executed. Here are a few: the Self field represents the address of the current contract being called. the
Sender is the address that sent the transaction that executed the contract, and Origin is the address that signed the
transaction. Sometimes Sender and Origin are equal.the OriginTransactionId is the ID of the transaction fetch from
transaction pool or generated by the current miner, and TransactionId is the Id of the transaction is executing, which
means this transaction could be an inline one.

The bridge also exposes extra functionality: contracts can fire Events, which are in a way similar to logging. contracts
can call a method on another contract in a read-only manner. Any state change will not be persisted to the blockchain.
Send inline - this actually creates a transaction to call another method. As opposed to calling the changes to the state -
if any - will be persisted.

State

The main point of a smart contract is to read and/or modify state. The language SDK’s implement state helpers and
through the bridge’s StateProvider.

104 Chapter 15. Smart contract

AElf, Release release/1.0.0-preview3

15.1.3 Runtime and execution

When a block’s transactions are executed, every transaction will generate a trace. Amongst other things, it contains:
the return value of the called method, this can be anything defined in protobuf format and is defined in the service
definition. error outputs, if execution encountered a problem. the results from inner calls in InlineTraces field. the
Logs field will contain the events launched from the called method.

15.1.4 Sdk

AElf comes with a native C# SDK that gives smart contract developers the necessary tools to develop smart contracts
in C#. It contains helpers to communicate with the bridge. By using the SDK, you can also take advantage of the
type infrastructure defined in the library: ContractState: an interface that is implemented by a class that is destined
to be containers for the state field. MappedState: a base type that defines collections a key-value mapping, generic
subclasses are available to enable multi-key scenarios. SingletonState: this defines non-collection types with a

Any developer or company can develop an sdk and a runtime for a specific language by creating an adapter to com-
municate with the bridge through gRPC.

15.2 Smart contract service

When writing a smart contract in AElf the first thing that need to be done is to define it so it can then be generate by
our tools. AElf contracts are defined as services that are currently defined and generated with gRPC and protobuf.

As an example, here is part of the definition of our multi-token contract. Each functionality will be explained more in
detail in their respective sections. Note that for simplicity, the contract has been simplified to show only the essential.

syntax = "proto3";

package token;
option csharp_namespace = "AElf.Contracts.MultiToken.Messages";

service TokenContract {
option (aelf.csharp_state) = "AElf.Contracts.MultiToken.TokenContractState";

// Actions
rpc Create (CreateInput) returns (google.protobuf.Empty) { }
rpc Transfer (TransferInput) returns (google.protobuf.Empty) { }

// Views
rpc GetBalance (GetBalanceInput) returns (GetBalanceOutput) {

option (aelf.is_view) = true;
}

}

For the service we have two different types of methods:

• Actions - these are normal smart contract methods that take input and output and usually modify the state of the
chain.

• Views - these methods are special in the sense that they do not modify the state of the chain. They are usually
used in some way to query the value of the contracts state.

rpc Create (CreateInput) returns (google.protobuf.Empty) { }

15.2. Smart contract service 105

AElf, Release release/1.0.0-preview3

The services takes a protobuf message as input and also returns a protobuf message as output. Note that here it returns
a special message - google.protobuf.Empty - that signifies returning nothing. As a convention we append Input to any
protobuf type that is destined to be a parameter to a service.

15.2.1 View option

rpc GetBalance (GetBalanceInput) returns (GetBalanceOutput) {
option (aelf.is_view) = true;

}

This service is annotated with a view option. This signifies that this is a readonly method and will not modify the state.

15.3 Smart contract events

15.3.1 Event option

During the execution, Events are used internally to represent events that have happened during the execution of a smart
contract. The event will be logged in the transaction traces logs (a collection of LogEvents.

message Transferred {
option (aelf.is_event) = true;
Address from = 1;
Address to = 2;
string symbol = 3;
sint64 amount = 4;

}

Notice the option (aelf.is_event) = true; line which indicates that the Transferred message is destined
to be an event.

The following code demonstrates how to fire the event in a contract:

Context.Fire(new Transferred()
{

From = from,
To = to,
...

});

External code to the contract can monitor this after the execution of the transaction.

15.4 Smart contract messages

Here we define the concept of the message as defined by the protobuf language. We heavily use these messages to call
smart contracts and serializing their state. The following is the definition of a simple message:

message CreateInput {
string symbol = 1;
sint64 totalSupply = 2;
sint32 decimals = 3;

}

106 Chapter 15. Smart contract

AElf, Release release/1.0.0-preview3

Here we see a message with three fields of type string, sint64 and sint32. In the message, you can use any type
supported by protobuf, including composite messages, where one of your messages contains another message.

For message and service definitions, we use the proto3 version of the protobuf language. You probably won’t need to
use most of the features that are provided, but here’s the full reference for the language.

15.5 Development Requirements and Restrictions

There are several requirements and restrictions for a contract to be deployable that are classified into below categories:

15.5.1 Contract Project Requirements

Project Properties

• It is required to add ContractCode property in your contract project, so that the contract’s DLL will be post
processed by AElf’s contract patcher to perform necessary injections that are required by code checks during
deployment. Otherwise, deployment will fail.

<PropertyGroup>
<TargetFramework>netstandard2.0</TargetFramework>
<RootNamespace>AElf.Contracts.MyContract</RootNamespace>
<GeneratePackageOnBuild>true</GeneratePackageOnBuild>

</PropertyGroup>

<PropertyGroup>
<ContractCode Include="..\..\protobuf\my_contract.proto">

<Link>Protobuf\Proto\my_contract.proto</Link>
</ContractCode>

</PropertyGroup>

• It is required to enable CheckForOverflowUnderflow for both Release and Debug mode so that your
contract will use arithmetic operators that will throw OverflowException if there is any overflow. This is
to ensure that execution will not continue in case of an overflow in your contract and result with unpredictable
output.

<PropertyGroup Condition=" '$(Configuration)' == 'Debug' ">
<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>

</PropertyGroup>

<PropertyGroup Condition=" '$(Configuration)' == 'Release' ">
<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>

</PropertyGroup>

If your contract contains any unchecked arithmetic operators, deployment will fail.

15.5.2 Contract Class Structure

Below restrictions are put in place to simplify code checks during deployment:

• Only 1 inheritance is allowed from ContractBase which is generated by the contract plugin as a nested type
in ContractContainer and only 1 inheritance will be allowed from CSharpSmartContract. If there
are multiple inheritances from ContractBase or CSharpSmartContract, code deployment will fail.

15.5. Development Requirements and Restrictions 107

https://developers.google.com/protocol-buffers/docs/proto3

AElf, Release release/1.0.0-preview3

• Only 1 inheritance will be allowed from ContractState. Similar to above, if there are multiple inheritance
from AElf.Sdk.ContractState, code check will fail.

• The type inherited from ContractState should be the element type of CSharpSmartContract generic
instance type, otherwise code check will fail.

Fig. 1: Contract Class Structure

Limitations on Field Usage

In Contract Implementation Class

• Initial value for non-readonly, non-constant fields is not allowed. (Applied to all static / non-static fields) The
reason is, their value will be reset to 0 or null after first execution and their initial value will be lost.

Allowed:

class MyContract : MyContractBase
{

int test;
static const int test = 2;

}

Not Allowed:

class MyContract : MyContractBase
{
! int test = 2;
}

class MyContract : MyContractBase
{

int test;

public MyContract

(continues on next page)

108 Chapter 15. Smart contract

AElf, Release release/1.0.0-preview3

(continued from previous page)

{
! test = 2;

}
}

• Only primitive types, or one of below types are allowed for readonly / constant fields:

Type
All Primitive Types
Marshaller<T>
Method<T, T>
MessageParser<T>
FieldCodec<T>
MapField<T, T>
ReadonlyCollection<T>
ReadonlyDictionary<T, T>

* T can only be primitive type

In Non-Contract Classes (For classes that don’t inherit from ContractBase<T>)

• Initial value for non-readonly, non-constant fields is not allowed for static fields. The reason is, their value will
be reset to 0 or null after first execution and their initial value will be lost.

Allowed:

class AnyClass
{

static int test;
}

Not Allowed:

class AnyClass
{
! static int test = 2;
}

class AnyClass
{

static int test;

public AnyClass
{

! test = 2;
}

}

Exception Case: Fields with FileDescriptor types. This is due to protobuf generated code. There are static fields
FileDescriptor type fields generated by protobuf code and these fields don’t have readonly modifier. We allow
such fields only if they are FileDescriptor type and write access to these fields are only allowed from the constructor
of the type where descriptor field is declared.

Allowed:

15.5. Development Requirements and Restrictions 109

AElf, Release release/1.0.0-preview3

public class TestType
{

private static FileDescriptor test;

public class TestType
{
test = ...

}
}

Not Allowed:

public class TestType
{

private static FileDescriptor test;

public TestType
{
test = ...

}

! public void SetFromSomeWhereElse(FileDescriptor input)
! {
! test = input;
! }
}

Accessing to set test field is restricted to its declaring type’s constructor only.

• Only below types are allowed for readonly / constant static fields:

Type
All Primitive Types
Marshaller<T>
Method<T, T>
MessageParser<T>
FieldCodec<T>
MapField<T, T>
ReadonlyCollection<T>
ReadonlyDictionary<T, T>

* T can only be primitive type

Exception Case: If a type has a readonly field same type as itself, it is only allowed if the type has no instance
field.

This is to support Linq related generated types.

Allowed:

public class TestType
{

private static readonly TestType test;

private static int i;
}

Not Allowed:

110 Chapter 15. Smart contract

AElf, Release release/1.0.0-preview3

public class TestType
{

private static readonly TestType test;

! private int i;
}

In Contract State

In contract state, only below types are allowed:

Primitive Types
BoolState
Int32State
UInt32State
Int64State
UInt64State
StringState
BytesState

Complex Types
SingletonState<T>
ReadonlyState<T>
MappedState<T, T>
MappedState<T, T, T>
MappedState<T, T, T, T>
MappedState<T, T, T, T, T>
MethodReference<T, T>
ProtobufState<T>
ContractReferenceState

15.5.3 Type and Namespace Restrictions

Nodes checks new contract code against below whitelist and if there is a usage of any type that is not covered in the
whitelist, or the method access or type name is denied in below whitelist, the deployment will fail.

15.5. Development Requirements and Restrictions 111

AElf, Release release/1.0.0-preview3

Assembly Dependencies

Assembly Trust
netstandard.dll Partial
System.Runtime.dll Partial
System.Runtime.Extensions.dll Partial
System.Private.CoreLib.dll Partial
System.ObjectModel.dll Partial
System.Linq.dll Full
System.Collections Full
Google.Protobuf.dll Full
AElf.Sdk.CSharp.dll Full
AElf.Types.dll Full
AElf.CSharp.Core.dll Full
AElf.Cryptography.dll Full

Types and Members Whitelist in System Namespace

Type Member (Field / Method) Allowed
Array AsReadOnly Allowed
Func<T> ALL Allowed
Func<T,T> ALL Allowed
Func<T,T,T> ALL Allowed
Nullable<T> ALL Allowed
Environment CurrentManagedThreadId Allowed
BitConverter GetBytes Allowed
NotImplementedException ALL Allowed
NotSupportedException ALL Allowed
ArgumentOutOfRangeException ALL Allowed
DateTime Partially Allowed
DateTime Now, UtcNow, Today Denied
Uri TryCreate Allowed
Uri Scheme Allowed
Uri UriSchemeHttp Allowed
Uri UriSchemeHttps Allowed
void ALL Allowed
object ALL Allowed
Type ALL Allowed
IDisposable ALL Allowed
Convert ALL Allowed
Math ALL Allowed
bool ALL Allowed
byte ALL Allowed
sbyte ALL Allowed
char ALL Allowed
int ALL Allowed
uint ALL Allowed
long ALL Allowed
ulong ALL Allowed

Continued on next page

112 Chapter 15. Smart contract

AElf, Release release/1.0.0-preview3

Table 1 – continued from previous page
Type Member (Field / Method) Allowed
decimal ALL Allowed
string ALL Allowed
string Constructor Denied
Byte[] ALL Allowed

Types and Members Whitelist in System.Reflection Namespace

Type Member (Field / Method) Allowed
AssemblyCompanyAttribute ALL Allowed
AssemblyConfigurationAttribute ALL Allowed
AssemblyFileVersionAttribute ALL Allowed
AssemblyInformationalVersionAttribute ALL Allowed
AssemblyProductAttribute ALL Allowed
AssemblyTitleAttribute ALL Allowed

Other Whitelisted Namespaces

Namespace Type Member Allowed
System.Linq ALL ALL Allowed
System.Collections ALL ALL Allowed
System.Collections.Generic ALL ALL Allowed
System.Collections.ObjectModel ALL ALL Allowed
System.Globalization CultureInfo InvariantCulture Allowed
System.Runtime.CompilerServices RuntimeHelpers InitializeArray Allowed
System.Text Encoding UTF8,GetByteCount Allowed

Allowed Types for Arrays

Type Size Limit Threshold
byte By Size 4 Mb
short By Size 4 Mb
int By Size 4 Mb
long By Size 4 Mb
ushort By Size 4 Mb
uint By Size 4 Mb
ulong By Size 4 Mb
decimal By Size 4 Mb
char By Size 4 Mb
string By Size 128
Type By Size 5
Object By Size 5
FileDescriptor By Count 10
GeneratedClrTypeInfo By Count 100

15.5.4 Other Restrictions

15.5. Development Requirements and Restrictions 113

AElf, Release release/1.0.0-preview3

GetHashCode Usage

• GetHashCode method is only allowed to be called within GetHashCode methods. Calling GetHashCode meth-
ods from other methods is not allowed. This allows developers to implement their custom GetHashCode meth-
ods for their self defined types if required, and also allows protobuf generated message types.

• It is not allowed to set any field within GetHashCode methods.

Execution observer

• AElf’s contract patcher will patch method call count observer for your contract. This is used to prevent infinitely
method call like recursion. The number of method called in your contract will be counted during transaction
execution. The observer will pause transaction execution if the number exceeds 15,000.

• AElf’s contract patcher will patch method branch count observer for your contract. This is used to prevent
infinitely loop case. The number of code control transfer in your contract will be counted during transaction
execution. The observer will pause transaction execution if the number exceeds 15,000. The control transfer
opcodes in C# contract are shown as below.

Opcode
OpCodes.Beq
OpCodes.Beq_S
OpCodes.Bge
OpCodes.Bge_S
OpCodes.Bge_Un
OpCodes.Bge_Un_S
OpCodes.Bgt
OpCodes.Bgt_S
OpCodes.Ble
OpCodes.Ble_S
OpCodes.Ble_Un
OpCodes.Blt
OpCodes.Bne_Un
OpCodes.Bne_Un_S
OpCodes.Br
OpCodes.Brfalse
OpCodes.Brfalse_S
OpCodes.Brtrue
OpCodes.Brtrue
OpCodes.Brtrue_S
OpCodes.Br_S

114 Chapter 15. Smart contract

CHAPTER 16

AELF API 1.0

16.1 Chain API

16.1.1 Get information about a given block by block hash. Optionally with the list
of its transactions.

GET /api/blockChain/block

Parameters

Type Name Description Schema Default
Query blockHash

optional
block hash string

Query include Transactions
optional

include transactions or not boolean "false"

Responses

HTTP Code Description Schema
200 Success BlockDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

115

AElf, Release release/1.0.0-preview3

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.2 Get information about a given block by block height. Optionally with the list
of its transactions.

GET /api/blockChain/blockByHeight

Parameters

Type Name Description Schema Default
Query blockHeight

optional

block height integer (int64)

Query include Transac-
tions

optional

include transactions
or not

boolean "false"

Responses

HTTP Code Description Schema
200 Success BlockDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.3 Get the height of the current chain.

GET /api/blockChain/blockHeight

116 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

Responses

HTTP Code Description Schema
200 Success integer (int64)

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.4 Get the current state about a given block

GET /api/blockChain/blockState

Parameters

Type Name Description Schema
Query blockHash optional block hash string

Responses

HTTP Code Description Schema
200 Success BlockStateDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1. Chain API 117

AElf, Release release/1.0.0-preview3

16.1.5 Get the current status of the block chain.

GET /api/blockChain/chainStatus

Responses

HTTP Code Description Schema
200 Success ChainStatusDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.6 Get the protobuf definitions related to a contract

GET /api/blockChain/contractFileDescriptorSet

Parameters

Type Name Description Schema
Query address optional contract address string

Responses

HTTP Code Description Schema
200 Success string (byte)

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

118 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

Tags

• BlockChain

16.1.7 POST /api/blockChain/executeRawTransaction

Parameters

Type Name Schema
Body input optional ExecuteRawTransactionDto

Responses

HTTP Code Description Schema
200 Success string

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.8 Call a read-only method on a contract.

POST /api/blockChain/executeTransaction

16.1. Chain API 119

AElf, Release release/1.0.0-preview3

Parameters

Type Name Schema
Body input optional ExecuteTransactionDto

Responses

HTTP Code Description Schema
200 Success string

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.9 Get the merkle path of a transaction.

GET /api/blockChain/merklePathByTransactionId

Parameters

Type Name Schema
Query transactionId optional string

120 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

Responses

HTTP Code Description Schema
200 Success MerklePathDto

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.10 Creates an unsigned serialized transaction

POST /api/blockChain/rawTransaction

Parameters

Type Name Schema
Body input optional CreateRawTransactionInput

Responses

HTTP Code Description Schema
200 Success CreateRawTransactionOutput

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

16.1. Chain API 121

AElf, Release release/1.0.0-preview3

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.11 send a transaction

POST /api/blockChain/sendRawTransaction

Parameters

Type Name Schema
Body input optional SendRawTransactionInput

Responses

HTTP Code Description Schema
200 Success SendRawTransactionOutput

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

122 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

Tags

• BlockChain

16.1.12 Broadcast a transaction

POST /api/blockChain/sendTransaction

Parameters

Type Name Schema
Body input optional SendTransactionInput

Responses

HTTP Code Description Schema
200 Success SendTransactionOutput

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.13 Broadcast multiple transactions

POST /api/blockChain/sendTransactions

16.1. Chain API 123

AElf, Release release/1.0.0-preview3

Parameters

Type Name Schema
Body input optional SendTransactionsInput

Responses

HTTP Code Description Schema
200 Success < string > array

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.14 GET /api/blockChain/taskQueueStatus

Responses

HTTP Code Description Schema
200 Success < TaskQueueInfoDto > array

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

124 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.15 Get the transaction pool status.

GET /api/blockChain/transactionPoolStatus

Responses

HTTP Code Description Schema
200 Success GetTransactionPoolStatusOutput

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.16 Get the current status of a transaction

GET /api/blockChain/transactionResult

Parameters

Type Name Description Schema
Query transactionId optional transaction id string

Responses

HTTP Code Description Schema
200 Success TransactionResultDto

The transaction result DTO object returned contains the transaction that contains the parameter values used for the
call. The node will return the byte array as a base64 encoded string if it can’t decode it.

16.1. Chain API 125

AElf, Release release/1.0.0-preview3

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

16.1.17 Get multiple transaction results.

GET /api/blockChain/transactionResults

Parameters

Type Name Description Schema Default
Query blockHash optional block hash string
Query limit optional limit integer (int32) 10
Query offset optional offset integer (int32) 0

Responses

HTTP Code Description Schema
200 Success < TransactionResultDto > array

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• BlockChain

126 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

16.2 Net API

16.2.1 Get information about the node’s connection to the network.

GET /api/net/networkInfo

Responses

HTTP Code Description Schema
200 Success GetNetworkInfoOutput

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• Net

16.2.2 Attempts to add a node to the connected network nodes

POST /api/net/peer

Parameters

Type Name Schema
Body input optional AddPeerInput

Responses

HTTP Code Description Schema
200 Success boolean

Consumes

• application/json-patch+json; v=1.0

• application/json; v=1.0

• text/json; v=1.0

16.2. Net API 127

AElf, Release release/1.0.0-preview3

• application/*+json; v=1.0

• application/x-protobuf; v=1.0

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• Net

16.2.3 Attempts to remove a node from the connected network nodes

DELETE /api/net/peer

Parameters

Type Name Description Schema
Query address optional ip address string

Responses

HTTP Code Description Schema
200 Success boolean

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• Net

128 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

16.2.4 Get peer info about the connected network nodes

GET /api/net/peers

Parameters

Type Name Schema Default
Query withMetrics optional boolean "false"

Responses

HTTP Code Description Schema
200 Success < PeerDto > array

Produces

• text/plain; v=1.0

• application/json; v=1.0

• text/json; v=1.0

• application/x-protobuf; v=1.0

Tags

• Net

16.2.5 Definitions

AddPeerInput

Name Description Schema
Address optional ip address string

BlockBodyDto

Name Schema
Transactions optional < string > array
TransactionsCount optional integer (int32)

16.2. Net API 129

AElf, Release release/1.0.0-preview3

BlockDto

Name Schema
BlockHash optional string
Body optional BlockBodyDto
Header optional BlockHeaderDto

BlockHeaderDto

Name Schema
Bloom optional string
ChainId optional string
Extra optional string
Height optional integer (int64)
MerkleTreeRootOfTransactions optional string
MerkleTreeRootOfWorldState optional string
PreviousBlockHash optional string
SignerPubkey optional string
Time optional string (date-time)

BlockStateDto

Name Schema
BlockHash optional string
BlockHeight optional integer (int64)
Changes optional < string, string > map
Deletes optional < string > array
PreviousHash optional string

ChainStatusDto

Name Schema
BestChainHash optional string
BestChainHeight optional integer (int64)
Branches optional < string, integer (int64) > map
ChainId optional string
GenesisBlockHash optional string
GenesisContractAddress optional string
LastIrreversibleBlockHash optional string
LastIrreversibleBlockHeight optional integer (int64)
LongestChainHash optional string
LongestChainHeight optional integer (int64)
NotLinkedBlocks optional < string, string > map

130 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

CreateRawTransactionInput

Name Description Schema
From required from address string
MethodName required contract method name string
Params required contract method parameters string
RefBlockHash required refer block hash string
RefBlockNumber required refer block height integer (int64)
To required to address string

CreateRawTransactionOutput

Name Schema
RawTransaction optional string

ExecuteRawTransactionDto

Name Description Schema
RawTransaction optional raw transaction string
Signature optional signature string

ExecuteTransactionDto

Name Description Schema
RawTransaction optional raw transaction string

GetNetworkInfoOutput

Name Description Schema
Connections optional total number of open connections between this node and other nodes integer (int32)
ProtocolVersion optional network protocol version integer (int32)
Version optional node version string

GetTransactionPoolStatusOutput

Name Schema
Queued optional integer (int32)
Validated optional integer (int32)

16.2. Net API 131

AElf, Release release/1.0.0-preview3

LogEventDto

Name Schema
Address optional string
Indexed optional < string > array
Name optional string
NonIndexed optional string

MerklePathDto

Name Schema
MerklePathNodes optional < MerklePathNodeDto > array

MerklePathNodeDto

Name Schema
Hash optional string
IsLeftChildNode optional boolean

MinerInRoundDto

Name Schema
ActualMiningTimes optional < string (date-time) > array
ExpectedMiningTime optional string (date-time)
ImpliedIrreversibleBlockHeight optional integer (int64)
InValue optional string
MissedBlocks optional integer (int64)
Order optional integer (int32)
OutValue optional string
PreviousInValue optional string
ProducedBlocks optional integer (int64)
ProducedTinyBlocks optional integer (int32)

PeerDto

Name Schema
BufferedAnnouncementsCount optional integer (int32)
BufferedBlocksCount optional integer (int32)
BufferedTransactionsCount optional integer (int32)
ConnectionTime optional integer (int64)
Inbound optional boolean
IpAddress optional string
ProtocolVersion optional integer (int32)
RequestMetrics optional < RequestMetric > array

132 Chapter 16. AELF API 1.0

AElf, Release release/1.0.0-preview3

RequestMetric

Name Schema
Info optional string
MethodName optional string
RequestTime optional Timestamp
RoundTripTime optional integer (int64)

RoundDto

Name Schema
Co nfirmedIrreversibleBlockHeight optional integer (int64)
Confirm edIrreversibleBlockRoundNumber optional integer (int64)
Ext raBlockProducerOfPreviousRound optional string
IsMinerListJustChanged optional boolean
RealTimeMinerInformation optional < string, MinerInRoundDto > map
RoundId optional integer (int64)
RoundNumber optional integer (int64)
TermNumber optional integer (int64)

SendRawTransactionInput

Name Description Schema
ReturnTransaction optional return transaction detail or not boolean
Signature optional signature string
Transaction optional raw transaction string

SendRawTransactionOutput

Name Schema
Transaction optional TransactionDto
TransactionId optional string

SendTransactionInput

Name Description Schema
RawTransaction optional raw transaction string

SendTransactionOutput

Name Schema
TransactionId optional string

16.2. Net API 133

AElf, Release release/1.0.0-preview3

SendTransactionsInput

Name Description Schema
RawTransactions optional raw transactions string

TaskQueueInfoDto

Name Schema
Name optional string
Size optional integer (int32)

Timestamp

Name Schema
Nanos optional integer (int32)
Seconds optional integer (int64)

TransactionDto

Name Schema
From optional string
MethodName optional string
Params optional string
RefBlockNumber optional integer (int64)
RefBlockPrefix optional string
Signature optional string
To optional string

TransactionResultDto

Name Schema
BlockHash optional string
BlockNumber optional integer (int64)
Bloom optional string
Error optional string
Logs optional < LogEventDto > array
ReturnValue optional string
Status optional string
Transaction optional TransactionDto
TransactionId optional string

134 Chapter 16. AELF API 1.0

CHAPTER 17

Chain SDK

17.1 aelf-sdk.js - AELF JavaScript API

17.1.1 Introduction

aelf-sdk.js for aelf is like web.js for ethereum.

aelf-sdk.js is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.js, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.js

17.1.2 Adding aelf-sdk.js

First you need to get aelf-sdk.js into your project. This can be done using the following methods:

npm: npm install aelf-sdk

pure js: link dist/aelf.umd.js

After that you need to create a aelf instance and set a provider.

// in brower use: <script src="https://unpkg.com/aelf-sdk@lastest/dist/aelf.umd.js"></
→˓script>
// in node.js use: const AElf = require('aelf-sdk');
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:8000'));

17.1.3 Examples

You can also see full examples in ./examples;

135

https://github.com/AElfProject/aelf-sdk.js

AElf, Release release/1.0.0-preview3

1.Create instance

Create a new instance of AElf, connect to an AELF chain node.

import AElf from 'aelf-sdk';

// create a new instance of AElf
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1235'));

2.Create or load a wallet

Create or load a wallet with AElf.wallet

```javascript
// create a new wallet
const newWallet = AElf.wallet.createNewWallet();
// load a wallet by private key
const priviteKeyWallet = AElf.wallet.getWalletByPrivateKey('xxxxxxx');
// load a wallet by mnemonic
const mnemonicWallet = AElf.wallet.getWalletByMnemonic('set kite ...');
```

3.Get a system contract address

Get a system contract address, take AElf.ContractNames.Token as an example

const tokenContractName = 'AElf.ContractNames.Token';
let tokenContractAddress;
(async () => {
// get chain status
const chainStatus = await aelf.chain.getChainStatus();
// get genesis contract address
const GenesisContractAddress = chainStatus.GenesisContractAddress;
// get genesis contract instance
const zeroContract = await aelf.chain.contractAt(GenesisContractAddress,

→˓newWallet);
// Get contract address by the read only method `GetContractAddressByName` of

→˓genesis contract
tokenContractAddress = await zeroContract.GetContractAddressByName.call(AElf.

→˓utils.sha256(tokenContractName));
})()

4.Get a contract instance

Get a contract instance by contract address

const wallet = AElf.wallet.createNewWallet();
let tokenContract;
// Use token contract for examples to demonstrate how to get a contract instance

→˓in different ways
// in async function
(async () => {
tokenContract = await aelf.chain.contractAt(tokenContractAddress, wallet)

(continues on next page)

136 Chapter 17. Chain SDK

AElf, Release release/1.0.0-preview3

(continued from previous page)

})();

// promise way
aelf.chain.contractAt(tokenContractAddress, wallet)

.then(result => {
tokenContract = result;

});

// callback way
aelf.chain.contractAt(tokenContractAddress, wallet, (error, result) => {if

→˓(error) throw error; tokenContract = result;});

5.Use contract instance

How to use contract instance

A contract instance consists of several contract methods and methods can be called in
→˓two ways: read-only and send transaction.

(async () => {
// get the balance of an address, this would not send a transaction,
// or store any data on the chain, or required any transaction fee, only get

→˓the balance
// with `.call` method, `aelf-sdk` will only call read-only method
const result = await tokenContract.GetBalance.call({
symbol: "ELF",
owner: "7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brE1woa8vz"

});
console.log(result);
/**
{

"symbol": "ELF",
"owner": "2661mQaaPnzLCoqXPeys3Vzf2wtGM1kSrqVBgNY4JUaGBxEsX8",
"balance": "1000000000000"

}*/
// with no `.call`, `aelf-sdk` will sign and send a transaction to the chain,

→˓and return a transaction id.
// make sure you have enough transaction fee `ELF` in your wallet
const transactionId = await tokenContract.Transfer({
symbol: "ELF",
to: "7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brE1woa8vz",
amount: "1000000000",
memo: "transfer in demo"

});
console.log(transactionId);
/**
{
"TransactionId": "123123"

}

*/
})()

17.1. aelf-sdk.js - AELF JavaScript API 137

AElf, Release release/1.0.0-preview3

6.Change the node endpoint

Change the node endpoint by using aelf.setProvider

```javascript
import AElf from 'aelf-sdk';

const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1235'));
aelf.setProvider(new AElf.providers.HttpProvider('http://127.0.0.1:8000'));
```

17.1.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AElf instance, so if you don’t have one please create it:

import AElf from 'aelf-sdk';

// create a new instance of AElf, change the URL if needed
const aelf = new AElf(new AElf.providers.HttpProvider('http://127.0.0.1:1235'));

1.getChainStatus

Get the current status of the block chain.

Web API path

/api/blockChain/chainStatus

Parameters

Empty

Returns

Object

• ChainId - String

• Branches - Object

• NotLinkedBlocks - Object

• LongestChainHeight - Number

• LongestChainHash - String

• GenesisBlockHash - String

• GenesisContractAddress - String

• LastIrreversibleBlockHash - String

• LastIrreversibleBlockHeight - Number

• BestChainHash - String

• BestChainHeight - Number

Example

138 Chapter 17. Chain SDK

AElf, Release release/1.0.0-preview3

aelf.chain.getChainStatus()
.then(res => {

console.log(res);
})

2.getContractFileDescriptorSet

Get the protobuf definitions related to a contract

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1. contractAddress - String address of a contract

Returns

String

Example

aelf.chain.getContractFileDescriptorSet(contractAddress)
.then(res => {
console.log(res);

})

3.getBlockHeight

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

Empty

Returns

Number

Example

aelf.chain.getBlockHeight()
.then(res => {
console.log(res);

})

4.getBlock

Get block information by block hash.

Web API path

/api/blockChain/block

Parameters

17.1. aelf-sdk.js - AELF JavaScript API 139

AElf, Release release/1.0.0-preview3

1. blockHash - String

2. includeTransactions - Boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

Returns

Object

• BlockHash - String

• Header - Object

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - Array

– Height - Number

– Time - google.protobuf.Timestamp

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - Object

– TransactionsCount - Number

– Transactions - Array

* transactionId - String

Example

aelf.chain.getBlock(blockHash, false)
.then(res => {
console.log(res);

})

5.getBlockByHeight

Web API path

/api/blockChain/blockByHeight

Get block information by block height.

Parameters

1. blockHeight - Number

2. includeTransactions - Boolean :

• true require transaction ids list in the block

• false Doesn’t require transaction ids list in the block

140 Chapter 17. Chain SDK

AElf, Release release/1.0.0-preview3

Returns

Object

• BlockHash - String

• Header - Object

– PreviousBlockHash - String

– MerkleTreeRootOfTransactions - String

– MerkleTreeRootOfWorldState - String

– Extra - Array

– Height - Number

– Time - google.protobuf.Timestamp

– ChainId - String

– Bloom - String

– SignerPubkey - String

• Body - Object

– TransactionsCount - Number

– Transactions - Array

* transactionId - String

Example

aelf.chain.getBlockByHeight(12, false)
.then(res => {
console.log(res);

})

6.getTxResult

Get the result of a transaction

Web API path

/api/blockChain/transactionResult

Parameters

1. transactionId - String

Returns

Object

• TransactionId - String

• Status - String

• Logs - Array

– Address - String

– Name - String

– Indexed - Array

17.1. aelf-sdk.js - AELF JavaScript API 141

AElf, Release release/1.0.0-preview3

– NonIndexed - String

• Bloom - String

• BlockNumber - Number

• Transaction - Object

– From - String

– To - String

– RefBlockNumber - Number

– RefBlockPrefix - String

– MethodName - String

– Params - Object

– Signature - String

• ReadableReturnValue - Object

• Error - String

Example

aelf.chain.getTxResult(transactionId)
.then(res => {
console.log(res);

})

7.getTxResults

Get multiple transaction results in a block

Web API path

/api/blockChain/transactionResults

Parameters

1. blockHash - String

2. offset - Number

3. limit - Number

Returns Array - The array of method descriptions:

• the transaction result object

Example

aelf.chain.getTxResults(blockHash, 0, 2)
.then(res => {
console.log(res);

})

142 Chapter 17. Chain SDK

AElf, Release release/1.0.0-preview3

8.getTransactionPoolStatus

Get the transaction pool status.

Web API path

/api/blockChain/transactionPoolStatus

Parameters

Empty

9.sendTransaction

Broadcast a transaction

Web API path

/api/blockChain/sendTransaction

POST

Parameters

Object - Serialization of data into protobuf data, The object with the following structure :

• RawTransaction - String :

usually developers don’t need to use this function directly, just get a contract method and send transaction by call
contract method:

10.sendTransactions

Broadcast multiple transactions

POST

Parameters

Object - The object with the following structure :

• RawTransaction - String

11.callReadOnly

Call a read-only method on a contract.

POST

Parameters

Object - The object with the following structure :

• RawTransaction - String

12.getPeers

Get peer info about the connected network nodes

17.1. aelf-sdk.js - AELF JavaScript API 143

AElf, Release release/1.0.0-preview3

13.addPeer

Attempts to add a node to the connected network nodes

14.removePeer

Attempts to remove a node from the connected network nodes

17.1.5 AElf.wallet

AElf.wallet is a static property of AElf.

Use the api to see detailed results

1.createNewWallet

Returns

Object

• mnemonic - String: mnemonic

• BIP44Path - String: m/purpose’/coin_type’/account’/change/address_index

• childWallet - Object: HD Wallet

• keyPair - String: The EC key pair generated by elliptic

• privateKey - String: private Key

• address - String: address

Example

import AElf from 'aelf-sdk';
const wallet = AElf.wallet.createNewWallet();

2.getWalletByMnemonic

Parameters

1. mnemonic - String : wallet’s mnemonic

Returns

Object: Complete wallet object.

Example

const wallet = AElf.wallet.getWalletByMnemonic(mnemonic);

144 Chapter 17. Chain SDK

AElf, Release release/1.0.0-preview3

3.getWalletByPrivateKey

Parameters

1. privateKey: String : wallet’s private key

Returns

Object: Complete wallet object, with empty mnemonic

Example

const wallet = AElf.wallet.getWalletByPrivateKey(privateKey);

4.signTransaction

Use wallet keypair to sign a transaction

Parameters

1. rawTxn - String

2. keyPair - String

Returns

Object: The object with the following structure :

Example

const result = aelf.wallet.signTransaction(rawTxn, keyPair);

5.AESEncrypt

Encrypt a string by aes algorithm

Parameters

1. input - String

2. password - String

Returns

String

6.AESDecrypt

Decrypt by aes algorithm

Parameters

1. input - String

2. password - String

Returns

String

17.1. aelf-sdk.js - AELF JavaScript API 145

AElf, Release release/1.0.0-preview3

17.1.6 AElf.pbjs

The reference to protobuf.js, read the documentation to see how to use.

17.1.7 AElf.pbUtils

Some basic format methods of aelf.

For more information, please see the code in src/utils/proto.js. It is simple and easy to understand.

AElf.utils

Some methods for aelf.

For more information, please see the code in src/utils/utils.js. It is simple and easy to understand.

Check address

const AElf = require('aelf-sdk');
const {base58} = AElf.utils;
base58.decode('$addresss'); // throw error if invalid

17.1.8 AElf.version

import AElf from 'aelf-sdk';
AElf.version // eg. 3.2.23

17.1.9 Requirements

• Node.js

• NPM

17.1.10 Support

17.1.11 About contributing

Read out [contributing guide]

17.1.12 About Version

https://semver.org/

146 Chapter 17. Chain SDK

https://github.com/protobufjs/protobuf.js
https://nodejs.org
http://npmjs.com/

AElf, Release release/1.0.0-preview3

17.2 aelf-sdk.cs - AELF C# API

This C# library helps in the communication with an AElf node. You can find out more here.

17.3 aelf-sdk.go - AELF Go API

This Go library helps in the communication with an AElf node. You can find out more here.

17.4 aelf-sdk.java - AELF Java API

This Java library helps in the communication with an AElf node. You can find out more here.

17.5 aelf-sdk.php - AELF PHP API

This PHP library helps in the communication with an AElf node. You can find out more here.

17.6 aelf-sdk.py - AELF Python API

This Python library helps in the communication with an AElf node. You can find out more here.

17.2. aelf-sdk.cs - AELF C# API 147

https://github.com/AElfProject/aelf-sdk.cs
https://github.com/AElfProject/aelf-sdk.go
https://github.com/AElfProject/aelf-sdk.java
https://github.com/AElfProject/aelf-sdk.php
https://github.com/AElfProject/aelf-sdk.py

AElf, Release release/1.0.0-preview3

148 Chapter 17. Chain SDK

CHAPTER 18

C# reference

18.1 AElf.Sdk.CSharp

18.1.1 Contents

• BoolState

• BytesState

• CSharpSmartContractContext

– ChainId

– CurrentBlockTime

– CurrentHeight

– Origin

– PreviousBlockHash

– Self

– Sender

– StateProvider

– TransactionId

– Variables

– Call(fromAddress,toAddress,methodName,args)

– ConvertVirtualAddressToContractAddress(virtualAddress)

– ConvertVirtualAddressToContractAddress(virtualAddress,contractAddress)

– ConvertVirtualAddressToContractAddressWithContractHashName(virtualAddress)

– ConvertVirtualAddressToContractAddressWithContractHashName(virtualAddress,contractAddress)

149

AElf, Release release/1.0.0-preview3

– DecryptMessage(senderPublicKey,cipherMessage)

– EncryptMessage(receiverPublicKey,plainMessage)

– FireLogEvent(logEvent)

– GenerateId(contractAddress,bytes)

– GetContractAddressByName(hash)

– GetPreviousBlockTransactions()

– GetSystemContractNameToAddressMapping()

– GetZeroSmartContractAddress()

– GetZeroSmartContractAddress(chainId)

– LogDebug(func)

– RecoverPublicKey()

– SendInline(toAddress,methodName,args)

– SendVirtualInline(fromVirtualAddress,toAddress,methodName,args)

– SendVirtualInlineBySystemContract(fromVirtualAddress,toAddress,methodName,args)

– VerifySignature(tx)

• CSharpSmartContract

– Context

– State

• ContractState

• Int32State

• Int64State

• MappedState

• SingletonState

• SmartContractBridgeContextExtensions

– Call(context,address,methodName,message)

– Call(context,address,methodName,message)

– Call(context,fromAddress,toAddress,methodName,message)

– Call(context,address,methodName,message)

– ConvertToByteString(message)

– ConvertVirtualAddressToContractAddress(this,virtualAddress)

– ConvertVirtualAddressToContractAddressWithContractHashName(this,virtualAddress)

– Fire(context,eventData)

– GenerateId(this,bytes)

– GenerateId(this,token)

– GenerateId(this,token)

– GenerateId(this)

150 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

– GenerateId(this,address,token)

– SendInline(context,toAddress,methodName,message)

– SendInline(context,toAddress,methodName,message)

– SendVirtualInline(context,fromVirtualAddress,toAddress,methodName,message)

• SmartContractConstants

• StringState

• UInt32State

• UInt64State

BoolState type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around boolean values for use in smart contract state.

BytesState type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around byte arrays for use in smart contract state.

CSharpSmartContractContext type

Namespace

AElf.Sdk.CSharp

Summary

Represents the transaction execution context in a smart contract. An instance of this class is present in the base class
for smart contracts (Context property). It provides access to properties and methods useful for implementing the logic
in smart contracts.

18.1. AElf.Sdk.CSharp 151

AElf, Release release/1.0.0-preview3

ChainId property

Summary

The chain id of the chain on which the contract is currently running.

CurrentBlockTime property

Summary

The time included in the current blocks header.

CurrentHeight property

Summary

The height of the block that contains the transaction currently executing.

Origin property

Summary

The address of the sender (signer) of the transaction being executed. It’s type is an AElf address. It corresponds to the
From field of the transaction. This value never changes, even for nested inline calls. This means that when you access
this property in your contract, it’s value will be the entity that created the transaction (user or smart contract through
an inline call).

PreviousBlockHash property

Summary

The hash of the block that precedes the current in the blockchain structure.

Self property

Summary

The address of the contract currently being executed. This changes for every transaction and inline transaction.

Sender property

Summary

The Sender of the transaction that is executing.

152 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

StateProvider property

Summary

Provides access to the underlying state provider.

TransactionId property

Summary

The ID of the transaction that’s currently executing.

Variables property

Summary

Provides access to variable of the bridge.

Call(fromAddress,toAddress,methodName,args) method

Summary

Calls a method on another contract.

Returns

The result of the call.

Parameters

Name Type Description
fromAddress AElf.Types.Address The address to use as sender.
toAddress AElf.Types.Address The address of the contract you’re seeking to interact with.
methodName System.String The name of method you want to call.
args Google.Protobuf.ByteStringThe input arguments for calling that method. This is usually gener-

ated from the protobuf
definition of the in-
put type

Generic Types

Name Description
T The type of the return message.

18.1. AElf.Sdk.CSharp 153

AElf, Release release/1.0.0-preview3

ConvertVirtualAddressToContractAddress(virtualAddress) method

Summary

Converts a virtual address to a contract address.

Returns

The converted address.

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.

ConvertVirtualAddressToContractAddress(virtualAddress,contractAddress) method

Summary

Converts a virtual address to a contract address with the contract address.

Returns

The converted address.

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.
contractAddress AElf.Types.Address The contract address.

ConvertVirtualAddressToContractAddressWithContractHashName(

virtualAddress) method

Summary

Converts a virtual address to a contract address with the current contract hash name.

Returns

The converted address.

154 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.

ConvertVirtualAddressToContractAddressWithContractHashName(

virtualAddress,contractAddress) method

Summary

Converts a virtual address to a contract address with the contract hash name.

Returns

Parameters

Name Type Description
virtualAddress AElf.Types.Hash The virtual address that want to convert.
contractAddress AElf.Types.Address The contract address.

DecryptMessage(senderPublicKey,cipherMessage) method

Summary

Decrypts a message with the given public key.

Returns

The decrypted message.

Parameters

Name Type Description
senderPublicKey System.Byte[] The public key that encrypted the message.
cipherMessage System.Byte[] The encrypted message.

EncryptMessage(receiverPublicKey,plainMessage) method

Summary

Encrypts a message with the given public key.

18.1. AElf.Sdk.CSharp 155

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Byte
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Byte

AElf, Release release/1.0.0-preview3

Returns

The encrypted message.

Parameters

Name Type Description
receiverPublicKey System. Byte[] The receivers public key.
plainMessage System. Byte[] The non encrypted message.

FireLogEvent(logEvent) method

Summary

This method is used to produce logs that can be found in the transaction result after execution.

Parameters

Name Type Description
logEvent AElf.Types.LogEvent The event to fire.

GenerateId(contractAddress,bytes) method

Summary

Generate a hash type id based on the contract address and the bytes.

Returns

The generated hash type id.

Parameters

Name Type Description
contractAd-
dress

AElf.Types.Address The contract address on which the id generation
is based.

bytes System.Collections. Generic.IEnumerable
{System.Byte}

The bytes on which the id generation is based.

156 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Byte
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Byte
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable

AElf, Release release/1.0.0-preview3

GetContractAddressByName(hash) method

Summary

It’s sometimes useful to get the address of a system contract. The input is a hash of the system contracts name. These
hashes are easily accessible through the constants in the SmartContractConstants.cs file of the C# SDK.

Returns

The address of the system contract.

Parameters

Name Type Description
hash AElf.Types.Hash The hash of the name.

GetPreviousBlockTransactions() method

Summary

Returns the transaction included in the previous block (previous to the one currently executing).

Returns

A list of transaction.

Parameters

This method has no parameters.

GetSystemContractNameToAddressMapping() method

Summary

Get the mapping that associates the system contract addresses and their name’s hash.

Returns

The addresses with their hashes.

Parameters

This method has no parameters.

18.1. AElf.Sdk.CSharp 157

AElf, Release release/1.0.0-preview3

GetZeroSmartContractAddress() method

Summary

This method returns the address of the Genesis contract (smart contract zero) of the current chain.

Returns

The address of the genesis contract.

Parameters

This method has no parameters.

GetZeroSmartContractAddress(chainId) method

Summary

This method returns the address of the Genesis contract (smart contract zero) of the specified chain.

Returns

The address of the genesis contract, for the given chain.

Parameters

Name Type Description
chainId System.Int32 The chain’s ID.

LogDebug(func) method

Summary

Application logging - when writing a contract it is useful to be able to log some elements in the applications log file to
simplify development. Note that these logs are only visible when the node executing the transaction is build in debug
mode.

Parameters

Name Type Description
func System.Func {System.String} The logic that will be executed for logging purposes.

158 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int32
https://docs.microsoft.com/en-us/dotnet/api/system.func-1?view=netcore-3.1

AElf, Release release/1.0.0-preview3

RecoverPublicKey() method

Summary

Recovers the public key of the transaction Sender.

Returns

A byte array representing the public key.

Parameters

This method has no parameters.

SendInline(toAddress,methodName,args) method

Summary

Sends an inline transaction to another contract.

Parameters

Name Type Description
toAddress AElf.Types. Address The address of the contract you’re seeking to interact with.
methodName System.String The name of method you want to invoke.
args Google.Protobuf

.ByteString
The input arguments for calling that method. This is usually gen-
erated from the protobuf

definition of the in-
put type.

SendVirtualInline(fromVirtualAddress,toAddress,methodName,args) method

Summary

Sends a virtual inline transaction to another contract.

Parameters

Name Type Description
fromVirtualAddress AElf.Types.Hash The virtual address to use as sender.
toAddress AElf.Types. Address The address of the contract you’re seeking to interact with.
methodName System.String The name of method you want to invoke.
args Google.Protobuf

.ByteString
The input arguments for calling that method. This is usually gen-
erated from the protobuf

definition of the in-
put type.

18.1. AElf.Sdk.CSharp 159

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

SendVirtualInlineBySystemContract(fromVirtualAddress,toAddress,

methodName,args) method

Summary

Like SendVirtualInline but the virtual address us a system smart contract.

Parameters

Name Type Description
fromVirtualAd-
dress

AElf.Types.Hash Sends a virtual inline transaction to another contract. This method is
only available to system smart contract.

toAddress AElf.Types. Ad-
dress

The address of the contract you’re seeking to interact with.

methodName System.String The name of method you want to invoke.
args Google.Protobuf

.ByteString
The input arguments for calling that method. This is usually generated
from the protobuf

definition of the
input type.

VerifySignature(tx) method

Summary

Returns whether or not the given transaction is well formed and the signature is correct.

Returns

The verification results.

Parameters

Name Type Description
tx AElf.Types.Transaction The transaction to verify.

CSharpSmartContract type

Namespace

AElf.Sdk.CSharp

Summary

This class represents a base class for contracts written in the C# language. The generated code from the protobuf
definitions will inherit from this class.

160 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

Generic Types

Name Description
TContractState

Context property

Summary

Represents the transaction execution context in a smart contract. It provides access inside the contract to properties
and methods useful for implementing the smart contracts action logic.

State property

Summary

Provides access to the State class instance. TContractState is the type of the state class defined by the contract author.

ContractState type

Namespace

AElf.Sdk.CSharp.State

Summary

Base class for the state class in smart contracts.

Int32State type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around 32-bit integer values for use in smart contract state.

Int64State type

Namespace

AElf.Sdk.CSharp.State

18.1. AElf.Sdk.CSharp 161

AElf, Release release/1.0.0-preview3

Summary

Wrapper around 64-bit integer values for use in smart contract state.

MappedState type

Namespace

AElf.Sdk.CSharp.State

Summary

Key-value pair data structure used for representing state in contracts.

Generic Types

Name Description
TKey The type of the key.
TEntity The type of the value.

SingletonState type

Namespace

AElf.Sdk.CSharp.State

Summary

Represents single values of a given type, for use in smart contract state.

SmartContractBridgeContextExtensions type

Namespace

AElf.Sdk.CSharp

Summary

Extension methods that help with the interactions with the smart contract execution context.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

162 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

Returns

The return value of the call.

Parameters

Name Type Description
context AElf.Kernel.SmartContract. IS-

martContractBridgeContext
The virtual address of the system. contract to use as
sender.

address AElf.Types. Address The address of the contract you’re seeking to interact
with.

methodName System.String The name of method you want to call.
message Google.Protobuf.ByteString The input arguments for calling that method. This is

usually generated from the protobuf
definition of the
input type.

Generic Types

Name Description
T The return type of the call.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContextAn instance of ISmartContractBridgeContext
address AElf.Types. Address The address of the contract you’re seeking to interact

with.
method-
Name

System.String The name of method you want to call.

message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

18.1. AElf.Sdk.CSharp 163

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

Generic Types

Name Description
T The type of the return message.

Call(context,fromAddress,toAddress,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContextAn instance of ISmartContractBridgeContext
fromAd-
dress

AElf.Types. Address The address to use as sender.

toAd-
dressvv

AElf.Types. Address The address of the contract you’re seeking to interact
with.

method-
Name

System.String The name of method you want to call.

message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

Generic Types

Name Description
T The type of the return message.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

164 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContextAn instance of ISmartContractBridgeContext
address AElf.Types. Address The address to use as sender.
method-
Name

System.String The name of method you want to call.

message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

Generic Types

Name Description
T The type of the return message.

ConvertToByteString(message) method

Summary

Serializes a protobuf message to a protobuf ByteString.

Returns

ByteString.Empty if the message is null

Parameters

Name Type Description
message Google.Protobuf.IMessage The message to serialize.

ConvertVirtualAddressToContractAddress(this,virtualAddress) method

Summary

Converts a virtual address to a contract address.

Returns

18.1. AElf.Sdk.CSharp 165

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridge-

Context
An instance of ISmartContractBridge-
Context

virtualAd-
dress

AElf.Types.Hash Address The virtual address that want to convert.

ConvertVirtualAddressToContractAddressWithContractHashName(this,

virtualAddress) method

Summary

Converts a virtual address to a contract address with the currently running contract address.

Returns

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridge-

Context
An instance of ISmartContractBridge-
Context

virtualAd-
dress

AElf.Types.Hash Address The virtual address that want to convert.

Fire(context,eventData) method

Summary

Logs an event during the execution of a transaction. The event type is defined in the AElf.CSharp.core project.

Parameters

Name Type Description
context AElf.Sdk.CSharp.CSharpSmartContractContext An instance of ISmartContractBridgeContext
eventData The event to log.

Generic Types

Name Description
T The type of the event.

166 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

GenerateId(this,bytes) method

Summary

Generate a hash type id based on the currently running contract address and the bytes.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridgeCon-

text
An instance of ISmartContractBridgeCon-
text

bytes System.Collections.Generic .IEnumer-
able{System.Byte}

The bytes on which the id generation is
based.

GenerateId(this,token) method

Summary

Generate a hash type id based on the currently running contract address and the token.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridgeCon-

text
An instance of ISmartContractBridgeCon-
text

token System.String The token on which the id generation is
based.

GenerateId(this,token) method

Summary

Generate a hash type id based on the currently running contract address and the hash type token.

Returns

The generated hash type id.

18.1. AElf.Sdk.CSharp 167

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridge-

Context
An instance of ISmartContractBridgeContext

token AElf.Types.Hash The hash type token on which the id generation is
based.

GenerateId(this) method

Summary

Generate a hash type id based on the currently running contract address.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContractBridgeCon-

text
An instance of ISmartContractBridgeCon-
text

GenerateId(this,address,token) method

Summary

Generate a hash type id based on the address and the bytes.

Returns

The generated hash type id.

Parameters

Name Type Description
this AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

ad-
dress

AElf.Types.Address The address on which the id generation is based.

token AElf.Types.Hash The hash type token on which the id generation is
based.

168 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

SendInline(context,toAddress,methodName,message) method

Summary

Sends an inline transaction to another contract.

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

toAddress AElf.Types.Address The address of the contract you’re seeking to in-
teract with.

method-
Name

System.String The name of method you want to invoke.

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

SendInline(context,toAddress,methodName,message) method

Summary

Sends a virtual inline transaction to another contract.

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

toAddress AElf.Types.Address The address of the contract you’re seeking to in-
teract with.

method-
Name

System.String The name of method you want to invoke.

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

SendVirtualInline(context,fromVirtualAddress,toAddress,methodName,

message) method

Summary

Sends a virtual inline transaction to another contract.

18.1. AElf.Sdk.CSharp 169

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

fromVirtualAd-
dress

AElf.Types.Hash The virtual address to use as sender.

toAddress AElf.Types.Address The address of the contract you’re seeking to
interact with.

methodName System.String The name of method you want to invoke.
message Google.Protobuf.ByteString The protobuf message that will be the input to

the call.

SendVirtualInline(context,fromVirtualAddress,toAddress,methodName,

message) method

Summary

Sends a virtual inline transaction to another contract.

Parameters

Name Type Description
context AElf.Kernel.SmartContract. ISmartContract-

BridgeContext
An instance of ISmartContractBridgeContext

fromVirtualAd-
dress

AElf.Types.Hash The virtual address to use as sender.

toAddress AElf.Types.Address The address of the contract you’re seeking to
interact with.

methodName System.String The name of method you want to invoke.
message Google.Protobuf.ByteString The protobuf message that will be the input to

the call.

SmartContractConstants type

Namespace

AElf.Sdk.CSharp

Summary

Static class containing the hashes built from the names of the contracts.

170 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

StringState type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around string values for use in smart contract state.

UInt32State type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around unsigned 32-bit integer values for use in smart contract state.

UInt64State type

Namespace

AElf.Sdk.CSharp.State

Summary

Wrapper around unsigned 64-bit integer values for use in smart contract state.

18.2 AElf.CSharp.Core

18.2.1 Contents

• Builder

– ctor()

– AddMethod(method,handler)

– Build()

• EncodingHelper

– EncodeUtf8(str)

• IMethod

– FullName

– Name

18.2. AElf.CSharp.Core 171

AElf, Release release/1.0.0-preview3

– ServiceName

– Type

• Marshaller

– ctor(serializer,deserializer)

– Deserializer

– Serializer

• Marshallers

– StringMarshaller

– Create()

• MethodType

– Action

– View

• Method

– ctor(type,serviceName,name,requestMarshaller,responseMarshaller)

– FullName

– Name

– RequestMarshaller

– ResponseMarshaller

– ServiceName

– Type

– GetFullName()

• Preconditions

– CheckNotNull(reference)

– CheckNotNullreference,paramName)

• SafeMath

• ServerServiceDefinition

– BindService()

– CreateBuilder()

• ServiceBinderBase

– AddMethod(method,handler)

• TimestampExtensions

– AddDays(timestamp,days)

– AddHours(timestamp,hours)

– AddMilliseconds(timestamp,milliseconds)

– AddMinutes(timestamp,minutes)

– AddSeconds(timestamp,seconds)

172 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

– Max(timestamp1,timestamp2)

– Milliseconds(duration)

• UnaryServerMethod

Builder type

Namespace

AElf.CSharp.Core.ServerServiceDefinition

Summary

Builder class for ServerServiceDefinition.

ctor() constructor

Summary

Creates a new instance of builder.

Parameters

This constructor has no parameters.

AddMethod‘‘2(method,handler) method

Summary

Adds a definition for a single request - single response method.

Returns

This builder instance.

Parameters

Name Type Description
method AElf.CSharp.Core.Method The method.
handler AElf.CSharp.Core.UnaryServerMethod The method handler.

18.2. AElf.CSharp.Core 173

AElf, Release release/1.0.0-preview3

Generic Types

Name Description
TRequest The request message class.
TResponse The response message class.

Build() method

Summary

Creates an immutable ServerServiceDefinition from this builder.

Returns

The ServerServiceDefinition object.

Parameters

This method has no parameters.

EncodingHelper type

Namespace

AElf.CSharp.Core.Utils

Summary

Helper class for serializing strings.

EncodeUtf8(str) method

Summary

Serializes a UTF-8 string to a byte array.

Returns

the serialized string.

Parameters

Name Type Description
str System.String

174 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

IMethod type

Namespace

AElf.CSharp.Core

Summary

A non-generic representation of a remote method.

FullName property

Summary

Gets the fully qualified name of the method. On the server side, methods are dispatched based on this name.

Name property

Summary

Gets the unqualified name of the method.

ServiceName property

Summary

Gets the name of the service to which this method belongs.

Type property

Summary

Gets the type of the method.

Marshaller type

Namespace

AElf.CSharp.Core

Summary

Encapsulates the logic for serializing and deserializing messages.

18.2. AElf.CSharp.Core 175

AElf, Release release/1.0.0-preview3

ctor(serializer,deserializer) constructor

Summary

Initializes a new marshaller from simple serialize/deserialize functions.

Parameters

Name Type Description
serializer System.Func Function that will be used to deserialize messages.

Deserializer property

Summary

Gets the deserializer function.

Serializer property

Summary

Gets the serializer function.

Marshallers type

Namespace

AElf.CSharp.Core

Summary

Utilities for creating marshallers.

StringMarshaller property

Summary

Returns a marshaller for string type. This is useful for testing.

Create() method

Summary

Creates a marshaller from specified serializer and deserializer.

176 Chapter 18. C# reference

https://docs.microsoft.com/en-us/dotnet/api/system.func-1?view=netcore-3.1

AElf, Release release/1.0.0-preview3

Parameters

This method has no parameters.

MethodType type

Namespace

AElf.CSharp.Core

Action constants

Summary

The method modifies the contrac state.

View constants

Summary

The method doesn’t modify the contract state.

Method type

Namespace

AElf.CSharp.Core

Summary

A description of a remote method.

Generic Types

Name Description
TRequest Request message type for this method.
TResponse Response message type for this method.

ctor(type,serviceName,name,requestMarshaller,responseMarshaller) constructor

Summary

Initializes a new instance of the Method class.

18.2. AElf.CSharp.Core 177

AElf, Release release/1.0.0-preview3

Parameters

Name Type Description
type AElf.CSharp.Core.Method Type of method.
serviceName System.String Name of service this method belongs to.
name System.String Unqualified name of the method.
request Marshaller AElf.CSharp.Core.Marshaller Marshaller used for request messages.
response Marshaller AElf.CSharp.Core.Marshaller Marshaller used for response messages.

FullName property

Summary

Gets the fully qualified name of the method. On the server side, methods are dispatched based on this name.

Name property

Summary

Gets the unqualified name of the method.

RequestMarshaller property

Summary

Gets the marshaller used for request messages.

ResponseMarshaller property

Summary

Gets the marshaller used for response messages.

ServiceName property

Summary

Gets the name of the service to which this method belongs.

Type property

Summary

Gets the type of the method.

178 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

GetFullName() method

Summary

Gets full name of the method including the service name.

Parameters

This method has no parameters.

Preconditions type

Namespace

AElf.CSharp.Core.Utils

CheckNotNull(reference) method

Summary

Throws ArgumentNullException if reference is null.

Parameters

Name Type Description
reference The reference.

CheckNotNull(reference,paramName) method

Summary

Throws ArgumentNullException if reference is null.

Parameters

Name Type Description
reference The reference.
paramName System.String The parameter name.

SafeMath type

Namespace

AElf.CSharp.Core

18.2. AElf.CSharp.Core 179

https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception?redirectedfrom=MSDN&view=netframework-4.7.2
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AElf, Release release/1.0.0-preview3

Summary

Helper methods for safe math operations that explicitly check for overflow.

ServerServiceDefinition type

Namespace

AElf.CSharp.Core

Summary

Stores mapping of methods to server call handlers. Normally, the ServerServiceDefinition objects will be
created by the BindService factory method that is part of the autogenerated code for a protocol buffers service
definition.

BindService() method

Summary

Forwards all the previously stored AddMethod calls to the service binder.

Parameters

This method has no parameters.

CreateBuilder() method

Summary

Creates a new builder object for ServerServiceDefinition.

Returns

The builder object.

Parameters

This method has no parameters.

ServiceBinderBase type

Namespace

AElf.CSharp.Core

180 Chapter 18. C# reference

AElf, Release release/1.0.0-preview3

Summary

Allows binding server-side method implementations in alternative serving stacks. Instances of this class are usually
populated by the BindServicemethod that is part of the autogenerated code for a protocol buffers service definition.

AddMethod(method,handler) method

Summary

Adds a definition for a single request - single response method.

Parameters

Name Type Description
method AElf.CSharp.Core.Method The method.
handler AElf.CSharp.Core.UnaryServerMethod The method handler.

Generic Types

Name Description
TRequest The request message class.
TResponse The response message class.

TimestampExtensions type

Namespace

AElf.CSharp.Core.Extension

Summary

Helper methods for dealing with protobuf timestamps.

AddDays(timestamp,days) method

Summary

Adds a given amount of days to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

18.2. AElf.CSharp.Core 181

AElf, Release release/1.0.0-preview3

Parameters

Name Type Description
timestamp Google.Protobuf.WellKnown Types.Timestamp the timestamp.
days System. Int64 the amount of days.

AddHours(timestamp,hours) method

Summary

Adds a given amount of hours to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf .WellKnownTypes.Timestamp the timestamp.
hours System.Int64 the amount of hours.

AddMilliseconds(timestamp,milliseconds) method

Summary

Adds a given amount of milliseconds to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf. WellKnownTypes.Timestamp the timestamp.
milliseconds System. Int64 the amount of milliseconds to add.

AddMinutes(timestamp,minutes) method

Summary

Adds a given amount of minutes to a timestamp. Returns a new instance.

182 Chapter 18. C# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

AElf, Release release/1.0.0-preview3

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf .WellKnownTypes.Timestamp the timestamp.
minutes System.Int64 the amount of minutes.

AddSeconds(timestamp,seconds) method

Summary

Adds a given amount of seconds to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp Google.Protobuf .WellKnownTypes.Timestam the timestamp.
seconds System.Int64 the amount of seconds.

Max(timestamp1,timestamp2) method

Summary

Compares two timestamps and returns the greater one.

Returns

the greater timestamp.

Parameters

Name Type Description
timestamp1 Google.Protobuf .WellKnownTypes.Timestamp the first timestamp
timestamp2 Google.Protobuf .WellKnownTypes.Timestamp the second timestamp

18.2. AElf.CSharp.Core 183

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

AElf, Release release/1.0.0-preview3

Milliseconds(duration) method

Summary

Converts a protobuf duration to long.

Returns

the duration represented with a long.

Parameters

Name Type Description
duration Google.Protobuf. WellKnownTypes.Duration the duration to convert.

UnaryServerMethod type

Namespace

AElf.CSharp.Core

Summary

Handler for a contract method.

Generic Types

Name Description
TRequest Request message type for this method.
TResponse Response message type for this method.

184 Chapter 18. C# reference

CHAPTER 19

Smart Contract APIs

This section gives an overview of some important contracts and contract methods. It’s not meant to be exhaustive.
With every method description we give the parameter message in JSON format, this can be useful when using client
(like aelf-command).

19.1 Association Contract

19.1.1 Actions

CreateOrganization

rpc CreateOrganization (CreateOrganizationInput) returns (aelf.Address){}

message CreateOrganizationInput {
OrganizationMemberList organization_member_list = 1;
acs3.ProposalReleaseThreshold proposal_release_threshold = 2;
acs3.ProposerWhiteList proposer_white_list = 3;

}

message OrganizationMemberList {
repeated aelf.Address organization_members = 1;

}

message ProposalReleaseThreshold {
int64 minimal_approval_threshold = 1;
int64 maximal_rejection_threshold = 2;
int64 maximal_abstention_threshold = 3;
int64 minimal_vote_threshold = 4;

}

message ProposerWhiteList {
repeated aelf.Address proposers = 1;

(continues on next page)

185

AElf, Release release/1.0.0-preview3

(continued from previous page)

}

message OrganizationCreated{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;

}

Creates an organization and returns its address.

• CreateOrganizationInput

– organizer member list: initial organization members.

– proposal release threshold: the threshold for releasing the proposal.

– proposer white list: proposer whitelist.

• OrganizationMemberList

– organization members: addresses of the initial organization members.

• ProposalReleaseThreshold

– minimal approval threshold: the value for the minimum approval threshold.

– maximal rejection threshold: the value for the maximal rejection threshold.

– maximal abstention threshold: the value for the maximal abstention threshold.

– minimal vote threshold: the value for the minimal vote threshold.

• ProposerWhiteList

– proposers: address of the proposers.

• Returns

– value: the address of newly created organization.

• Events

– OrganizationCreated

* organization address: the address of newly created organization

CreateOrganizationBySystemContract

rpc CreateOrganizationBySystemContract(CreateOrganizationBySystemContractInput)
→˓returns (aelf.Address){}

message CreateOrganizationBySystemContractInput {
CreateOrganizationInput organization_creation_input = 1;
string organization_address_feedback_method = 2;

}

message CreateOrganizationInput{
OrganizationMemberList organization_member_list = 1;
acs3.ProposalReleaseThreshold proposal_release_threshold = 2;
acs3.ProposerWhiteList proposer_white_list = 3;

}

message OrganizationMemberList {
(continues on next page)

186 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

repeated aelf.Address organization_members = 1;
}

message OrganizationCreated{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;

}

Creates an organization by system contract and returns its address.

• CreateOrganizationBySystemContractInput

– CreateOrganizationInput: paramenters of creating organization.

– organization address feedback method: organization address callback method which replies the organi-
zation address to caller contract.

note: for CreateOrganizationInput see CreateOrganization

• Returns

– value: the address of newly created organization.

• Events

– OrganizationCreated

note: for OrganizationCreated see CreateOrganization

ChangeOrganizationMember

rpc ChangeOrganizationMember(OrganizationMemberList) returns (google.protobuf.Empty){}

message OrganizationMemberList {
repeated aelf.Address organization_members = 1;

}

message OrganizationMemberChanged {
option (aelf.is_event) = true;
aelf.Address organization_address = 1;
OrganizationMemberList organization_member_list = 2;

}

Changes the members of the organization. Note that this will override the current list.

• OrganizationMemberList

– organization_members: the new members.

• OrganizationMemberChanged

– organization_address: the organization address.

– organization_member_list: the new member list.

19.1.2 ACS3 specific methods

19.1. Association Contract 187

AElf, Release release/1.0.0-preview3

CreateProposal

rpc CreateProposal (CreateProposalInput) returns (aelf.Hash){}

message CreateProposalInput {
string contract_method_name = 1;
aelf.Address to_address = 2;
bytes params = 3;
google.protobuf.Timestamp expired_time = 4;
aelf.Address organization_address = 5;
string proposal_description_url = 6,
aelf.Hash token = 7;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

This method creates a proposal for which organization members can vote. When the proposal is released, a transaction
will be sent to the specified contract.

• CreateProposalInput

– contract method name: the name of the method to call after release.

– to address: the address of the contract to call after release.

– expiration: the timestamp at which this proposal will expire.

– organization address: the address of the organization.

– proposal_description_url: the url is used for proposal describing.

– token: the token is for proposal id generation and with this token, proposal id can be calculated before
proposing.

• Returns

– value: id of the newly created proposal.

• Events

– ProposalCreated

* proposal_id: id of the created proposal.

Approve

rpc Approve (aelf.Hash) returns (google.protobuf.Empty){}

message ReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string receipt_type = 3;
google.protobuf.Timestamp time = 4;

}

This method is called to approve the specified proposal.

188 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

• Hash: id of the proposal.

• Events

– ReceiptCreated

* proposal id: id of the proposal.

* address: send address.

* receipt type: Approve.

* time: timestamp of this method call.

Reject

rpc Reject(aelf.Hash) returns (google.protobuf.Empty){}

message ReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string receipt_type = 3;
google.protobuf.Timestamp time = 4;

}

This method is called to reject the specified proposal.

• Hash: id of the proposal.

• Events

– ReceiptCreated

note: for ReceiptCreated see Approve

Abstain

rpc Abstain(aelf.Hash) returns (google.protobuf.Empty){}

message ReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string receipt_type = 3;
google.protobuf.Timestamp time = 4;

}

This method is called to abstain from the specified proposal.

• Hash: id of the proposal.

• Events

– ReceiptCreated

note: for ReceiptCreated see Approve

19.1. Association Contract 189

AElf, Release release/1.0.0-preview3

Release

rpc Release(aelf.Hash) returns (google.protobuf.Empty){}

This method is called to release the specified proposal.

• Hash: id of the proposal.

• Events

– ReceiptCreated

note: for ReceiptCreated see Approve

ChangeOrganizationThreshold

rpc ChangeOrganizationThreshold(ProposalReleaseThreshold) returns (google.protobuf.
→˓Empty){}

message ProposalReleaseThreshold {
int64 minimal_approval_threshold = 1;
int64 maximal_rejection_threshold = 2;
int64 maximal_abstention_threshold = 3;
int64 minimal_vote_threshold = 4;

}

message OrganizationThresholdChanged{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;
ProposalReleaseThreshold proposer_release_threshold = 2;

}

This method changes the thresholds associated with proposals. All fields will be overwritten by the input value and this
will affect all current proposals of the organization. Note: only the organization can execute this through a proposal.

note: for ProposalReleaseThreshold see CreateOrganization

• Events

– OrganizationThresholdChanged

* organization_address: the organization address.

* proposer_release_threshold: the new release threshold.

ChangeOrganizationProposerWhiteList

rpc ChangeOrganizationProposerWhiteList(ProposerWhiteList) returns (google.protobuf.
→˓Empty){}

message ProposerWhiteList {
repeated aelf.Address proposers = 1;

}

message OrganizationWhiteListChanged{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;

(continues on next page)

190 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

ProposerWhiteList proposer_white_list = 2;
}

This method overrides the list of whitelisted proposers.

note: for ProposerWhiteList see CreateOrganization

• Events

– OrganizationWhiteListChanged

* organization_address: the organization address.

* proposer_white_list: the new proposer whitelist.

CreateProposalBySystemContract

rpc CreateProposalBySystemContract(CreateProposalBySystemContractInput) returns (aelf.
→˓Hash){}

message CreateProposalBySystemContractInput {
acs3.CreateProposalInput proposal_input = 1;
aelf.Address origin_proposer = 2;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

Used by system contracts to create proposals.

• CreateProposalBySystemContractInput

– CreateProposalInput: the parameters of creating proposal.

– origin proposer: the actor that trigger the call.

note: for CreateProposalInput see CreateProposal

• Returns

– value: newly created organization address.

• Events

– ProposalCreated

* proposal_id: id of the created proposal.

ClearProposal

rpc ClearProposal(aelf.Hash) returns (google.protobuf.Empty){}

Removes the specified proposal.

• Hash: id of the proposal to be cleared.

19.1. Association Contract 191

AElf, Release release/1.0.0-preview3

ValidateOrganizationExist

rpc ValidateOrganizationExist(aelf.Address) returns (google.protobuf.BoolValue){}

Checks the existence of an organization.

• Address: organization address to be checked.

• Returns

– value: indicates whether the organization exists.

19.1.3 View methods

GetOrganization

rpc GetOrganization (aelf.Address) returns (Organization){}

message Organization {
OrganizationMemberList organization_member_list = 1;
acs3.ProposalReleaseThreshold proposal_release_threshold = 2;
acs3.ProposerWhiteList proposer_white_list = 3;
aelf.Address organization_address = 4;
aelf.Hash organization_hash = 5;

}

Returns the organization with the specified address.

• Address: organization address.

• Returns

– member list: original members of this organization.

– ProposalReleaseThreshold: the threshold of release the proposal.

– ProposerWhiteList: the proposals in the whitelist.

– address: the organizations address.

– hash: the organizations id.

note: for ProposalReleaseThreshold and ProposerWhiteList see CreateOrganization

CalculateOrganizationAddress

rpc CalculateOrganizationAddress(CreateOrganizationInput) returns (aelf.Address){}

message CreateOrganizationInput {
string token_symbol = 1;
acs3.ProposalReleaseThreshold proposal_release_threshold = 2;
acs3.ProposerWhiteList proposer_white_list = 3;

}

Calculates with input and returns the organization address.

note: for CreateOrganizationInput and ProposerWhiteList see CreateOrganization

• Returns

192 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– value: organization address.

GetProposal

rpc GetProposal(aelf.Hash) returns (ProposalOutput){}

message ProposalOutput {
aelf.Hash proposal_id = 1;
string contract_method_name = 2;
aelf.Address to_address = 3;
bytes params = 4;
google.protobuf.Timestamp expired_time = 5;
aelf.Address organization_address = 6;
aelf.Address proposer = 7;
bool to_be_released = 8;
int64 approval_count = 9;
int64 rejection_count = 10;
int64 abstention_count = 11;

}

Get the proposal with the given id.

• Hash: proposal id.

• Returns

– proposal id: id of the proposal.

– method name: the method that this proposal will call when being released.

– to address: the address of the target contract.

– params: the parameters of the release transaction.

– expiration: the date at which this proposal will expire.

– organization address: address of this proposals organization.

– proposer: address of the proposer of this proposal.

– to be release: indicates if this proposal is releasable.

– approval count: approval count for this proposal

– rejection count: rejection count for this proposal

– abstention count: abstention count for this proposal

ValidateProposerInWhiteList

rpc ValidateProposerInWhiteList(ValidateProposerInWhiteListInput) returns (google.
→˓protobuf.BoolValue){}

message ValidateProposerInWhiteListInput {
aelf.Address proposer = 1;
aelf.Address organization_address = 2;

}

Checks if the proposer is whitelisted.

• ValidateProposerInWhiteListInput

19.1. Association Contract 193

AElf, Release release/1.0.0-preview3

– proposer: the address to search/check.

– organization address: address of the organization.

• Returns

– value: indicates whether the proposer is whitelisted.

19.2 Referendum Contract

19.2.1 Actions

CreateOrganization

rpc CreateOrganization (CreateOrganizationInput) returns (aelf.Address){}

message CreateOrganizationInput {
string token_symbol = 1;
acs3.ProposalReleaseThreshold proposal_release_threshold = 2;
acs3.ProposerWhiteList proposer_white_list = 3;

}

message OrganizationCreated{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;

}

Creates an organization and returns its address.

• CreateOrganizationInput

– token symbol: the token used during proposal operations.

– proposal release threshold: the threshold for releasing the proposal.

– proposer white list: proposer whitelist.

• ProposalReleaseThreshold

– minimal approval threshold: the value for the minimum approval threshold.

– maximal rejection threshold: the value for the maximal rejection threshold.

– maximal abstention threshold: the value for the maximal abstention threshold.

– minimal vote threshold: the value for the minimal vote threshold.

• ProposerWhiteList

– proposers: address of the proposers.

• Returns

– Address: newly created organization address.

• Events

– OrganizationCreated

* organization address: the address of newly created organization.

194 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

CreateOrganizationBySystemContract

rpc CreateOrganizationBySystemContract(CreateOrganizationBySystemContractInput)
→˓returns (aelf.Address){}

message CreateOrganizationBySystemContractInput {
CreateOrganizationInput organization_creation_input = 1;
string organization_address_feedback_method = 2;

}

message CreateOrganizationInput {
string token_symbol = 1;
acs3.ProposalReleaseThreshold proposal_release_threshold = 2;
acs3.ProposerWhiteList proposer_white_list = 3;

}

message OrganizationCreated{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;

}

Creates an organization by system contract and returns its address. Event OrganizationCreated will be fired.

• CreateOrganizationBySystemContractInput

– CreateOrganizationInput: the parameters of creating a organization.

– organization address feedback method: organization address callback method which replies the organi-
zation address to caller contract.

note: for CreateOrganizationInput see CreateOrganization

• Returns

– Address: newly created organization address.

• Events

– OrganizationCreated

* organization address: the address of newly created organization

ReclaimVoteToken

rpc ReclaimVoteToken (aelf.Hash) returns (google.protobuf.Empty){}

Used to unlock the tokens that where used for voting.

• Hash: proposal id.

19.2.2 ACS3 specific methods

CreateProposal

rpc CreateProposal (CreateProposalInput) returns (aelf.Hash){}

message CreateProposalInput {

(continues on next page)

19.2. Referendum Contract 195

AElf, Release release/1.0.0-preview3

(continued from previous page)

string contract_method_name = 1;
aelf.Address to_address = 2;
bytes params = 3;
google.protobuf.Timestamp expired_time = 4;
aelf.Address organization_address = 5;
string proposal_description_url = 6,
aelf.Hash token = 7;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

This method creates a proposal for which organization members can vote. When the proposal is released, a transaction
will be sent to the specified contract.

• CreateProposalInput

– contract method name: the name of the method to call after release.

– to address: the address of the contract to call after release.

– expiration: the timestamp at which this proposal will expire.

– organization address: the address of the organization.

– proposal_description_url: the url is used for proposal describing.

– token: the token is for proposal id generation and with this token, proposal id can be calculated before
proposing.

• Returs

– Hash: id of the newly created proposal.

• Events

– ProposalCreated

* proposal_id: id of the created proposal.

Approve

rpc Approve (aelf.Hash) returns (google.protobuf.Empty){}

message ReferendumReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string symbol = 3;
int64 amount = 4;
string receipt_type = 5;
google.protobuf.Timestamp time = 6;

}

This method is called to approve the specified proposal. The amount of token allowance to the proposal virtual address
would be locked for voting.

• Hash: id of the proposal.

196 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

• Events

– ReferendumReceiptCreated

* proposal id: id of the proposal.

* address: voter address.

* token symbol symbol of token locked.

* token amount amount of token locked.

* receipt type: Approve.

* time: timestamp of this method call.

Reject

rpc Reject(aelf.Hash) returns (google.protobuf.Empty){}

message ReferendumReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string symbol = 3;
int64 amount = 4;
string receipt_type = 5;
google.protobuf.Timestamp time = 6;

}

This method is called to reject the specified proposal. The amount of token allowance to the proposal virtual address
would be locked for voting.

• Hash: id of the proposal.

• Events

– ReferendumReceiptCreated

note: for ReferendumReceiptCreated see Approve

Abstain

rpc Abstain(aelf.Hash) returns (google.protobuf.Empty){}

message ReferendumReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string symbol = 3;
int64 amount = 4;
string receipt_type = 5;
google.protobuf.Timestamp time = 6;

}

This method is called to abstain from the specified proposal. The amount of token allowance to the proposal virtual
address would be locked for voting.

• Hash: id of the proposal.

19.2. Referendum Contract 197

AElf, Release release/1.0.0-preview3

• Events

– ReferendumReceiptCreated

note: for ReferendumReceiptCreated see Approve

Release

rpc Release(aelf.Hash) returns (google.protobuf.Empty){}

This method is called to release the specified proposal.

-Hash: id of the proposal.

• Events

– ProposalReleased

* proposal id: id of the proposal.

ChangeOrganizationThreshold

rpc ChangeOrganizationThreshold(ProposalReleaseThreshold) returns (google.protobuf.
→˓Empty){}

message ProposalReleaseThreshold {
int64 minimal_approval_threshold = 1;
int64 maximal_rejection_threshold = 2;
int64 maximal_abstention_threshold = 3;
int64 minimal_vote_threshold = 4;

}

message OrganizationThresholdChanged{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;
ProposalReleaseThreshold proposer_release_threshold = 2;

}

This method changes the thresholds associated with proposals. All fields will be overwritten by the input value and this
will affect all current proposals of the organization. Note: only the organization can execute this through a proposal.

note: for ProposalReleaseThreshold see CreateOrganization

• Events

– OrganizationThresholdChanged

* organization_address: the organization address.

* proposer_release_threshold: the new release threshold.

ChangeOrganizationProposerWhiteList

rpc ChangeOrganizationProposerWhiteList(ProposerWhiteList) returns (google.protobuf.
→˓Empty) { }

message ProposerWhiteList {

(continues on next page)

198 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

repeated aelf.Address proposers = 1;
}

message OrganizationWhiteListChanged{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;
ProposerWhiteList proposer_white_list = 2;

}

This method overrides the list of whitelisted proposers.

• ProposerWhiteList

– proposers: the new value for the proposer whitelist.

• Events

– OrganizationWhiteListChanged

* organization_address: the organization address.

* proposer_white_list: the new proposer whitelist.

CreateProposalBySystemContract

rpc CreateProposalBySystemContract(CreateProposalBySystemContractInput) returns (aelf.
→˓Hash){}

message CreateProposalBySystemContractInput {
acs3.CreateProposalInput proposal_input = 1;
aelf.Address origin_proposer = 2;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

Used by system contracts to create proposals.

• CreateProposalBySystemContractInput

– CreateProposalInput: the parameters of creating a proposal.

– origin proposer: the actor that trigger the call.

note: for CreateProposalInput see CreateProposal

• Returns

– Address: newly created organization address.

• Events

– ProposalCreated

* proposal_id: id of the created proposal.

19.2. Referendum Contract 199

AElf, Release release/1.0.0-preview3

ClearProposal

rpc ClearProposal(aelf.Hash) returns (google.protobuf.Empty){}

Removes the specified proposal.

• Hash: id of the proposal to be cleared.

ValidateOrganizationExist

rpc ValidateOrganizationExist(aelf.Address) returns (google.protobuf.BoolValue) { }

Checks the existence of an organization.

• Address: organization address to be checked.

• Returns

– BoolValue: indicates whether the organization exists.

19.2.3 View methods

GetOrganization

rpc GetOrganization (aelf.Address) returns (Organization) { }

message Organization {
acs3.ProposalReleaseThreshold proposal_release_threshold = 1;
string token_symbol = 2;
aelf.Address organization_address = 3;
aelf.Hash organization_hash = 4;
acs3.ProposerWhiteList proposer_white_list = 5;

}

Returns the organization with the provided organization address.

• Address: organization address.

• Returns

– ProposalReleaseThreshold: the proposal releash threshold.

– token: token used for proposal operations.

– organization address: organization address.

– organization hash: organization id.

– ProposerWhiteList: proposals in whitelist.

note: for ProposalReleaseThreshold and ProposerWhiteList see CreateOrganization

CalculateOrganizationAddress

200 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

rpc CalculateOrganizationAddress(CreateOrganizationInput) returns (aelf.Address){}

message CreateOrganizationInput {
string token_symbol = 1;
acs3.ProposalReleaseThreshold proposal_release_threshold = 2;
acs3.ProposerWhiteList proposer_white_list = 3;

}

Calculates with input and returns the organization address.

note: for CreateOrganizationInput see CreateOrganization

• Returns

– Address: organization address.

GetProposalVirtualAddress

rpc GetProposalVirtualAddress(aelf.Hash) returns (aelf.Address){}

Get virtual address for the proposal.

• Hash: id of the proposal.

• Returns

– Address: the virtual address for proposal.

GetProposal

rpc GetProposal(aelf.Hash) returns (ProposalOutput) { }

message ProposalOutput {
aelf.Hash proposal_id = 1;
string contract_method_name = 2;
aelf.Address to_address = 3;
bytes params = 4;
google.protobuf.Timestamp expired_time = 5;
aelf.Address organization_address = 6;
aelf.Address proposer = 7;
bool to_be_released = 8;
int64 approval_count = 9;
int64 rejection_count = 10;
int64 abstention_count = 11;

}

Gets the proposal with the given id.

• Hash: proposal id.

• Returns

– proposal id: id of the proposal.

– method name: the method that this proposal will call when being released.

– to address: the address of the target contract.

– params: the parameters of the release transaction.

19.2. Referendum Contract 201

AElf, Release release/1.0.0-preview3

– expiration: the date at which this proposal will expire.

– organization address: address of this proposals organization.

– proposer: address of the proposer of this proposal.

– to be release: indicates if this proposal is releasable.

– approval count: locked token amount for approval.

– rejection count: locked token amount for rejection.

– abstention count: locked token amount for abstention.

ValidateProposerInWhiteList

rpc ValidateProposerInWhiteList(ValidateProposerInWhiteListInput) returns (google.
→˓protobuf.BoolValue){}

message ValidateProposerInWhiteListInput {
aelf.Address proposer = 1;
aelf.Address organization_address = 2;

}

Checks if the proposer is whitelisted.

• ValidateProposerInWhiteListInput

– proposer: the address to search/check.

– organization address: address of the organization.

• Returns

– BoolValue: indicates whether the proposer is whitelisted.

19.3 Parliament Contract

19.3.1 Actions

Initialize

rpc Initialize(InitializeInput) returns (google.protobuf.Empty) {}

message InitializeInput{
aelf.Address privileged_proposer = 1;
bool proposer_authority_required = 2;

}

Initialize will set parliament proposer whitelist and create the first parliament organization with specific pro-
poser_authority_required.

• InitializeInput

– privileged proposer: privileged proposer would be the first address in parliament proposer whitelist.

– proposer authority required: the setting indicates if proposals need authority to be created for
first/default parliament organization.

202 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

CreateOrganization

rpc CreateOrganization (CreateOrganizationInput) returns (aelf.Address) { }

message CreateOrganizationInput {
acs3.ProposalReleaseThreshold proposal_release_threshold = 1;
bool proposer_authority_required = 2;
bool parliament_member_proposing_allowed = 3;

}

message OrganizationCreated{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;

}

Creates parliament organization with input data.

• CreateOrganizationInput

– ProposalReleaseThreshold: the threshold for releasing the proposal.

– proposer authority required: setting this to true can allow anyone to create proposals.

– parliament member proposing allowed: setting this to true can allow parliament member to create pro-
posals.

• ProposalReleaseThreshold

– minimal approval threshold: the value to be divided by 10000 for the minimum approval threshold in
fraction.

– maximal rejection threshold: the value to be divided by 10000 for the maximal rejection threshold in
fraction.

– maximal abstention threshold: the value to be divided by 10000 for the maximal abstention threshold
in fraction.

– minimal vote threshold: the value to be divided by 10000 for the minimal vote threshold in fraction.

• Returns

– Address: the address of newly created organization.

• Events

– OrganizationCreated

* organization address: the address of newly created organization.

CreateOrganizationBySystemContract

rpc CreateOrganizationBySystemContract(CreateOrganizationBySystemContractInput)
→˓returns (aelf.Address){}

message CreateOrganizationBySystemContractInput {
CreateOrganizationInput organization_creation_input = 1;
string organization_address_feedback_method = 2;

}

message OrganizationCreated{
option (aelf.is_event) = true;

(continues on next page)

19.3. Parliament Contract 203

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Address organization_address = 1;
}

Creates parliament organization when called by system contract.

• CreateOrganizationBySystemContractInput

– CreateOrganizationInput: the parameters of creating the organization.

– organization address feedback method: organization address callback method which replies the organi-
zation address to caller contract.

note: for CreateOrganizationInput see CreateOrganization

• Returns

– Address: the address of newly created organization.

• Events

– OrganizationCreated

* organization address: the address of newly created organization.

19.3.2 ACS3 specific methods

CreateProposal

rpc CreateProposal (CreateProposalInput) returns (aelf.Hash) { }

message CreateProposalInput {
string contract_method_name = 1;
aelf.Address to_address = 2;
bytes params = 3;
google.protobuf.Timestamp expired_time = 4;
aelf.Address organization_address = 5;
string proposal_description_url = 6,
aelf.Hash token = 7;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

This method creates a proposal for which organization members can vote. When the proposal is released, a transaction
will be sent to the specified contract.

• CreateProposalInput

– contract method name: the name of the method to call after release.

– to address: the address of the contract to call after release.

– expiration: the timestamp at which this proposal will expire.

– organization address: the address of the organization.

– proposal_description_url: the url is used for proposal describing.

204 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– token: the token is for proposal id generation and with this token, proposal id can be calculated before
proposing.

• Returns

– Hash: id of the newly created proposal.

• Events

– ProposalCreated

* proposal_id: id of the created proposal.

Approve

rpc Approve (aelf.Hash) returns (google.protobuf.Empty){}

message ReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string receipt_type = 3;
google.protobuf.Timestamp time = 4;

}

This method is called to approve the specified proposal.

• Hash: id of the proposal.

• Events

– ReceiptCreated

* proposal id: id of the proposal.

* address: send address who votes for approval.

* receipt type: Approve.

* time: timestamp of this method call.

Reject

rpc Reject(aelf.Hash) returns (google.protobuf.Empty){}

message ReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string receipt_type = 3;
google.protobuf.Timestamp time = 4;

}

This method is called to reject the specified proposal.

• Hash: id of the proposal.

• Events

– ReceiptCreated

19.3. Parliament Contract 205

AElf, Release release/1.0.0-preview3

* proposal id: id of the proposal.

* address: send address who votes for reject.

* receipt type: Reject.

* time: timestamp of this method call.

Abstain

rpc Abstain(aelf.Hash) returns (google.protobuf.Empty){}

message ReceiptCreated {
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;
aelf.Address address = 2;
string receipt_type = 3;
google.protobuf.Timestamp time = 4;

}

This method is called to abstain from the specified proposal.

• Hash: id of the proposal.

• Events

– ReceiptCreated

* proposal id: id of the proposal.

* address: send address who votes for abstention.

* receipt type: Abstain.

* time: timestamp of this method call.

Release

rpc Release(aelf.Hash) returns (google.protobuf.Empty){}

This method is called to release the specified proposal.

-Hash: id of the proposal.

• Events

– ProposalReleased

* proposal id: id of the proposal.

ChangeOrganizationThreshold

rpc ChangeOrganizationThreshold(ProposalReleaseThreshold) returns (google.protobuf.
→˓Empty){}

message ProposalReleaseThreshold {
int64 minimal_approval_threshold = 1;
int64 maximal_rejection_threshold = 2;

(continues on next page)

206 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

int64 maximal_abstention_threshold = 3;
int64 minimal_vote_threshold = 4;

}

message OrganizationThresholdChanged{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;
ProposalReleaseThreshold proposer_release_threshold = 2;

}

This method changes the thresholds associated with proposals. All fields will be overwritten by the input value and this
will affect all current proposals of the organization. Note: only the organization can execute this through a proposal.

• ProposalReleaseThreshold

– minimal approval threshold: the new value for the minimum approval threshold.

– maximal rejection threshold: the new value for the maximal rejection threshold.

– maximal abstention threshold: the new value for the maximal abstention threshold.

– minimal vote threshold: the new value for the minimal vote threshold.

• Events

– OrganizationThresholdChanged

* organization_address: the organization address.

* proposer_release_threshold: the new release threshold.

ChangeOrganizationProposerWhiteList

rpc ChangeOrganizationProposerWhiteList(ProposerWhiteList) returns (google.protobuf.
→˓Empty){}

message ProposerWhiteList {
repeated aelf.Address proposers = 1;

}

message OrganizationWhiteListChanged{
option (aelf.is_event) = true;
aelf.Address organization_address = 1;
ProposerWhiteList proposer_white_list = 2;

}

This method overrides the list of whitelisted proposers.

• ProposerWhiteList:

– proposers: the new value for the list.

• Events

– OrganizationWhiteListChanged

* organization_address: the organization address.

* proposer_white_list: the new proposer whitelist.

19.3. Parliament Contract 207

AElf, Release release/1.0.0-preview3

CreateProposalBySystemContract

rpc CreateProposalBySystemContract(CreateProposalBySystemContractInput) returns (aelf.
→˓Hash){}

message CreateProposalBySystemContractInput {
acs3.CreateProposalInput proposal_input = 1;
aelf.Address origin_proposer = 2;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

Used by system contracts to create proposals.

• CreateProposalBySystemContractInput

– CreateProposalInput: the parameters of creating a proposal.

– origin proposer: the actor that trigger the call.

note: for CreateProposalInput see CreateProposal

• Returns

– Address: id of the newly created proposal.

• Events

– ProposalCreated

* proposal_id: id of the created proposal.

ClearProposal

rpc ClearProposal(aelf.Hash) returns (google.protobuf.Empty){}

Removes the specified proposal.

• Hash: id of the proposal to be cleared.

ValidateOrganizationExist

rpc ValidateOrganizationExist(aelf.Address) returns (google.protobuf.BoolValue){}

Checks the existence of an organization.

• Address: organization address to be checked.

• Returns

– BoolValue: indicates whether the organization exists.

208 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

19.3.3 View methods

GetOrganization

rpc GetOrganization (aelf.Address) returns (Organization){}

message Organization {
bool proposer_authority_required = 1;
aelf.Address organization_address = 2;
aelf.Hash organization_hash = 3;
acs3.ProposalReleaseThreshold proposal_release_threshold = 4;
bool parliament_member_proposing_allowed = 5;

}

Returns the organization with the provided organization address.

• Address: organization address.

• Returns

– Organization

* proposer authority required: indicates if proposals need authority to be created.

* organization_address: organization address.

* organization hash: organization id.

* ProposalReleaseThreshold: the threshold.

* parliament member proposing allowed: indicates if parliament member can propose to this organi-
zation.

note: for ProposalReleaseThreshold see CreateOrganization

GetDefaultOrganizationAddress

rpc GetDefaultOrganizationAddress (google.protobuf.Empty) returns (aelf.Address){}

• Returns

– Address: the address of the default organization.

ValidateAddressIsParliamentMember

rpc ValidateAddressIsParliamentMember(aelf.Address) returns (google.protobuf.
→˓BoolValue){}

Validates if the provided address is a parliament member.

• Address: parliament member address to be checked.

• Returns

– BoolValue: indicates whether provided address is one of parliament members.

19.3. Parliament Contract 209

AElf, Release release/1.0.0-preview3

GetProposerWhiteList

rpc GetProposerWhiteList(google.protobuf.Empty) returns (acs3.ProposerWhiteList){}

message ProposerWhiteList {
repeated aelf.Address proposers = 1;

}

Returns a list of whitelisted proposers.

• Returns

– proposers: the whitelisted proposers.

GetNotVotedPendingProposals

rpc GetNotVotedPendingProposals(ProposalIdList) returns (ProposalIdList) { }
message ProposalIdList{

repeated aelf.Hash proposal_ids = 1;
}

Filter still pending ones not yet voted by the sender from provided proposals.

• ProposalIdList

– proposal ids: list of proposal id.

• Returns

– proposal ids: filtered proposal id list from input ones.

GetNotVotedProposals

rpc GetNotVotedProposals(ProposalIdList) returns (ProposalIdList){}
message ProposalIdList{

repeated aelf.Hash proposal_ids = 1;
}

Filter not yet voted ones by the sender from provided proposals.

• ProposalIdList

– proposal ids: list of proposal id.

• Returns

– proposal ids: filtered proposal id list from input ones.

CalculateOrganizationAddress

rpc CalculateOrganizationAddress(CreateOrganizationInput) returns (aelf.Address){}

message CreateOrganizationInput {
acs3.ProposalReleaseThreshold proposal_release_threshold = 1;
bool proposer_authority_required = 2;
bool parliament_member_proposing_allowed = 3;

}

210 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

Calculates with input and returns the organization address.

• CreateOrganizationInput

– ProposalReleaseThreshold: the threshold.

– proposer authority required: setting this to true can allow anyone to create proposals.

– parliament member proposing allowed: setting this to true can allow parliament member to create pro-
posals.

note: for ProposalReleaseThreshold see CreateOrganization

• Returns

– Address: organization address.

GetProposal

rpc GetProposal(aelf.Hash) returns (ProposalOutput){}

message ProposalOutput {
aelf.Hash proposal_id = 1;
string contract_method_name = 2;
aelf.Address to_address = 3;
bytes params = 4;
google.protobuf.Timestamp expired_time = 5;
aelf.Address organization_address = 6;
aelf.Address proposer = 7;
bool to_be_released = 8;
int64 approval_count = 9;
int64 rejection_count = 10;
int64 abstention_count = 11;

}

Get the proposal with the given id.

• Hash: proposal id.

• Returns

– proposal id: id of the proposal.

– method name: the method that this proposal will call when being released.

– to address: the address of the target contract.

– params: the parameters of the release transaction.

– expiration: the date at which this proposal will expire.

– organization address: address of this proposals organization.

– proposer: address of the proposer of this proposal.

– to be release: indicates if this proposal is releasable.

– approval count: approval count for this proposal.

– rejection count: rejection count for this proposal.

– abstention count: abstention count for this proposal.

19.3. Parliament Contract 211

AElf, Release release/1.0.0-preview3

ValidateProposerInWhiteList

rpc ValidateProposerInWhiteList(ValidateProposerInWhiteListInput) returns (google.
→˓protobuf.BoolValue){}

message ValidateProposerInWhiteListInput {
aelf.Address proposer = 1;
aelf.Address organization_address = 2;

}

Checks if the proposer is whitelisted.

• ValidateProposerInWhiteListInput

– proposer: the address to search/check.

– organization address: address of the organization.

• Returns

– BoolValue: indicates whether the proposer is whitelisted.

19.4 Consensus Contract

The Consensus contract is essentially used for managing block producers and synchronizing data.

19.4.1 view methods

For reference, you can find here the available view methods.

GetCurrentMinerList

rpc GetCurrentMinerList (google.protobuf.Empty) returns (MinerList){}

message MinerList {
repeated bytes pubkeys = 1;

}

Gets the list of current miners.

• Returns

– pubkeys: miners’ public keys.

GetCurrentMinerPubkeyList

rpc GetCurrentMinerPubkeyList (google.protobuf.Empty) returns (PubkeyList){}

message PubkeyList {
repeated string pubkeys = 1;

}

Gets the list of current miners, each item a block producer’s public key in hexadecimal format.

212 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

• Returns

– pubkeys: miner’s public key (hexadecimal string).

GetCurrentMinerListWithRoundNumber

rpc GetCurrentMinerListWithRoundNumber (google.protobuf.Empty) returns
→˓(MinerListWithRoundNumber){}

message MinerListWithRoundNumber {
MinerList miner_list = 1;
sint64 round_number = 2;

}

message MinerList {
repeated bytes pubkeys = 1;

}

Gets the list of current miners along with the round number.

• Returns

– miner list: miners list.

– round number: current round number.

• MinerList

– pubkeys: miners’ public keys.

GetRoundInformation

rpc GetRoundInformation (aelf.SInt64Value) returns (Round){}

message SInt64Value
{

sint64 value = 1;
}

message Round {
sint64 round_number = 1;
map<string, MinerInRound> real time miners information = 2;
sint64 main chain miners round number = 3;
sint64 blockchain age = 4;
string extra block producer of previous round = 7;
sint64 term number = 8;
sint64 confirmed irreversible block height = 9;
sint64 confirmed irreversible block round number = 10;
bool is miner list just changed = 11;
sint64 round id for validation = 12;

}

message MinerInRound {
sint32 order = 1;
bool is extra block producer = 2;
aelf.Hash in value = 3;
aelf.Hash out value = 4;

(continues on next page)

19.4. Consensus Contract 213

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Hash signature = 5;
google.protobuf.Timestamp expected mining time = 6;
sint64 produced blocks = 7;
sint64 missed time slots = 8;
string pubkey = 9;
aelf.Hash previous in value = 12;
sint32 supposed order of next round = 13;
sint32 final order of next round = 14;
repeated google.protobuf.Timestamp actual mining times = 15;
map<string, bytes> encrypted pieces = 16;
map<string, bytes> decrypted pieces = 17;
sint32 produced tiny blocks = 18;
sint64 implied irreversible block height = 19;

}

Gets information of the round specified as input.

• SInt64Value

– value: round number.

• Returns

– round number: round number.

– real time miners information: public key => miner information.

– blockchain age: current time minus block chain start time (if the round number is 1, the block chain age
is 1), represented in seconds.

– extra block producer of previous round: the public key (hexadecimal string) of the first miner, who
comes from the last term, in the current term.

– term number: the current term number.

– confirmed irreversible block height: irreversible block height.

– confirmed irreversible block round number: irreversible block round number.

– is miner list just changed: is miner list different from the the miner list in the previous round.

– round id for validation: round id, calculated by summing block producers’ expecting time (second).

• MinerInRound

– order: the order of miners producing block.

– is extra block producer: The miner who is the first miner in the first round of each term.

– in value: the previous miner’s public key.

– out value: the post miner’s public key.

– signature: self signature.

– expected mining time: expected mining time.

– produced blocks: produced blocks.

– missed time slots: missed time slots.

– pubkey: public key string.

– previous in value: previous miner’s public key.

– supposed order of next round: evaluated order in next round.

214 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– final order of next round: the real order in the next round.

– actual mining times: the real mining time.

– encrypted pieces: public key (miners in the current round) => message encrypted by shares information
and public key (represented by hexadecimal string).

– decrypted pieces: the message of miners in the previous round.

– produced tiny blocks: produced tiny blocks.

– implied irreversible block height: miner records a irreversible block height.

GetCurrentRoundNumber

rpc GetCurrentRoundNumber (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Gets the current round number.

• Returns

– value: number of current round.

GetCurrentRoundInformation

Gets the current round’s information.

rpc GetCurrentRoundInformation (google.protobuf.Empty) returns (Round){}

note: for Round see GetRoundInformation

GetPreviousRoundInformation

Gets the previous round information.

rpc GetPreviousRoundInformation (google.protobuf.Empty) returns (Round){}

note: for Round see GetRoundInformation

GetCurrentTermNumber

rpc GetCurrentTermNumber (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Gets the current term number.

• Returns

19.4. Consensus Contract 215

AElf, Release release/1.0.0-preview3

– value: the current term number.

GetCurrentWelfareReward

rpc GetCurrentWelfareReward (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Gets the current welfare reward.

• Returns

– value: the current welfare reward.

GetPreviousMinerList

rpc GetPreviousMinerList (google.protobuf.Empty) returns (MinerList){}

message MinerList {
repeated bytes pubkeys = 1;

}

Gets the miners in the previous term.

• MinerList

– pubkeys: public keys (represented by hexadecimal strings) of miners in the previous term.

GetMinedBlocksOfPreviousTerm

rpc GetMinedBlocksOfPreviousTerm (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Gets the number of mined blocks during the previous term.

• Returns

– value: the number of mined blocks.

GetNextMinerPubkey

rpc GetNextMinerPubkey (google.protobuf.Empty) returns (google.protobuf.StringValue){}

message StringValue {
string value = 1;

}

216 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

Gets the miner who will produce the block next, which means the miner is the first one whose expected mining time
is greater than the current time. If this miner can not be found, the first miner who is extra block producer will be
selected.

• Returns

– value: the miner’s public key.

GetCurrentMinerPubkey

rpc GetCurrentMinerPubkey (google.protobuf.Empty) returns (google.protobuf.
→˓StringValue){}

message StringValue {
string value = 1;

}

Gets the current miner.

• Returns:

– value: miner’s public key.

IsCurrentMiner

rpc IsCurrentMiner (aelf.Address) returns (google.protobuf.BoolValue){
}

message Address
{

bytes value = 1;
}

Query whether the miner is the current miner.

• Address

– value: miner’s address.

• Returns

– value: indicates if the input miner is the current miner.

GetNextElectCountDown

rpc GetNextElectCountDown (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Count down to the next election.

• Returns

– value: total seconds to next election.

19.4. Consensus Contract 217

AElf, Release release/1.0.0-preview3

19.5 Election Contract

The Election contract is essentially used for voting for Block Producers.

19.5.1 Actions

AnnounceElection

rpc AnnounceElection (google.protobuf.Empty) returns (google.protobuf.Empty){}

To be a block producer, a user should first register to be a candidate and lock some token as a deposit. If the data
center is not full, the user will be added in automatically and get one weight (10 weight limited) for sharing bonus in
the future.

QuitElection

rpc QuitElection (google.protobuf.Empty) returns (google.protobuf.Empty){}

A candidate is able to quit the election provided he is not currently elected. If you quit successfully, the candidate will
get his locked tokens back and will not receive anymore bonus.

Vote

rpc Vote (VoteMinerInput) returns (aelf.Hash){}

message VoteMinerInput {
string candidate_pubkey = 1;
sint64 amount = 2;
google.protobuf.Timestamp end_timestamp = 3;

}

message Hash
{

bytes value = 1;
}

Used for voting for a candidate to be elected. The tokens you vote with will be locked until the end time. According to
the number of token you voted and its lock time, you can get corresponding weight for sharing the bonus in the future.

• VoteMinerInput

– candidate pubkey: candidate public key.

– amount: amount token to vote.

– end timestamp: before which, your vote works.

• Returns

– value: vote id.

218 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

ChangeVotingOption

rpc ChangeVotingOption (ChangeVotingOptionInput) returns google.protobuf.Empty){}

message ChangeVotingOptionInput {
aelf.Hash vote_id = 1;
string candidate_pubkey = 2;

}

Before the end time, you are able to change your vote target to other candidates.

• ChangeVotingOptionInput

– voting vote id: transaction id.

– candidate pubkey: new candidate public key.

Withdraw

rpc Withdraw (aelf.Hash) returns (google.protobuf.Empty){}

message Hash
{

bytes value = 1;
}

After the lock time, your locked tokens will be unlocked and you can withdraw them.

• Hash

– value: transaction id.

SetVoteWeightProportion

rpc SetVoteWeightProportion (VoteWeightProportion) returns (google.protobuf.Empty){
}

message VoteWeightProportion {
int32 time_proportion = 1;
int32 amount_proportion = 2;

}

Vote weight calcualtion takes in consideration the amount you vote and the lock time your vote.

• VoteWeightProportion

– time proportion: time’s weight.

– amount proportion: amount’s weight.

19.5.2 View methods

For reference, you can find here the available view methods.

19.5. Election Contract 219

AElf, Release release/1.0.0-preview3

GetCandidates

rpc GetCandidates (google.protobuf.Empty) returns (PubkeyList){
}

message PubkeyList {
repeated bytes value = 1;

}

Gets all candidates’ public keys.

• Returns

– value public key array of candidates

GetVotedCandidates

rpc GetVotedCandidates (google.protobuf.Empty) returns (PubkeyList){
}

message PubkeyList {
repeated bytes value = 1;

}

Gets all candidates whose number of votes is greater than 0.

• Returns

– value public key array of candidates.

GetCandidateInformation

rpc GetCandidateInformation (google.protobuf.StringValue) returns
→˓(CandidateInformation){}

message StringValue {
string value = 1;

}

message CandidateInformation {
string pubkey = 1;
repeated sint64 terms = 2;
sint64 produced_blocks = 3;
sint64 missed_time_slots = 4;
sint64 continual_appointment_count = 5;
aelf.Hash announcement_transaction_id = 6;
bool is_current_candidate = 7;

}

Gets a candidate’s information. If the candidate does not exist, it will return a candidate without any information.

• StringValue

– value: public key (hexadecimal string) of the candidate.

• Returns

– pubkey: public key (represented by an hexadecimal string).

220 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– terms: indicates in which terms the candidate participated.

– produced blocks: the number of blocks the candidate has produced.

– missed time slots: the time slot for which the candidate failed to produce blocks.

– continual appointment count: the time the candidate continue to participate in the election.

– announcement transaction id: the transaction id that the candidate announce.

– is current candidate: indicate whether the candidate can be elected in the current term.

GetVictories

rpc GetVictories (google.protobuf.Empty) returns (PubkeyList){}

message PubkeyList {
repeated bytes value = 1;

}

Gets the victories of the latest term.

• Returns

– value the array of public key who has been elected as block producers.

GetTermSnapshot

rpc GetTermSnapshot (GetTermSnapshotInput) returns (TermSnapshot){}

message GetTermSnapshotInput {
sint64 term_number = 1;

}

message TermSnapshot {
sint64 end_round_number = 1;
sint64 mined_blocks = 2;
map<string, sint64> election_result = 3;

}

Gets the snapshot of the term provided as input.

• GetTermSnapshotInput

– term number: term number.

• Returns

– end round number: the last term id be saved.

– mined blocks: number of blocks produced in previous term.

– election result: candidate => votes.

GetMinersCount

19.5. Election Contract 221

AElf, Release release/1.0.0-preview3

rpc GetMinersCount (google.protobuf.Empty) returns (aelf.SInt32Value){}

message SInt32Value
{

sint32 value = 1;
}

Count miners.

• Returns

– value: the total number of block producers.

GetElectionResult

rpc GetElectionResult (GetElectionResultInput) returns (ElectionResult){}

message GetElectionResultInput {
sint64 term_number = 1;

}

message ElectionResult {
sint64 term_number = 1;
map<string, sint64> results = 2;
bool is_active = 3;

}

Gets an election result by term id.

• GetElectionResultInput

– term number: term id.

• Returns:

– term number: term id.

– results: candidate => votes.

– is active: indicates that if the term number you input is the current term.

GetElectorVote

rpc GetElectorVote (google.protobuf.StringValue) returns (ElectorVote){}

message StringValue {
string value = 1;

}

message ElectorVote {
repeated aelf.Hash active_voting_record_ids = 1;// Not withdrawn.
repeated aelf.Hash withdrawn_voting_record_ids = 2;
sint64 active_voted_votes_amount = 3;
sint64 all_voted_votes_amount = 4;
repeated ElectionVotingRecord active_voting_records = 5;
repeated ElectionVotingRecord withdrawn_votes_records = 6;
bytes pubkey = 7;

}

222 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

Gets the voter’s information.

• StringValue

– value: the public key (hexadecimal string) of voter.

• Returns

– active voting record ids: transaction ids, in which transactions you voted.

– withdrawn voting record ids: transaction ids.

– active voted votes amount: the number(excluding the withdrawn) of token you vote.

– all voted votes amount: the number of token you have voted.

– active voting records: no records in this api.

– withdrawn votes records: no records in this api.

– pubkey: voter public key (byte string).

GetElectorVoteWithRecords

rpc GetElectorVoteWithRecords (google.protobuf.StringValue) returns (ElectorVote){}

message StringValue {
string value = 1;

}

message ElectorVote {
repeated aelf.Hash active_voting_record_ids = 1;// Not withdrawn.
repeated aelf.Hash withdrawn_voting_record_ids = 2;
sint64 active_voted_votes_amount = 3;
sint64 all_voted_votes_amount = 4;
repeated ElectionVotingRecord active_voting_records = 5;
repeated ElectionVotingRecord withdrawn_votes_records = 6;
bytes pubkey = 7;

}

message ElectionVotingRecord {
aelf.Address voter = 1;
string candidate = 2;
sint64 amount = 3;
sint64 term_number = 4;
aelf.Hash vote_id = 5;
sint64 lock_time = 7;
google.protobuf.Timestamp unlock_timestamp = 10;
google.protobuf.Timestamp withdraw_timestamp = 11;
google.protobuf.Timestamp vote_timestamp = 12;
bool is_withdrawn = 13;
sint64 weight = 14;
bool is_change_target = 15;

}

Gets the information about a voter including the votes (excluding withdrawal information).

• StringValue

– value: the public key (hexadecimal string) of the voter.

• Returns

19.5. Election Contract 223

AElf, Release release/1.0.0-preview3

– active voting record ids: transaction ids, in which transactions you vote.

– withdrawn voting record ids: transaction ids.

– active voted votes amount: the number(excluding the withdrawn) of token you vote.

– all voted votes amount: the number of token you have voted.

– active voting records: records of the vote transaction with detail information.

– withdrawn votes records: no records in this api.

– pubkey: voter public key (byte string).

• ElectionVotingRecord

– voter: voter address.

– candidate: public key.

– amount: vote amount.

– term number: snapshot number.

– vote id: transaction id.

– lock time: time left to unlock token.

– unlock timestamp: unlock date.

– withdraw timestamp: withdraw date.

– vote timestamp: vote date.

– is withdrawn: indicates if the vote has been withdrawn.

– weight: vote weight for sharing bonus.

– is change target: whether vote others.

GetElectorVoteWithAllRecords

rpc GetElectorVoteWithAllRecords (google.protobuf.StringValue) returns (ElectorVote){}

message StringValue {
string value = 1;

}

message ElectorVote {
repeated aelf.Hash active_voting_record_ids = 1;// Not withdrawn.
repeated aelf.Hash withdrawn_voting_record_ids = 2;
sint64 active_voted_votes_amount = 3;
sint64 all_voted_votes_amount = 4;
repeated ElectionVotingRecord active_voting_records = 5;
repeated ElectionVotingRecord withdrawn_votes_records = 6;
bytes pubkey = 7;

}

message ElectionVotingRecord {
aelf.Address voter = 1;
string candidate = 2;
sint64 amount = 3;

(continues on next page)

224 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

sint64 term_number = 4;
aelf.Hash vote_id = 5;
sint64 lock_time = 7;
google.protobuf.Timestamp unlock_timestamp = 10;
google.protobuf.Timestamp withdraw_timestamp = 11;
google.protobuf.Timestamp vote_timestamp = 12;
bool is_withdrawn = 13;
sint64 weight = 14;
bool is_change_target = 15;

}

Gets the information about a voter including the votes and withdrawal information.

• StringValue

– value: the public key (hexadecimal string) of voter.

• Returns

– active voting record ids: transaction ids, in which transactions you vote.

– withdrawn voting record ids: transaction ids.

– active voted votes amount: the number(excluding the withdrawn) of token you vote.

– all voted votes amount: the number of token you have voted.

– active voting records: records of transactions that are active.

– withdrawn votes records: records of transactions in which withdraw is true.

– pubkey: voter public key (byte string).

• ElectionVotingRecord

– voter: voter address.

– candidate: public key.

– amount: vote amount.

– term number: snapshot number.

– vote id: transaction id.

– lock time: time left to unlock token.

– unlock timestamp: unlock date.

– withdraw timestamp: withdraw date.

– vote timestamp: vote date.

– is withdrawn: indicates if the vote has been withdrawn.

– weight: vote weight for sharing bonus.

– is change target: whether vote others.

GetCandidateVote

19.5. Election Contract 225

AElf, Release release/1.0.0-preview3

rpc GetCandidateVote (google.protobuf.StringValue) returns (CandidateVote){}

message StringValue {
string value = 1;

}

message CandidateVote {
repeated aelf.Hash obtained_active_voting_record_ids = 1;
repeated aelf.Hash obtained_withdrawn_voting_record_ids = 2;
sint64 obtained_active_voted_votes_amount = 3;
sint64 all_obtained_voted_votes_amount = 4;
repeated ElectionVotingRecord obtained_active_voting_records = 5;
repeated ElectionVotingRecord obtained_withdrawn_votes_records = 6;
bytes pubkey = 7;

}

Gets statistical information about vote transactions of a candidate.

• StringValue

– value: public key of the candidate.

• Returns

– obtained active voting record ids: vote transaction ids.

– obtained withdrawn voting record ids: withdrawn transaction ids.

– obtained active voted votes amount: the valid number of vote token in current.

– all obtained voted votes amount: total number of vote token the candidate has got.

– obtained active voting records: no records in this api.

– obtained withdrawn votes records: no records in this api.

GetCandidateVoteWithRecords

rpc GetCandidateVoteWithRecords (google.protobuf.StringValue) returns (CandidateVote)
→˓{}

message StringValue {
string value = 1;

}

message CandidateVote {
repeated aelf.Hash obtained_active_voting_record_ids = 1;
repeated aelf.Hash obtained_withdrawn_voting_record_ids = 2;
sint64 obtained_active_voted_votes_amount = 3;
sint64 all_obtained_voted_votes_amount = 4;
repeated ElectionVotingRecord obtained_active_voting_records = 5;
repeated ElectionVotingRecord obtained_withdrawn_votes_records = 6;
bytes pubkey = 7;

}
message ElectionVotingRecord {

aelf.Address voter = 1;
string candidate = 2;
sint64 amount = 3;
sint64 term_number = 4;

(continues on next page)

226 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Hash vote_id = 5;
sint64 lock_time = 7;
google.protobuf.Timestamp unlock_timestamp = 10;
google.protobuf.Timestamp withdraw_timestamp = 11;
google.protobuf.Timestamp vote_timestamp = 12;
bool is_withdrawn = 13;
sint64 weight = 14;
bool is_change_target = 15;

}

Gets statistical information about vote transactions of a candidate with the detailed information of the transactions that
are not withdrawn.

• StringValue

– value: public key of the candidate.

• Returns

– obtained active voting record ids: vote transaction ids.

– obtained withdrawn voting record ids: withdraw transaction ids.

– obtained active voted votes amount: the valid number of vote token in current.

– all obtained voted votes amount: total number of vote token the candidate has got.

– obtained active voting records: the records of the transaction without withdrawing.

– obtained withdrawn votes records: no records in this api.

• ElectionVotingRecord

– voter voter address.

– candidate public key.

– amount vote amount.

– term number snapshot number.

– vote id transaction id.

– lock time time left to unlock token.

– unlock timestamp unlock date.

– withdraw timestamp withdraw date.

– vote timestamp vote date.

– is withdrawn indicates whether the vote has been withdrawn.

– weight vote weight for sharing bonus.

– is change target whether vote others.

GetCandidateVoteWithAllRecords

rpc GetCandidateVoteWithAllRecords (google.protobuf.StringValue) returns
→˓(CandidateVote){}

message StringValue {

(continues on next page)

19.5. Election Contract 227

AElf, Release release/1.0.0-preview3

(continued from previous page)

string value = 1;
}

message CandidateVote {
repeated aelf.Hash obtained_active_voting_record_ids = 1;
repeated aelf.Hash obtained_withdrawn_voting_record_ids = 2;
sint64 obtained_active_voted_votes_amount = 3;
sint64 all_obtained_voted_votes_amount = 4;
repeated ElectionVotingRecord obtained_active_voting_records = 5;
repeated ElectionVotingRecord obtained_withdrawn_votes_records = 6;
bytes pubkey = 7;

}

message ElectionVotingRecord {
aelf.Address voter = 1;
string candidate = 2;
sint64 amount = 3;
sint64 term_number = 4;
aelf.Hash vote_id = 5;
sint64 lock_time = 7;
google.protobuf.Timestamp unlock_timestamp = 10;
google.protobuf.Timestamp withdraw_timestamp = 11;
google.protobuf.Timestamp vote_timestamp = 12;
bool is_withdrawn = 13;
sint64 weight = 14;
bool is_change_target = 15;

}

Gets statistical information about vote transactions of a candidate with the detailed information of all the transactions.

• StringValue

– value: public key of the candidate.

• Returns

– obtained active voting record ids: vote transaction ids.

– obtained withdrawn voting record ids: withdrawn transaction ids.

– obtained active voted votes amount: the valid number of vote token in current.

– all obtained voted votes amount: total number of vote token the candidate has got.

– obtained active voting records: the records of the transaction without withdrawing.

– obtained withdrawn votes records: the records of the transaction withdrawing the vote token.

• ElectionVotingRecord

– voter: voter address.

– candidate: public key.

– amount: vote amount.

– term number: snapshot number.

– vote id: transaction id.

– lock time: time left to unlock token.

– unlock timestamp: unlock date.

228 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– withdraw timestamp: withdraw date.

– vote timestamp: vote date.

– is withdrawn: indicates whether the vote has been withdrawn.

– weight: vote weight for sharing bonus.

– is change target: whether vote others.

GetVotersCount

rpc GetVotersCount (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Gets the total number of voters.

• Returns

– value: number of voters.

GetVotesAmount

rpc GetVotesAmount (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Gets the total number of vote token (not counting those that have been withdrawn).

• Returns

– value: number of vote token.

GetCurrentMiningReward

rpc GetCurrentMiningReward (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Gets the current block reward (produced block Number times reward unit).

• Returns

– value: number of ELF that rewards miner for producing blocks.

19.5. Election Contract 229

AElf, Release release/1.0.0-preview3

GetPageableCandidateInformation

rpc GetPageableCandidateInformation (PageInformation) returns
→˓(GetPageableCandidateInformationOutput){}

message PageInformation {
sint32 start = 1;
sint32 length = 2;

}

message GetPageableCandidateInformationOutput {
repeated CandidateDetail value = 1;

}

message CandidateDetail {
CandidateInformation candidate_information = 1;
sint64 obtained_votes_amount = 2;

}

message CandidateInformation {
string pubkey = 1;
repeated sint64 terms = 2;
sint64 produced_blocks = 3;
sint64 missed_time_slots = 4;
sint64 continual_appointment_count = 5;
aelf.Hash announcement_transaction_id = 6;
bool is_current_candidate = 7;

}

Gets candidates’ information according to the page’s index and records length.

• PageInformation

– start: start index.

– length: number of records.

• Returns

– CandidateDetail: candidates’ detailed information.

• CandidateDetail

– candidate information: candidate information.

– obtained votes amount: obtained votes amount.

• CandidateInformation

– pubkey: public key (hexadecimal string).

– terms: indicate which terms have the candidate participated.

– produced blocks: the number of blocks the candidate has produced.

– missed time slots: the time the candidate failed to produce blocks.

– continual appointment count: the time the candidate continue to participate in the election.

– announcement transaction id: the transaction id that the candidate announce.

– is current candidate: indicate whether the candidate can be elected in the current term.

230 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetMinerElectionVotingItemId

rpc GetMinerElectionVotingItemId (google.protobuf.Empty) returns (aelf.Hash){}

message Hash
{

bytes value = 1;
}

Gets the voting activity id.

• Returns

– value: voting item id.

GetDataCenterRankingList

rpc GetDataCenterRankingList (google.protobuf.Empty) returns (DataCenterRankingList){}

message DataCenterRankingList {
map<string, sint64> data_centers = 1;
sint64 minimum_votes = 2;

}

Gets the data center ranking list.

• Returns

– data centers: the top n * 5 candidates with vote amount.

– minimum votes: not be used.

GetVoteWeightProportion

rpc GetVoteWeightProportion (google.protobuf.Empty) returns (VoteWeightProportion){}

message VoteWeightProportion {
int32 time_proportion = 1;
int32 amount_proportion = 2;

}

Gets VoteWeight Proportion.

note: for VoteWeightProportion see SetVoteWeightProportion

GetCalculateVoteWeight

rpc GetCalculateVoteWeight (VoteInformation) returns (google.protobuf.Int64Value){}

message VoteInformation{
int64 amount = 1;
int64 lock_time = 2;

}

Calculate the concrete vote weight according to your input.

19.5. Election Contract 231

AElf, Release release/1.0.0-preview3

• VoteInformation

– amount: the vote amount.

– lock time: the lock time your vote.

• Returns

– value: vote weight calculated with your input and our function.

19.6 Genesis Contract

This page describes available methods on the Genesis Contract.

19.6.1 Actions

DeploySystemSmartContract

rpc DeploySystemSmartContract (SystemContractDeploymentInput) returns (aelf.Address){}

message SystemContractDeploymentInput
{

message SystemTransactionMethodCall
{

string method_name = 1;
bytes params = 2;

}
message SystemTransactionMethodCallList
{

repeated SystemTransactionMethodCall value = 1;
}
sint32 category = 1;
bytes code = 2;
aelf.Hash name = 3;
SystemTransactionMethodCallList transaction_method_call_list = 4;

}

Deploys a system smart contract on chain.

• SystemContractDeploymentInput

– category: contract type.

– code: byte array of system contract code.

– name: name hash of system contract.

– transaction_method_call_list: list of methods called by system transaction.

• Returns

– value: address of the deployed contract.

ProposeNewContract

232 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

rpc ProposeNewContract (ContractDeploymentInput) returns (aelf.Hash){}

message ContractDeploymentInput {
sint32 category = 1;
bytes code = 2;

}

Propose new contract deployment.

• ContractDeploymentInput

– category: contract type (usually 0 for now)

– code: byte array that represents the contract code

• Returns

– value:: Hash of the ContractDeploymentInput object.

ProposeUpdateContract

rpc ProposeUpdateContract (ContractUpdateInput) returns (aelf.Hash){}

message ContractUpdateInput {
aelf.Address address = 1;
bytes code = 2;

}

Creates a proposal to update the specified contract.

• ContractUpdateInput

– address: address of the contract to be updated

– code: byte array of the contract’s new code

• Returns

– value: Hash of the ContractUpdateInput object.

ProposeContractCodeCheck

rpc ProposeContractCodeCheck (ContractCodeCheckInput) returns (aelf.Hash) {}

message ContractCodeCheckInput{
bytes contract_input = 1;
bool is_contract_deployment = 2;
string code_check_release_method = 3;
aelf.Hash proposed_contract_input_hash = 4;
sint32 category = 5;

}

Propose to check the code of a contract.

• ContractCodeCheckInput

– contract_input: byte array of the contract code to be checked

– is_contract_deployment: whether the input contract is to be deployed or updated

19.6. Genesis Contract 233

AElf, Release release/1.0.0-preview3

– code_check_release_method: method to call after code check complete (DeploySmartContract or Up-
dateSmartContract)

– proposed_contract_input_hash: id of the proposed contract

– category: contract category (always 0 for now)

• Returns

– value: Hash of the proposed contract.

ReleaseApprovedContract

rpc ReleaseApprovedContract (ReleaseContractInput) returns (google.protobuf.Empty){}

message ReleaseContractInput {
aelf.Hash proposal_id = 1;
aelf.Hash proposed_contract_input_hash = 2;

}

Releases a contract proposal which has been approved.

• ReleaseContractInput

– proposal_id: hash of the proposal.

– proposed_contract_input_hash: id of the proposed contract

ReleaseCodeCheckedContract

rpc ReleaseCodeCheckedContract (ReleaseContractInput) returns (google.protobuf.Empty)
→˓{}

message ReleaseContractInput {
aelf.Hash proposal_id = 1;
aelf.Hash proposed_contract_input_hash = 2;

}

Release the proposal which has passed the code check.

• ReleaseContractInput

– proposal_id: hash of the proposal

– proposed_contract_input_hash: id of the proposed contract

DeploySmartContract

rpc DeploySmartContract (ContractDeploymentInput) returns (aelf.Address){}

message ContractDeploymentInput {
sint32 category = 1;
bytes code = 2;

}

Deploys a smart contract on chain.

• ContractDeploymentInput

234 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– category: contract type (usually 0)

– code: byte array of the contract code

• Returns

– value: address of the deployed smart contract.

UpdateSmartContract

rpc UpdateSmartContract (ContractUpdateInput) returns (aelf.Address){}

message ContractUpdateInput {
aelf.Address address = 1;
bytes code = 2;

}

Updates a smart contract on chain.

• ContractUpdateInput

– address: address of the smart contract to be updated

– code: byte array of the updated contract code

• Returns

– value: address of the updated smart contract.

Initialize

rpc Initialize (InitializeInput) returns (google.protobuf.Empty){}

message InitializeInput{
bool contract_deployment_authority_required = 1;

}

Initializes the genesis contract.

• InitializeInput

– contract_deployment_authority_required: whether contract deployment/update requires authority.

ChangeGenesisOwner

rpc ChangeGenesisOwner (aelf.Address) returns (google.protobuf.Empty){}

Change the owner of the genesis contract.

• Address: address of new genesis owner

SetContractProposerRequiredState

rpc SetContractProposerRequiredState (google.protobuf.BoolValue) returns (google.
→˓protobuf.Empty){}

Set authority of contract deployment.

19.6. Genesis Contract 235

AElf, Release release/1.0.0-preview3

• google.protobuf.BoolValue: whether contract deployment/update requires contract proposer authority

ChangeContractDeploymentController

rpc ChangeContractDeploymentController (acs1.AuthorityInfo) returns (google.protobuf.
→˓Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Modify the contract deployment controller authority. Note: Only old controller has permission to do this.

• AuthorityInfo: new controller authority info containing organization address and contract address that the
organization belongings to

ChangeCodeCheckController

rpc ChangeCodeCheckController (acs1.AuthorityInfo) returns (google.protobuf.Empty) {}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Modifies the contract code check controller authority. Note: Only old controller has permission to do this.

• AuthorityInfo: new controller authority info containing organization address and contract address that the
organization belongings to

SetInitialControllerAddress

rpc SetInitialControllerAddress (aelf.Address) returns (google.protobuf.Empty) {}

Sets initial controller address for CodeCheckController and ContractDeploymentController

• Address: initial controller (which should be parliament organization as default)

GetContractDeploymentController

rpc GetContractDeploymentController (google.protobuf.Empty) returns (acs1.
→˓AuthorityInfo) {

option (aelf.is_view) = true;
}
message AuthorityInfo {

aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Returns ContractDeploymentController authority info.

• Returns: ContractDeploymentController authority info.

236 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetCodeCheckController

rpc GetCodeCheckController (google.protobuf.Empty) returns (acs1.AuthorityInfo) {
option (aelf.is_view) = true;

}
message AuthorityInfo {

aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Returns CodeCheckController authority info.

• Returns: CodeCheckController authority info.

19.6.2 Views methods

CurrentContractSerialNumber

rpc CurrentContractSerialNumber (google.protobuf.Empty) returns (google.protobuf.
→˓UInt64Value){}

Gets the current serial number of genesis contract (corresponds to the serial number that will be given to the next
deployed contract).

• Returns

– value: serial number of the genesis contract.

GetContractInfo

rpc GetContractInfo (aelf.Address) returns (ContractInfo){}

message ContractInfo {
uint64 serial_number = 1;
aelf.Address author = 2;
int32 category = 3;
aelf.Hash code_hash = 4;
bool is_system_contract = 5;
int32 version = 6;

}

Gets detailed information about the specified contract.

• Address: address the contract

Returns A ContractInfo object that represents detailed information about the specified contract.

GetContractAuthor

rpc GetContractAuthor (aelf.Address) returns (aelf.Address){}

Get author of the specified contract.

• Address: address of specified contract

19.6. Genesis Contract 237

AElf, Release release/1.0.0-preview3

• Returns

– value: author of the specified contract.

GetContractHash

rpc GetContractHash (aelf.Address) returns (aelf.Hash){}

Gets the code hash of the contract at the specified address.

• Address: address of a contract

• Returns

– value: the code hash of the contract.

GetContractAddressByName

rpc GetContractAddressByName (aelf.Hash) returns (aelf.Address){}

Gets the address of a system contract by its name.

• Hash: name hash of the contract

• Returns

– value: Address of the specified contract.

GetSmartContractRegistrationByAddress

rpc GetSmartContractRegistrationByAddress (aelf.Address) returns (aelf.
→˓SmartContractRegistration){}

message SmartContractRegistration {
int32 category = 1;
bytes code = 2;
Hash code_hash = 3;
bool is_system_contract = 4;
int32 version = 5;

}

Gets the registration of a smart contract by its address.

• Address - address of a smart contract

• Returns

– value: Registration object of the smart contract.

GetSmartContractRegistrationByCodeHash

rpc GetSmartContractRegistrationByCodeHash (aelf.Hash) returns (aelf.
→˓SmartContractRegistration){}

message SmartContractRegistration {

(continues on next page)

238 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

int32 category = 1;
bytes code = 2;
Hash code_hash = 3;
bool is_system_contract = 4;
int32 version = 5;

}

Gets the registration of a smart contract by code hash.

• Hash - contract code hash

• Returns

– value: registration object of the smart contract.

ValidateSystemContractAddress

rpc ValidateSystemContractAddress(ValidateSystemContractAddressInput) returns (google.
→˓protobuf.Empty){}

message ValidateSystemContractAddressInput {
aelf.Hash system_contract_hash_name = 1;
aelf.Address address = 2;

}

Validates whether the input system contract exists.

• ValidateSystemContractAddressInput

– Hash - name hash of the contract

– Address - address of the contract

19.7 multi-token

The multi-token contract is most essentially used for managing balances.

19.7.1 Token life-cycle: creation, issuance and transfer

These methods constitute the basic functionality needed to maintain balances for tokens. For a full listing of the
contracts methods you can check the Token Contract definition on GitHub.

Create

rpc Create (CreateInput) returns (google.protobuf.Empty){}

message CreateInput {
string symbol = 1;
string token_name = 2;
sint64 total_supply = 3;
sint32 decimals = 4;
aelf.Address issuer = 5;

(continues on next page)

19.7. multi-token 239

https://github.com/AElfProject/AElf/blob/master/protobuf/token_contract.proto

AElf, Release release/1.0.0-preview3

(continued from previous page)

bool is_burnable = 6;
repeated aelf.Address lock_white_list = 7;
bool is_profitable = 8;
int32 issue_chain_id = 9;

}

The token contract permits the creation of an entirely new token and the first action needed before using a token is its
creation.

• CreateInput

– issuer: the creator of this token.

– symbol: a short string between 1 and 8 characters composed only of upper-case letters like for example
“ELF” or “AETC” (no numbers allowed). Of course, since tokens are uniquely identified by the symbol,
it must not already exist.

– token_name: a more descriptive name for your token or the long name. For example, “RMB” could be
the token symbol and “RenMinBi” the token’s name. This is a non-optional field up to 80 characters in
length.

– total_supply: the amount of tokens that will exist. This must be larger than 0.

– decimals: a positive integer between 0-18.

– issue_chain_id: the id of the chain, this defaults to the chain id of the node.

Issue

rpc Issue (IssueInput) returns (google.protobuf.Empty){}

message IssueInput {
string symbol = 1;
sint64 amount = 2;
string memo = 3;
aelf.Address to = 4;

}

Issuing some amount of tokens to an address is the action of increasing that addresses balance for the given token. The
total amount of issued tokens must not exceed the total supply of the token and only the issuer (creator) of the token
can issue tokens. Issuing tokens effectively increases the circulating supply.

• IssueInput

– symbol: the symbol that identifies the token, it must exist.

– amount: the amount to issue.

– to: the receiver address of the newly issued tokens.

– memo: optionally you can specify a later accessible when parsing the transaction.

Transfer

rpc Transfer (TransferInput) returns (google.protobuf.Empty){}

message TransferInput {

(continues on next page)

240 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Address to = 1;
string symbol = 2;
sint64 amount = 3;
string memo = 4;

}

Transferring tokens simply is the action of transferring a given amount of tokens from one address to another. The
origin or source address is the signer of the transaction. The balance of the sender must be higher than the amount that
is transferred.

• TransferInput

– to: the receiver of the tokens.

– symbol: the symbol that identifies the token, it must exist.

– amount: the amount to to transfer.

– memo: optionally you can specify a later accessible when parsing the transaction.

TransferFrom

rpc TransferFrom (TransferFromInput) returns (google.protobuf.Empty){}

message TransferFromInput {
aelf.Address from = 1;
aelf.Address to = 2;
string symbol = 3;
sint64 amount = 4;
string memo = 5;

}

The TransferFrom action will transfer a specified amount of tokens from one address to another. For this operation
to succeed the from address needs to have approved (see allowances) enough tokens to Sender of this transaction. If
successful the amount will be removed from the allowance.

• TransferFromInput

– from: the source address of the tokens.

– to: the destination address of the tokens.

– symbol: the symbol of the token to transfer.

– amount: the amount to transfer.

– memo: an optional memo.

19.7.2 Allowances

Allowances allow some entity (in fact an address) to authorize another address to transfer tokens on his behalf (see
TransferFrom). There are two methods available for controlling this, namely Approve and UnApprove.

19.7. multi-token 241

AElf, Release release/1.0.0-preview3

Approve

rpc Approve (ApproveInput) returns (google.protobuf.Empty){}

message ApproveInput {
aelf.Address spender = 1;
string symbol = 2;
sint64 amount = 3;

}

The approve action increases the allowance from the Sender to the Spender address, enabling the Spender to call
TransferFrom.

• ApproveInput

– spender: the address that will have it’s allowance increased.

– symbol: the symbol of the token to approve.

– amount: the amount of tokens to approve.

UnApprove

rpc UnApprove (UnApproveInput) returns (google.protobuf.Empty){}

message UnApproveInput {
aelf.Address spender = 1;
string symbol = 2;
sint64 amount = 3;

}

This is the reverse operation for Approve, it will decrease the allowance.

• UnApproveInput

– spender: the address that will have it’s allowance decreased.

– symbol: the symbol of the token to un-approve.

– amount: the amount of tokens to un-approve.

19.7.3 Locking

Lock

rpc Lock (LockInput) returns (google.protobuf.Empty){}

message LockInput {
aelf.Address address = 1;
aelf.Hash lock_id = 2;
string symbol = 3;
string usage = 4;
int64 amount = 5;

}

This method can be used to lock tokens.

• LockInput

242 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– address: the entity that wants to lock its tokens.

– lock_id: id of the lock.

– symbol: the symbol of the token to lock.

– usage: a memo.

– amount: the amount of tokens to lock.

Unlock

rpc Unlock (UnlockInput) returns (google.protobuf.Empty){}

message UnlockInput {
aelf.Address address = 1; // The one want to lock his token.
aelf.Hash lock_id = 2;
string symbol = 3;
string usage = 4;
int64 amount = 5;

}

This is the reverse operation of locking, it un-locks some previously locked tokens.

• UnlockInput

– address: the entity that wants to un-lock its tokens.

– lock_id: id of the lock.

– symbol: the symbol of the token to un-lock.

– usage: a memo.

– amount: the amount of tokens to un-lock.

19.7.4 Burning tokens

Burn

rpc Burn (BurnInput) returns (google.protobuf.Empty) { }

message BurnInput {
string symbol = 1;
sint64 amount = 2;

}

This action will burn the specified amount of tokens, removing them from the token’s Supply

• BurnInput

– symbol: the symbol of the token to burn.

– amount: the amount of tokens to burn.

19.7. multi-token 243

AElf, Release release/1.0.0-preview3

19.7.5 Cross-chain

CrossChainCreateToken

rpc CrossChainCreateToken(CrossChainCreateTokenInput) returns (google.protobuf.Empty)
→˓{}

message CrossChainCreateTokenInput {
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

}

This action is used for creating a “cross-chain” token. This action should be called on the side-chain’s with the
information about the transaction that created the token on the parent chain.

• CrossChainCreateTokenInput

– from_chain_id: the chain id of the chain on which the token was created.

– parent_chain_height: the height of the transaction that created the token.

– transaction_bytes: the transaction that created the token.

– merkle_path: the merkle path created from the transaction that created the transaction.

CrossChainTransfer

rpc CrossChainTransfer (CrossChainTransferInput) returns (google.protobuf.Empty){}

message CrossChainTransferInput {
aelf.Address to = 1;
string symbol = 2;
sint64 amount = 3;
string memo = 4;
int32 to_chain_id = 5;
int32 issue_chain_id = 6;

}

This action is used for transferring tokens across chains, this effectively burn the tokens on the chain.

• CrossChainTransferInput

– to: the receiving account.

– symbol: the token.

– amount: the amount of tokens that will be transferred.

– memo: an optional memo.

– to_chain_id: the destination chain id.

– issue_chain_id: the source chain id.

244 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

CrossChainReceiveToken

rpc CrossChainReceiveToken (CrossChainReceiveTokenInput) returns (google.protobuf.
→˓Empty){}

message CrossChainReceiveTokenInput {
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transfer_transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

}

This method is used on the destination chain for receiving tokens after a Transfer operation.

• CrossChainReceiveTokenInput

– from_chain_id the source chain.

– parent_chain_height the height of the transfer transaction.

– transfer_transaction_bytes the raw bytes of the transfer transaction.

– merkle_path the merkle path created from the transfer transaction.

SetSymbolsToPayTxSizeFee

rpc SetSymbolsToPayTxSizeFee (SymbolListToPayTxSizeFee) returns (google.protobuf.
→˓Empty){}

message SymbolListToPayTxSizeFee{
repeated SymbolToPayTxSizeFee symbols_to_pay_tx_size_fee = 1;

}

message SymbolToPayTxSizeFee{
string token_symbol = 1;
sint32 base_token_weight = 2;
sint32 added_token_weight = 3;

}

This action sets available tokens that can be used to pay for transaction fee.

• SymbolListToPayTxSizeFee

– symbols_to_pay_tx_size_fee: available token list.

• SymbolToPayTxSizeFee

– token_symbol: token symbol.

– base_token_weight: it is fixed to primary token.

– added_token_weight: if base_token_weight set to 1 and added_token_weight set to 10, it will cost 10 this
token instead of primary token.

UpdateCoefficientsForContract

19.7. multi-token 245

AElf, Release release/1.0.0-preview3

message UpdateCoefficientsInput {
repeated sint32 piece_numbers = 1;// To specify pieces gonna update.
CalculateFeeCoefficients coefficients = 2;

}

message CalculateFeeCoefficients {
sint32 fee_token_type = 1;
repeated CalculateFeePieceCoefficients piece_coefficients_list = 2;

}

message CalculateFeePieceCoefficients {
repeated sint32 value = 1;

}

enum FeeTypeEnum {
READ = 0;
STORAGE = 1;
WRITE = 2;
TRAFFIC = 3;
TX = 4;

}

This action sets methods used to calculate resource token fees.

• UpdateCoefficientsInput

– fee_token_type: resource fee type (exclude TX).

– piece_coefficients_list: it is a coefficients array.

* value it is a int array. its first element indicates its piece key. other every three consecutive elements
indicates a function, like (2, 1, 1) means (1/1) * x^2.

UpdateCoefficientsForSender

rpc UpdateCoefficientsForSender (UpdateCoefficientsInput) returns (google.protobuf.
→˓Empty){}

message UpdateCoefficientsInput {
repeated sint32 piece_numbers = 1;// To specify pieces gonna update.
CalculateFeeCoefficients coefficients = 2;

}

message CalculateFeePieceCoefficients {
repeated sint32 value = 1;

}

This action sets methods used to calculate transaction fee.

note: for CalculateFeeCoefficients see UpdateCoefficientsForContract

AdvanceResourceToken

rpc AdvanceResourceToken (AdvanceResourceTokenInput) returns (google.protobuf.Empty){}

message AdvanceResourceTokenInput {

(continues on next page)

246 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Address contract_address = 1;
string resource_token_symbol = 2;
sint64 amount = 3;

}

This action transfers resource tokens to designated contract address.

• AdvanceResourceTokenInput

– contract_address: the contract address.

– resource_token_symbol: resource token symbol.

– amount: the amount of tokens.

TakeResourceTokenBack

rpc TakeResourceTokenBack (TakeResourceTokenBackInput) returns (google.protobuf.Empty)
→˓{}

message TakeResourceTokenBackInput {
aelf.Address contract_address = 1;
string resource_token_symbol = 2;
sint64 amount = 3;

}

This method takes token from contract address

• TakeResourceTokenBackInput

– contract_address: the contract address.

– resource_token_symbol: resource token symbol.

– amount: the amount of tokens.

ValidateTokenInfoExists

rpc ValidateTokenInfoExists(ValidateTokenInfoExistsInput) returns (google.protobuf.
→˓Empty){}

message ValidateTokenInfoExistsInput{
string symbol = 1;
string token_name = 2;
sint64 total_supply = 3;
sint32 decimals = 4;
aelf.Address issuer = 5;
bool is_burnable = 6;
sint32 issue_chain_id = 7;
bool is_profitable = 8;

}

This method validates if the token exist.

• ValidateTokenInfoExistsInput

– symbol: the token symbol.

19.7. multi-token 247

AElf, Release release/1.0.0-preview3

– token_name: the token name.

– total_supply: total supply of the token.

– decimals: decimals.

– issuer: the token issuer.

– is_burnable: indicates if the token is burnable.

– issue_chain_id: issue chain id.

– is_profitable: indicates if the token is profitable.

TransferToContract

rpc TransferToContract (TransferToContractInput) returns (google.protobuf.Empty){}

message TransferToContractInput {
string symbol = 1;
sint64 amount = 2;
string memo = 3;

}

This method transfer token to token address.

• TransferToContractInput

– symbol: the token symbol.

– amount: amount.

– memo: transfer memo.

InitializeAuthorizedController

rpc InitializeAuthorizedController(google.protobuf.Empty) returns (google.protobuf.
→˓Empty){}

This method initializes the controller for calling UpdateCoefficientsForContract and UpdateCoefficientsForSender.
Note that, if the current chain is side chain, it will create a controller for managing chain rental.

ChangeUserFeeController

rpc ChangeUserFeeController (acs1.AuthorityInfo) returns (google.protobuf.Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

• AuthorityInfo

• contract address: controller type.

• owner address: controller’s address.

This method change the controller who sets the coefficient for calculating transaction size fee.

248 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

ChangeDeveloperController

rpc ChangeDeveloperController (acs1.AuthorityInfo) returns (google.protobuf.Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

• AuthorityInfo

• contract address: controller type.

• owner address: controller’s address.

This method change the controller who sets the coefficient for calculating resource token.

19.7.6 View methods

GetTokenInfo

rpc GetTokenInfo (GetTokenInfoInput) returns (TokenInfo){}

message GetTokenInfoInput {
string symbol = 1;

}

message TokenInfo {
string symbol = 1;
string token_name = 2;
sint64 supply = 3;
sint64 total_supply = 4;
sint32 decimals = 5;
aelf.Address issuer = 6;
bool is_burnable = 7;
bool is_profitable = 8;
sint32 issue_chain_id = 9;
sint64 burned = 10;

}

This view method returns a TokenInfo object that describes information about a token.

• GetTokenInfoInput

– symbol: the token for which you want the information.

• Returns

– symbol: the symbol of the token.

– token_name: the full name of the token.

– supply: the current supply of the token.

– total_supply: the total supply of the token.

– decimals: the amount of decimal places this token has.

– issuer: the address that created the token.

– is_burnable: a flag indicating if this token is burnable.

19.7. multi-token 249

AElf, Release release/1.0.0-preview3

– is_profitable: a flag indicating if this token is profitable.

– issue_chain_id: the chain of this token.

– burned: the amount of burned tokens.

GetNativeTokenInfo

rpc GetNativeTokenInfo (google.protobuf.Empty) returns (TokenInfo){}

note: for TokenInfo see GetTokenInfo

This view method returns the TokenInfo object associated with the native token.

GetResourceTokenInfo

rpc GetResourceTokenInfo (google.protobuf.Empty) returns (TokenInfoList){}

message TokenInfoList {
repeated TokenInfo value = 1;

}

note: for TokenInfo see GetTokenInfo

This view method returns the list of TokenInfo objects associated with the chain’s resource tokens.

GetBalance

rpc GetBalance (GetBalanceInput) returns (GetBalanceOutput){}

message GetBalanceInput {
string symbol = 1;
aelf.Address owner = 2;

}

message GetBalanceOutput {
string symbol = 1;
aelf.Address owner = 2;
sint64 balance = 3;

}

This view method returns the balance of an address.

• GetBalanceInput

– symbol: the token for which to get the balance.

– owner: the address for which to get the balance.

• Returns

– symbol: the token for which to get the balance.

– owner: the address for which to get the balance.

– balance: the current balance.

250 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetAllowance

rpc GetAllowance (GetAllowanceInput) returns (GetAllowanceOutput){}

message GetAllowanceInput {
string symbol = 1;
aelf.Address owner = 2;
aelf.Address spender = 3;

}

message GetAllowanceOutput {
string symbol = 1;
aelf.Address owner = 2;
aelf.Address spender = 3;
sint64 allowance = 4;

}

This view method returns the allowance of one address to another.

• GetAllowanceInput

– symbol: the token for which to get the allowance.

– owner: the address for which to get the allowance (that approved tokens).

– spender: the address of the spender.

• Returns

– symbol: the token for which to get the allowance.

– owner: the address for which to get the allowance (that approved tokens).

– spender: the address of the spender.

– allowance: the current allowance.

IsInWhiteList

rpc IsInWhiteList (IsInWhiteListInput) returns (google.protobuf.BoolValue){}

message IsInWhiteListInput {
string symbol = 1;
aelf.Address address = 2;

}

This method returns wether or not the given address is in the lock whitelist.

• IsInWhiteListInput

– symbol: the token.

– address: the address that is checked.

GetLockedAmount

19.7. multi-token 251

AElf, Release release/1.0.0-preview3

rpc GetLockedAmount (GetLockedAmountInput) returns (GetLockedAmountOutput){}

message GetLockedAmountInput {
aelf.Address address = 1;
string symbol = 2;
aelf.Hash lock_id = 3;

}

message GetLockedAmountOutput {
aelf.Address address = 1;
string symbol = 2;
aelf.Hash lock_id = 3;
sint64 amount = 4;

}

This view method returns the amount of tokens currently locked by an address.

• GetLockedAmountInput

– address: the address.

– symbol: the token.

– lock_id: the lock id.

• Returns

– address: the address.

– symbol: the token.

– lock_id: the lock id.

– amount: the amount currently locked by the specified address.

GetCrossChainTransferTokenContractAddress

rpc GetCrossChainTransferTokenContractAddress
→˓(GetCrossChainTransferTokenContractAddressInput) returns (aelf.Address){}

message GetCrossChainTransferTokenContractAddressInput {
int32 chainId = 1;

}

This view method returns the cross-chain transfer address for the given chain.

• Returns

– chainId: the id of the chain.

GetPrimaryTokenSymbol

rpc GetPrimaryTokenSymbol (google.protobuf.Empty) returns (google.protobuf.
→˓StringValue){}

This view method return the primary token symbol if it’s set. If not, returns the Native symbol.

252 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetCalculateFeeCoefficientOfContract

rpc GetCalculateFeeCoefficientForContract (aelf.SInt32Value) returns
→˓(CalculateFeeCoefficients){}

message CalculateFeeCoefficients {
sint32 fee_token_type = 1;
repeated CalculateFeePieceCoefficients piece_coefficients_list = 2;

}

message CalculateFeePieceCoefficients {
repeated sint32 value = 1;

}

enum FeeTypeEnum {
READ = 0;
STORAGE = 1;
WRITE = 2;
TRAFFIC = 3;
TX = 4;

}

This view method returns the resource tokens fee calculation method.

• CalculateFeeCoefficients: resource fee type.

Output note: for CalculateFeeCoefficients see UpdateCoefficientsForContract

GetCalculateFeeCoefficientOfSender

rpc GetCalculateFeeCoefficientForSender (google.protobuf.Empty) returns
→˓(CalculateFeeCoefficients){}

This view method returns transaction fee’s calculation method.

note: for CalculateFeeCoefficients see GetCalculateFeeCoefficientForContract

GetSymbolsToPayTxSizeFee

rpc GetSymbolsToPayTxSizeFee (google.protobuf.Empty) returns
→˓(SymbolListToPayTxSizeFee){}

message SymbolListToPayTxSizeFee{
repeated SymbolToPayTxSizeFee symbols_to_pay_tx_size_fee = 1;

}

message SymbolToPayTxSizeFee{
string token_symbol = 1;
sint32 base_token_weight = 2;
sint32 added_token_weight = 3;

}

This method returns available tokens that can be used to pay for transaction fee.

note: for SymbolListToPayTxSizeFee see SetSymbolsToPayTxSizeFee

19.7. multi-token 253

AElf, Release release/1.0.0-preview3

GetDeveloperFeeController

rpc GetDeveloperFeeController (google.protobuf.Empty) returns (DeveloperFeeController)
→˓{}

message DeveloperFeeController {
acs1.AuthorityInfo root_controller = 1;
acs1.AuthorityInfo parliament_controller = 2;
acs1.AuthorityInfo developer_controller = 3;

}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

This method returns the controller for UpdateCoefficientsForContract. The root address consists originally of default
parliament organization, developer organization. The type of root controller and developer controller is Assocation.

• DeveloperFeeController

– root_controller: root controller information.

– parliament_controller: parliament controller information.

– developer_controller: developer controller information.

• Returns

– contract_address: in which contract the organization is created.

– owner_address/: organization address

GetUserFeeController

rpc GetUserFeeController (google.protobuf.Empty) returns (UserFeeController){}

message UserFeeController{
acs1.AuthorityInfo root_controller = 1;
acs1.AuthorityInfo parliament_controller = 2;
acs1.AuthorityInfo referendum_controller = 3;

}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

This method returns the controller for UpdateCoefficientsForSender. The root address consists originally of default
parliament organization, referendum organization. The type of root controller and developer controller is Assocation.

• UserFeeController

– root_controller root controller information.

– parliament_controller parliament controller information.

– referendum_controller referndum controller information.

• Returns

254 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– contract_address: in which contract the organization is created.

– owner_address/: organization address

GetSideChainRentalControllerCreateInfo

rpc GetSideChainRentalControllerCreateInfo (google.protobuf.Empty) returns (acs1.
→˓AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

• Returns

– contract address: controller type.

– owner address: controller’s address.

GetResourceUsage

rpc GetResourceUsage (google.protobuf.Empty) returns (ResourceUsage){}

message ResourceUsage {
map<string, sint32> value = 1;

}

This method is used on a side chain. It returns how much resource tokens should be paid at the moment.

• Returns

– value: resource token symbol => amount.

GetOwningRental

rpc GetOwningRental (google.protobuf.Empty) returns (OwningRental){}

message OwningRental {
map<string, sint64> resource_amount = 1;

}

This method is used on a side chain. It returns how much resource tokens (count * value) should be paid at the moment.

• Returns

– resource_amount: resource token symbol => amount.

GetOwningRentalUnitValue

rpc GetOwningRentalUnitValue (google.protobuf.Empty) returns (OwningRentalUnitValue){}

message OwningRentalUnitValue {
map<string, sint64> resource_unit_value = 1;

}

19.7. multi-token 255

AElf, Release release/1.0.0-preview3

This method is used in side chain. It returns resouces token’ unit value. (pay = unit value * amount)

• Returns

– resource_unit_value: resource token symbol => unit value.

19.8 Profit Contract

The Profit contract is an abstract layer for creating scheme to share bonus. Developers can build a system to distribute
bonus by call this contract.

19.8.1 Actions

Scheme Creation

rpc CreateScheme (CreateSchemeInput) returns (aelf.Hash){}

message CreateSchemeInput {
sint64 profit_receiving_due_period_count = 1;
bool is_release_all_balance_every_time_by_default = 2;
sint32 delay_distribute_period_count = 3;
aelf.Address manager = 4;
bool can_remove_beneficiary_directly = 5;
aelf.Hash token = 6;

}

message SchemeCreated {
aelf.Address virtual_address = 1;
aelf.Address manager = 2;
sint64 profit_receiving_due_period_count = 3;
bool is_release_all_balance_every_time_by_default = 4;
aelf.Hash scheme_id = 5;

}

This method creates a new scheme based on the CreateSchemeInput message.

• CreateSchemeInput

– manager: the scheme manager’s Address, defaults to the transaction sender.

– profit receiving due period_count optional, defaults to 10.

– is release all balance every time by default if true, all the schemes balance will be distributed during
distribution if the input amount is 0.

– delay distribute period count distribute bonus after terms.

– can remove beneficiary directly indicates whether the beneficiary can be removed without considering
its EndPeriod and IsWeightRemoved.

– token used to indicates scheme id.

• Returns

– value: the newly created scheme id.

• Event

– SchemeCreated

256 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

* virtual address: transfer from scheme id.

* manager: manager address.

* scheme id: scheme id.

Add sub-scheme

rpc AddSubScheme (AddSubSchemeInput) returns (google.protobuf.Empty){}

message AddSubSchemeInput {
aelf.Hash scheme_id = 1;
aelf.Hash sub_scheme_id = 2;
sint64 sub_scheme_shares = 3;

}

Two previously created schemes can be put in a scheme/sub-scheme relation. This will effectively add the specified
sub-scheme as a beneficiary of the parent scheme.

• AddSubSchemeInput:

– scheme id: the parent scheme ID.

– sub scheme id: the child scheme ID.

– sub scheme shares: number of shares of the sub-scheme.

Remove sub-scheme

rpc RemoveSubScheme (RemoveSubSchemeInput) returns (google.protobuf.Empty) {}

message RemoveSubSchemeInput {
aelf.Hash scheme_id = 1;
aelf.Hash sub_scheme_id = 2;

}

Removes a sub-scheme from a scheme. Note that only the manager of the parent scheme can remove a sub-scheme
from it.

• RemoveSubSchemeInput

– scheme id: scheme id

– sub scheme id: sub-scheme id

Add beneficiary

rpc AddBeneficiary (AddBeneficiaryInput) returns (google.protobuf.Empty){}

message AddBeneficiaryInput {
aelf.Hash scheme_id = 1;
BeneficiaryShare beneficiary_share = 2;
sint64 end_period = 3;

}

message BeneficiaryShare {

(continues on next page)

19.8. Profit Contract 257

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Address beneficiary = 1;
sint64 shares = 2;

}

Adds a beneficiary to a scheme. This beneficiary is either a scheme or another entity that can be represented by an
AElf address.

• AddBeneficiaryInput

– scheme id: scheme id.

– beneficiary share: share information to beneficiary.

– end period: end time.

• BeneficiaryShare

– beneficiary: beneficiary address

– shares: shares attributed to this beneficiary.

Remove beneficiary

rpc RemoveBeneficiary (RemoveBeneficiaryInput) returns (google.protobuf.Empty){}

message RemoveBeneficiaryInput {
aelf.Address beneficiary = 1;
aelf.Hash scheme_id = 2;

}

Removes a beneficiary from a scheme.

• RemoveBeneficiaryInput

– beneficiary beneficiary address to be removed

– scheme id scheme id

Add beneficiaries

rpc AddBeneficiaries (AddBeneficiariesInput) returns (google.protobuf.Empty){}

message AddBeneficiariesInput {
aelf.Hash scheme_id = 1;
repeated BeneficiaryShare beneficiary_shares = 2;
sint64 end_period = 4;

}

message BeneficiaryShare {
aelf.Address beneficiary = 1;
sint64 shares = 2;

}

Adds multiple beneficiaries to a scheme until the given end period.

• AddBeneficiariesInput

– scheme id: scheme id.

258 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– beneficiary shares: share information to beneficiaries.

– end period: end time.

• BeneficiaryShare

– beneficiary: beneficiary address.

– shares: shares to beneficiary.

Remove beneficiaries

rpc RemoveBeneficiaries (RemoveBeneficiariesInput) returns (google.protobuf.Empty){}

message RemoveBeneficiariesInput {
repeated aelf.Address beneficiaries = 1;
aelf.Hash scheme_id = 2;

}

Remove beneficiaries from a scheme.

• RemoveBeneficiariesInput

– beneficiaries: beneficiaries’ addresses to be removed.

– scheme id: scheme id.

Profit contribution

rpc ContributeProfits (ContributeProfitsInput) returns (google.protobuf.Empty){}

message ContributeProfitsInput {
aelf.Hash scheme_id = 1;
sint64 amount = 2;
sint64 period = 3;
string symbol = 4;

}

Contribute profit to a scheme.

• ContributeProfitsInput

– scheme id: scheme id.

– amount: amount token contributed to the scheme.

– period: in which term the amount is added.

– symbol: token symbol.

Claim profits

rpc ClaimProfits (ClaimProfitsInput) returns (google.protobuf.Empty){}

message ClaimProfitsInput {
aelf.Hash scheme_id = 1;
string symbol = 2;

(continues on next page)

19.8. Profit Contract 259

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Address beneficiary = 3;
}

Used to claim the profits of a given symbol. The beneficiary is identified as the sender of the transaction.

• ContributeProfitsInput

– scheme id: scheme id.

– symbol: token symbol.

– beneficiary: optional, claiming profits for another address, transaction fees apply to the caller.

Distribute profits

rpc DistributeProfits (DistributeProfitsInput) returns (google.protobuf.Empty){}

message DistributeProfitsInput {
aelf.Hash scheme_id = 1;
sint64 period = 2;
sint64 amount = 3;
string symbol = 4;

}

Distribute profits to scheme (address) including its sub scheme according to term and symbol, should be called by the
manager.

• DistributeProfitsInput

– scheme id: scheme id.

– period: term here should be the current term.

– amount: number.

– symbol: token symbol.

Reset manager

rpc ResetManager (ResetManagerInput) returns (google.protobuf.Empty){}

message ResetManagerInput {
aelf.Hash scheme_id = 1;
aelf.Address new_manager = 2;

}

Reset the manager of a scheme.

• ResetManagerInput

– scheme id: scheme id.

– new manager: new manager’s address.

19.8.2 View methods

For reference, you can find here the available view methods.

260 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetManagingSchemeIds

rpc GetManagingSchemeIds (GetManagingSchemeIdsInput) returns (CreatedSchemeIds){}

message GetManagingSchemeIdsInput {
aelf.Address manager = 1;

}

message CreatedSchemeIds {
repeated aelf.Hash scheme_ids = 1;

}

Get all schemes created by the specified manager.

• GetManagingSchemeIdsInput

– manager: manager’s address.

• Returns

– scheme ids: list of scheme ids.

GetScheme

rpc GetScheme (aelf.Hash) returns (Scheme){}

Returns the scheme with the given hash (scheme ID).

• Hash

– value: scheme id.

• SchemeBeneficiaryShare

– scheme id: sub scheme’s id.

– shares: sub scheme shares.

GetSchemeAddress

rpc GetSchemeAddress (SchemePeriod) returns (aelf.Address){}

message SchemePeriod {
aelf.Hash scheme_id = 1;
sint64 period = 2;

}

Returns the schemes virtual address if the input period is 0 or will give the distributed profit address for the given
period.

• SchemePeriod

– scheme id: scheme id.

– period: period number.

• Returns

– value: scheme’s virtual address.

19.8. Profit Contract 261

AElf, Release release/1.0.0-preview3

GetDistributedProfitsInfo

rpc GetDistributedProfitsInfo (SchemePeriod) returns (DistributedProfitsInfo){}

message SchemePeriod {
aelf.Hash scheme_id = 1;
sint64 period = 2;

}

message DistributedProfitsInfo {
sint64 total_shares = 1;
map<string, sint64> profits_amount = 2;
bool is_released = 3;

}

Get distributed profits Info for a given period.

• SchemePeriod

– scheme_id: scheme id.

– period: term number.

• Returns

– total shares: total shares, -1 indicates failed to get the information.

– profits amount: token symbol => reside amount.

– is released: is released.

GetProfitDetails

rpc GetProfitDetails (GetProfitDetailsInput) returns (ProfitDetails){}

message GetProfitDetailsInput {
aelf.Hash scheme_id = 1;
aelf.Address beneficiary = 2;

}

message ProfitDetails {
repeated ProfitDetail details = 1;

}

message ProfitDetail {
sint64 start_period = 1;
sint64 end_period = 2;
sint64 shares = 3;
sint64 last_profit_period = 4;
bool is_weight_removed = 5;

}

Gets a beneficiaries profit details for a given scheme.

• GetProfitDetailsInput

– scheme id scheme id.

– beneficiary beneficiary.

• Returns

262 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– details profit details.

• ProfitDetail

– start period: start period.

– end period: end period.

– shares: shares indicating the weight used to calculate the profit in the future.

– last profit period: last period the scheme distribute.

– is weight removed: is it expired.

GetProfitAmount

rpc GetProfitAmount (ClaimProfitsInput) returns (aelf.SInt64Value){}

message ClaimProfitsInput {
aelf.Hash scheme_id = 1;
string symbol = 2;

}

message SInt64Value
{

sint64 value = 1;
}

Calculate profits (have not yet received) before current term(at most 10 term).

• ClaimProfitsInput

– scheme_id: scheme id.

– symbol: token symbol.

• Returns

– value: amount of tokens.

19.9 Cross Chain Contract

Defines C# API functions for cross chain contract.

19.9.1 Actions

ProposeCrossChainIndexing

rpc ProposeCrossChainIndexing(CrossChainBlockData) returns (google.protobuf.Empty) {}

message CrossChainBlockData {
repeated SideChainBlockData side_chain_block_data_list = 1;
repeated ParentChainBlockData parent_chain_block_data_list = 2;

}

message SideChainBlockData {

(continues on next page)

19.9. Cross Chain Contract 263

AElf, Release release/1.0.0-preview3

(continued from previous page)

int64 height = 1;
aelf.Hash block_header_hash = 2;
aelf.Hash transaction_status_merkle_tree_root = 3;
int32 chain_id = 4;

}

message ParentChainBlockData {
int64 height = 1;
CrossChainExtraData cross_chain_extra_data = 2;
int32 chain_id = 3;
aelf.Hash transaction_status_merkle_tree_root = 4;
map<int64, aelf.MerklePath> indexed_merkle_path = 5;
map<string, bytes> extra_data = 6;

}

message CrossChainExtraData {
aelf.Hash transaction_status_merkle_tree_root = 1;

}

message ProposalCreated{
option (aelf.is_event) = true;
aelf.Hash proposal_id = 1;

}

Propose once cross chain indexing.

• CrossChainBlockData

– side_chain_block_data_list: side chain block data list.

– parent_chain_block_data_list: parent chain block data list.

• SideChainBlockData

– height: height of side chain block.

– block_header_hash: hash of side chain block.

– transaction_merkle_tree_root: merkle tree root computing from transactions status in side chain block.

– chain_id: id of side chain.

• ParentChainBlockData

– height: height of parent chain.

– cross_chain_extra_data: the merkle tree root computing from side chain roots.

– chain_id: parent chain id.

– transaction_status_merkle_root: merkle tree root computing from transactions status in parent chain
block.

– indexed_merkle_path: <block height, merkle path> key-value map.

– extra_data: extra data map.

• CrossChainExtraData

– transaction_status_merkle_tree_root: the hash value of merkle tree root.

264 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

ReleaseCrossChainIndexing

rpc ReleaseCrossChainIndexing(ReleaseCrossChainIndexingProposalInput) returns (google.
→˓protobuf.Empty) {

message ReleaseCrossChainIndexingProposalInput{
repeated int32 chain_id_list = 1;

}

Release cross chain indexing proposal.

• ReleaseCrossChainIndexingProposalInput

– chain_id_list: chain id list to release

Initialize

rpc Initialize (InitializeInput) returns (google.protobuf.Empty) {}

message InitializeInput
{

int32 parent_chain_id = 1;
int64 creation_height_on_parent_chain = 2;
bool is_privilege_preserved = 3;

}

Initialize cross-chain-contract.

• InitializeInput

– parent_chain_id: id of parent chain

– creation_height_on_parent_chain: height of side chain creation on parent chain

– is_privilege_preserved: true if chain privilege needed, otherwise false

RequestSideChainCreation

rpc RequestSideChainCreation(SideChainCreationRequest) returns (google.protobuf.Empty)
→˓{}

message SideChainCreationRequest {
int64 indexing_price = 1;
int64 locked_token_amount = 2;
bool is_privilege_preserved = 3;
SideChainTokenCreationRequest side_chain_token_creation_request = 4;
repeated SideChainTokenInitialIssue side_chain_token_initial_issue_list = 5;
map<string, int32> initial_resource_amount = 6;

}

message SideChainTokenCreationRequest{
string side_chain_token_symbol = 1;
string side_chain_token_name = 2;
int64 side_chain_token_total_supply = 3;
int32 side_chain_token_decimals = 4;
bool is_side_chain_token_burnable = 5;

(continues on next page)

19.9. Cross Chain Contract 265

AElf, Release release/1.0.0-preview3

(continued from previous page)

}

message SideChainTokenInitialIssue{
aelf.Address address = 1;
int64 amount = 2;

}

Request side chain creation.

• SideChainCreationRequest

– indexing_price: indexing fee.

– locked_token_amount: initial locked balance for a new side chain.

– is_privilege_preserved: creator privilege boolean flag: True if chain creator privilege preserved, other-
wise false.

– side_chain_token_initial_issue_list: a list of accounts and amounts that will be issued when the chain
starts.

– initial_resource_amount: the initial rent resources.

• SideChainTokenCreationRequest

– side_chain_token_symbol: side chain token symbol.

– side_chain_token_name: side chain token name.

– side_chain_token_total_supply: total supply of side chain token.

– side_chain_token_decimals: side chain token decimal.

ReleaseSideChainCreation

rpc ReleaseSideChainCreation(ReleaseSideChainCreationInput) returns (google.protobuf.
→˓Empty){}

message ReleaseSideChainCreationInput {
aelf.Hash proposal_id = 1;

}

Release side chain creation proposal and side chain will be created.

• ReleaseSideChainCreationInput

– proposal_id: side chain creation proposal id

CreateSideChain

rpc CreateSideChain (CreateSideChainInput) returns (google.protobuf.Int32Value) {}

message CreateSideChainInput{
SideChainCreationRequest side_chain_creation_request = 1;
aelf.Address proposer = 2;

}

message SideChainCreationRequest {

(continues on next page)

266 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

int64 indexing_price = 1;
int64 locked_token_amount = 2;
bool is_privilege_preserved = 3;
string side_chain_token_symbol = 4;
string side_chain_token_name = 5;
int64 side_chain_token_total_supply = 6;
int32 side_chain_token_decimals = 7;
bool is_side_chain_token_burnable = 8;
bool is_side_chain_token_profitable = 9;
repeated SideChainTokenInitialIssue side_chain_token_initial_issue_list = 10;
map<string, int32> initial_resource_amount = 11;

}

message SideChainTokenInitialIssue {
aelf.Address address = 1;
int64 amount = 2;

}

Create a new side chain, this is be triggered by an organization address.

• CreateSideChainInput

– proposer: the proposer of the proposal that triggered this method.

– SideChainCreationRequest: the parameters of creating side chain.

note: for SideChainCreationRequest see RequestSideChainCreation

• Returns Id of a new side chain

SetInitialSideChainLifetimeControllerAddress

rpc SetInitialSideChainLifetimeControllerAddress(aelf.Address) returns (google.
→˓protobuf.Empty){}

Sets the initial SideChainLifetimeController address which should be parliament organization by default.

• Address : the owner’s address.

SetInitialIndexingControllerAddress

rpc SetInitialIndexingControllerAddress(aelf.Address) returns (google.protobuf.Empty)
→˓{}

Sets the initial CrossChainIndexingController address which should be parliament organization by default.

• Address: the owner’s address.

ChangeCrossChainIndexingController

rpc ChangeCrossChainIndexingController(AuthorityInfo) returns (google.protobuf.Empty)
→˓{ }

message AuthorityInfo {

(continues on next page)

19.9. Cross Chain Contract 267

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Changes the cross chain indexing controller.

• AuthorityInfo

– contract_address: the address of the contract that generated the controller.

– owner_address: the address of the controller.

ChangeSideChainLifetimeController

rpc ChangeSideChainLifetimeController(AuthorityInfo) returns (google.protobuf.Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Changes the side chain’s lifetime controller.

note: for AuthorityInfo see ChangeCrossChainIndexingController

ChangeSideChainIndexingFeeController

rpc ChangeSideChainIndexingFeeController(ChangeSideChainIndexingFeeControllerInput)
→˓returns (google.protobuf.Empty){}

message ChangeSideChainIndexingFeeControllerInput{
int32 chain_id = 1;
AuthorityInfo authority_info = 2;

}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Changes indexing fee adjustment controller for specific side chain.

• ChangeSideChainIndexingFeeControllerInput

– chain_id: side chain id.

– authority_info

* contract_address: the address of the contract that generated the controller.

* owner_address: the address of the controller.

Recharge

268 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

rpc Recharge (RechargeInput) returns (google.protobuf.Empty) {}
message RechargeInput {

int32 chain_id = 1;
int64 amount = 2;

}

Recharge for specified side chain.

• RechargeInput

– chain_id: id of the side chain

– amount: the token amount to recharge

RecordCrossChainData

rpc RecordCrossChainData (RecordCrossChainDataInput) returns (google.protobuf.Empty){}

message RecordCrossChainDataInput{
CrossChainBlockData proposed_cross_chain_data = 1;
aelf.Address proposer = 2;

}

message CrossChainBlockData {
repeated SideChainBlockData side_chain_block_data_list = 1;
repeated ParentChainBlockData parent_chain_block_data_list = 2;
int64 previous_block_height = 3;

}

message SideChainBlockData {
int64 height = 1;
aelf.Hash block_header_hash = 2;
aelf.Hash transaction_status_merkle_tree_root = 3;
int32 chain_id = 4;

}

message ParentChainBlockData {
int64 height = 1;
CrossChainExtraData cross_chain_extra_data = 2;
int32 chain_id = 3;
aelf.Hash transaction_status_merkle_tree_root = 4;
map<int64, aelf.MerklePath> indexed_merkle_path = 5;
map<string, bytes> extra_data = 6;

}

message CrossChainExtraData {
aelf.Hash transaction_status_merkle_tree_root = 1;

}

Index block data of parent chain and side chain. Only CrossChainIndexingController is permitted to invoke this
method.

• RecordCrossChainDataInput

– CrossChainBlockData: cross chain block data.

– proposer: the proposal’s address.

note: for CrossChainBlockData see ProposeCrossChainIndexing

19.9. Cross Chain Contract 269

AElf, Release release/1.0.0-preview3

AdjustIndexingFeePrice

rpc AdjustIndexingFeePrice(AdjustIndexingFeeInput)returns(google.protobuf.Empty){}

message AdjustIndexingFeeInput{
int32 side_chain_id = 1;
int64 indexing_fee = 2;

}

Adjust side chain indexing fee. Only IndexingFeeController is permitted to invoke this method.

• AdjustIndexingFeeInput

• side_chain_id: side chain id

• indexing_fee: indexing fee to be set

DisposeSideChain

rpc DisposeSideChain (google.protobuf.Int32Value) returns (google.protobuf.Int32Value)
→˓{}

Dispose the specified side chain. Only SideChainLifetimeController is permitted to invoke this method.

• Int32Value: the id of side chain to be disposed

• Returns

– value: the id of disposed chain

19.9.2 View methods

Get pending cross chain indexing proposal info.

• Returns

– proposal_id: cross chain indexing proposal id.

– proposer: proposer of cross chain indexing proposal.

– to_be_released: true if the proposal can be released, otherwise false.

– proposed_cross_chain_block_data: cross chain data proposed.

– expired_time: proposal expiration time.

note: for CrossChainBlockData see ProposeCrossChainIndexing

GetCrossChainIndexingController

rpc GetCrossChainIndexingController(google.protobuf.Empty) returns (AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

270 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

Get indexing fee adjustment controller for specific side chain.

note: for AuthorityInfo see ChangeCrossChainIndexingController

GetSideChainLifetimeController

rpc GetSideChainLifetimeController(google.protobuf.Empty) returns (AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Get the side chain’s lifetime controller.

note: for AuthorityInfo see ChangeCrossChainIndexingController.

GetSideChainIndexingFeeController

rpc GetSideChainIndexingFeeController(google.protobuf.Int32Value) returns
→˓(AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Get side chain indexing fee.

• Int32Value: side chain id

note: for AuthorityInfo see ChangeCrossChainIndexingController

GetSideChainIndexingFeePrice

rpc GetSideChainIndexingFeePrice(google.protobuf.Int32Value) returns (google.protobuf.
→˓Int64Value){}

Get side chain indexing fee.

• Int32Value: side chain id

• Returns

– value: indexing fee price

VerifyTransaction

rpc VerifyTransaction (VerifyTransactionInput) returns (google.protobuf.BoolValue){}

message VerifyTransactionInput {
aelf.Hash transaction_id = 1;
aelf.MerklePath path = 2;
int64 parent_chain_height = 3;

(continues on next page)

19.9. Cross Chain Contract 271

AElf, Release release/1.0.0-preview3

(continued from previous page)

int32 verified_chain_id = 4;
}

Transaction cross chain verification.

• VerifyTransactionInput

– transaction_id: transaction id

– path: merkle path for the transaction

– parent_chain_height: height of parent chain indexing this transaction

– verified_chain_id: id of the chain to be verified

• Returns

– value: true if verification succeeded, otherwise false.

LockedAddress

rpc GetSideChainCreator (google.protobuf.Int32Value) returns (aelf.Address){}

Get side chain creator address.

• Int32Value: id of side chain

• Returns

– value: address of side chain creator.

GetChainStatus

rpc GetChainStatus (google.protobuf.Int32Value) returns (GetChainStatusOutput){}

message GetChainStatusOutput{
SideChainStatus status = 1;

}

enum SideChainStatus
{

FATAL = 0;
ACTIVE = 1;
INDEXING_FEE_DEBT = 2;
TERMINATED = 3;

}

Gets the current status of the specified side chain.

• Int32Value: id of side chain.

• Returns Current status of side chain.

– fatal: currently no meaning.

– active: the side-chain is being indexed.

– insufficient fee debt: debt for indexing fee to be payed off.

– terminated: the side chain cannot be indexed anymore.

272 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetSideChainHeight

rpc GetSideChainHeight (google.protobuf.Int32Value) returns (google.protobuf.
→˓Int64Value){}

Get current height of the specified side chain.

• Int32Value: id of side chain

• Returns

– value: current height of the side chain.

GetParentChainHeight

rpc GetParentChainHeight (google.protobuf.Empty) returns (google.protobuf.Int64Value)
→˓{}

Get recorded height of parent chain

• Returns

– value: height of parent chain.

GetParentChainId

rpc GetParentChainId (google.protobuf.Empty) returns (google.protobuf.Int32Value){}

Get id of the parent chain. This interface is only for side chain.

• Returns

– value: parent chain id.

GetSideChainBalance

rpc GetSideChainBalance (google.protobuf.Int32Value) returns (google.protobuf.
→˓Int64Value){}

Get the balance for side chain indexing.

• Int32Value: id of side chain

• Returns

– value: balance for side chain indexing.

GetSideChainIndexingFeeDebt

rpc GetSideChainIndexingFeeDebt (google.protobuf.Int32Value) returns (google.protobuf.
→˓Int64Value){}

Get indexing debt for side chain.

• Int32Value: id of side chain

19.9. Cross Chain Contract 273

AElf, Release release/1.0.0-preview3

• Returns

– value: side chain indexing debt. Returns zero if no debt.

GetSideChainIdAndHeight

rpc GetSideChainIdAndHeight (google.protobuf.Empty) returns (ChainIdAndHeightDict){}

message ChainIdAndHeightDict
{

map<int32, int64> id_height_dict = 1;
}

Get id and recorded height of side chains.

• Returns

– ChainIdAndHeightDict: A map contains id and height of side chains

GetSideChainIndexingInformationList

rpc GetSideChainIndexingInformationList (google.protobuf.Empty) returns
→˓(SideChainIndexingInformationList){}

message SideChainIndexingInformationList
{

repeated SideChainIndexingInformation indexing_information_list = 1;
}

message SideChainIndexingInformation
{

int32 chain_id = 1;
int64 indexed_height = 2;

}

Get indexing information of side chains.

• Returns

– SideChainIndexingInformationList: A list contains indexing information of side chains

GetAllChainsIdAndHeight

rpc GetAllChainsIdAndHeight (google.protobuf.Empty) returns (ChainIdAndHeightDict){}

message ChainIdAndHeightDict
{

map<int32, int64> id_height_dict = 1;
}

Get id and recorded height of all chains.

• Returns -ChainIdAndHeightDict: A map contains id and height of all chains

274 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetIndexedSideChainBlockDataByHeight

rpc GetIndexedSideChainBlockDataByHeight (google.protobuf.Int64Value) returns
→˓(IndexedSideChainBlockData){}

message IndexedSideChainBlockData
{

repeated acs7.SideChainBlockData side_chain_block_data = 1;
}
message SideChainBlockData
{

int64 height = 1;
aelf.Hash block_header_hash = 2;
aelf.Hash transaction_merkle_tree_root = 3;
int32 chain_id = 4;

}

Get block data of indexed side chain by height

• Int64Value: height of side chain

• Returns

– side_chain_block_data: block data of side chain.

GetBoundParentChainHeightAndMerklePathByHeight

rpc GetBoundParentChainHeightAndMerklePathByHeight (google.protobuf.Int64Value)
→˓returns (CrossChainMerkleProofContext){}

message CrossChainMerkleProofContext
{

int64 bound_parent_chain_height = 1;
aelf.MerklePath merkle_path_for_parent_chain_root = 2;

}
message MerklePath
{

repeated MerklePathNode merklePathNodes = 1;
}
message MerklePathNode
{

Hash hash = 1;
bool isLeftChildNode = 2;

}

Get merkle path bound up with side chain

• Int64Value: height of side chain.

• Returns

– bound_parent_chain_height: height of parent chain bound up with side chain.

– merkle_path_from_parent_chain: merkle path generated from parent chain.

19.9. Cross Chain Contract 275

AElf, Release release/1.0.0-preview3

GetChainInitializationData

rpc GetChainInitializationData (google.protobuf.Int32Value) returns
→˓(ChainInitializationData){}

message ChainInitializationData
{

int32 chain_id = 1;
aelf.Address creator = 2;
google.protobuf.Timestamp creation_timestamp = 3;
int64 creation_height_on_parent_chain = 4;
bool chain_creator_privilege_preserved = 5;
aelf.Address parent_chain_token_contract_address = 6;
ChainInitializationConsensusInfo chain_initialization_consensus_info = 7;
bytes native_token_info_data = 8;
ResourceTokenInfo resource_token_info = 9;
ChainPrimaryTokenInfo chain_primary_token_info = 10;

}

message ChainInitializationConsensusInfo{
bytes initial_miner_list_data = 1;

}

message ResourceTokenInfo{
bytes resource_token_list_data = 1;
map<string, int32> initial_resource_amount = 2;

}

message ChainPrimaryTokenInfo{
bytes chain_primary_token_data = 1;
repeated SideChainTokenInitialIssue side_chain_token_initial_issue_list = 2;

}

message SideChainTokenInitialIssue{
aelf.Address address = 1;
int64 amount = 2;

}

Get initialization data for specified side chain.

• Int32Value: id of side chain.

• Returns

– chain_id: id of side chain.

– creator: side chain creator.

– creation_timestamp: timestamp for side chain creation.

– creation_height_on_parent_chain: height of side chain creation on parent chain.

– chain_creator_privilege_preserved: creator privilege boolean flag: True if chain creator privilege pre-
served, otherwise false.

– parent_chain_token_contract_address: parent chain token contract address.

– chain_initialization_consensus_info: initial miner list information.

– native_token_info_data: native token info.

– resource_token_info: resource token information.

276 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– chain_primary_token_info: chain priamry token information.

• ChainInitializationConsensusInfo

– initial_consensus_data: initial consensus data.

• ChainInitializationConsensusInfo

– resource_token_list_data: resource token list data.

– initial_resource_amount: initial resource token amount.

• ChainPrimaryTokenInfo

– chain_primary_token_data: side chain primary token data.

– side_chain_token_initial_issue_list: side chain primary token initial issue list.

19.10 Treasury Contract

The Treasury contract is essentially used for distributing bonus’ to voters and candidates during the election process.

19.10.1 Actions

Donate

rpc Donate (DonateInput) returns (google.protobuf.Empty){}

message DonateInput {
string symbol = 1;
sint64 amount = 2;

}

message DonationReceived {
aelf.Address from = 1 [(aelf.is_indexed) = true];
aelf.Address to = 2 [(aelf.is_indexed) = true];
string symbol = 3 [(aelf.is_indexed) = true];
sint64 amount = 4 [(aelf.is_indexed) = true];
string memo = 5;

}

Donates tokens from the caller to the treasury. If the tokens are not native tokens in the current chain, they will be first
converted to the native token.

• DonateInput

– symbol: token symbol.

– amount: token amount.

• Event

– DonationReceived

* from: from address.

* to: to address.

* symbol: token symbol.

* amount: amount of token.

19.10. Treasury Contract 277

AElf, Release release/1.0.0-preview3

* memo: memo.

Donate all tokens

rpc DonateAll (DonateAllInput) returns (google.protobuf.Empty){}

message DonateAllInput {
string symbol = 1;

}

Donate all token (transfer to native token) from caller to the treasury (by calling Donate described above).

• DonateAllInput

– symbol: token symbol.

SetDistributingSymbolList

rpc SetDistributingSymbolList (SymbolList) returns (google.protobuf.Empty){}

message SymbolList {
repeated string value = 1;

}

Set a token list that can be used to distribute.

• SymbolList

– value: token symbol list.

SetDividendPoolWeightSetting

rpc SetDividendPoolWeightSetting (DividendPoolWeightSetting) returns (google.protobuf.
→˓Empty){}

message DividendPoolWeightSetting {
int32 citizen_welfare_weight = 1;
int32 backup_subsidy_weight = 2;
int32 miner_reward_weight = 3;

}

Set weight for the three activities.

• DividendPoolWeightSetting

– citizen welfare weight: citizen welfare weight.

– backup subsidy weight: backup subsidy weight.

– miner reward weight: miner reward weight.

SetMinerRewardWeightSetting

278 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

rpc SetMinerRewardWeightSetting (MinerRewardWeightSetting) returns (google.protobuf.
→˓Empty){}

message MinerRewardWeightSetting {
int32 basic_miner_reward_weight = 1;
int32 votes_weight_reward_weight = 2;
int32 re_election_reward_weight = 3;

}

Set weight for the three activities composing of miner reward activity.

• MinerRewardWeightSetting

– basic miner reward weight: basic miner reward weight.

– votes weight reward weight: votes weight reward weight.

– re-election reward weight: re-election reward weight.

ChangeTreasuryController

rpc ChangeTreasuryController (acs1.AuthorityInfo) returns (google.protobuf.Empty) {}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Change the controller who is able to update symbol list and activities’ weight above.

• AuthorityInfo

– contract address: controller type.

– owner address: controller’s address.

19.10.2 View methods

For reference, you can find here the available view methods.

GetCurrentTreasuryBalance

rpc GetCurrentTreasuryBalance (google.protobuf.Empty) returns (aelf.SInt64Value){}

message SInt64Value
{

sint64 value = 1;
}

Get the Treasury’s total balance of the native token from the Treasury.

• Returns

– value: amount of native token.

19.10. Treasury Contract 279

AElf, Release release/1.0.0-preview3

GetWelfareRewardAmountSample

rpc GetWelfareRewardAmountSample (GetWelfareRewardAmountSampleInput) returns
→˓(GetWelfareRewardAmountSampleOutput){}

message GetWelfareRewardAmountSampleInput {
repeated sint64 value = 1;

}

message GetWelfareRewardAmountSampleOutput {
repeated sint64 value = 1;

}

Test the welfare bonus gotten base on 10000 Vote Token. The input is a array of locking time, and the output is the
corresponding welfare.

• GetWelfareRewardAmountSampleInput

– value: a array of locking time.

• Returns

– value: a array of welfare.

GetTreasurySchemeId

rpc GetTreasurySchemeId (google.protobuf.Empty) returns (aelf.Hash) {}

message Hash
{

bytes value = 1;
}

Get treasury scheme id. If it does not exist, it will return hash.empty.

• Returns

– value: scheme id.

GetDistributingSymbolList

rpc GetDistributingSymbolList (google.protobuf.Empty) returns (SymbolList){}

message SymbolList {
repeated string value = 1;

}

Get the symbol list that can be used to distribute.

note: for SymbolList see SetDistributingSymbolList

GetDividendPoolWeightProportion

280 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

rpc GetDividendPoolWeightProportion (google.protobuf.Empty) returns
→˓(DividendPoolWeightProportion){}

message DividendPoolWeightProportion {
SchemeProportionInfo citizen_welfare_proportion_info = 1;
SchemeProportionInfo backup_subsidy_proportion_info = 2;
SchemeProportionInfo miner_reward_proportion_info = 3;

}

message SchemeProportionInfo{
aelf.Hash scheme_id = 1;
int32 proportion = 2;

}

Get activities’s weight expressed as a percentage

• Returns

– citizen welfare proportion info: citizen welfare proportion info.

– backup subsidy proportion info: backup subsidy proportion info.

– miner reward proportion info: miner reward proportion info.

• SchemeProportionInfo

– scheme id: scheme id

– proportion: the weight expressed as a percentage.

GetMinerRewardWeightProportion

rpc GetMinerRewardWeightProportion (google.protobuf.Empty) returns
→˓(MinerRewardWeightProportion){}

message MinerRewardWeightProportion {
SchemeProportionInfo basic_miner_reward_proportion_info = 1;
SchemeProportionInfo votes_weight_reward_proportion_info = 2;
SchemeProportionInfo re_election_reward_proportion_info = 3;

}

Get the weight expressed as a percentage of the activities composing of miner reward.

note: for MinerRewardWeightProportion see GetDividendPoolWeightProportion

GetTreasuryController

rpc GetTreasuryController (google.protobuf.Empty) returns (acs1.AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Get this contract’s controller.

note: for AuthorityInfo see ChangeTreasuryController

19.10. Treasury Contract 281

AElf, Release release/1.0.0-preview3

19.11 Vote Contract

The Vote contract is an abstract layer for voting. Developers implement concrete voting activities by calling this
contract.

19.11.1 Actions

Voting for Block Producers

rpc Register (VotingRegisterInput) returns (google.protobuf.Empty){}

message VotingRegisterInput {
google.protobuf.Timestamp start_timestamp = 1;
google.protobuf.Timestamp end_timestamp = 2;
string accepted_currency = 3;
bool is_lock_token = 4;
sint64 total_snapshot_number = 5;
repeated string options = 6;

}

To build a voting activity, the developer should register first.

• VotingRegisterInput

– start timestamp: activity start time.

– end timestamp: activity end time.

– accepted currency: the token symbol which will be accepted.

– is lock token: indicates whether the token will be locked after voting.

– total snapshot number: number of terms.

– options: default candidate.

Vote

rpc Vote (VoteInput) returns (google.protobuf.Empty){}

message VoteInput {
aelf.Hash voting_item_id = 1;
aelf.Address voter = 2;
sint64 amount = 3;
string option = 4;
aelf.Hash vote_id = 5;
bool is_change_target = 6;

}

message Voted {
option (aelf.is_event) = true;
aelf.Hash voting_item_id = 1;
aelf.Address voter = 2;
sint64 snapshot_number = 3;
sint64 amount = 4;
google.protobuf.Timestamp vote_timestamp = 5;

(continues on next page)

282 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

string option = 6;
aelf.Hash vote_id = 7;

}

After building successfully a voting activity, others are able to vote.

• VoteInput

– voting item id: indicates which voting activity the user participate in.

– voter: voter’s address.

– amount: vote amount.

– option: candidate’s public key.

– vote id: transaction id.

– is change target: indicates whether the option is changed.

• Event

– Voted

* voting item id: voting activity id.

* voter: voter’s address.

* snapshot number: the current round.

* amount: vote amount.

* vote timestamp: vote time.

* option: the candidate’s public key.

* vote id: transaction id.

Withdraw

rpc Withdraw (WithdrawInput) returns (google.protobuf.Empty){
}

message WithdrawInput {
aelf.Hash vote_id = 1;

}

message Withdrawn {
aelf.Hash vote_id = 1;

}

A voter can withdraw the token after the lock time.

• WithdrawInput

– vote id: transaction id.

• Event

– Withdrawn

* vote id: transaction id.

19.11. Vote Contract 283

AElf, Release release/1.0.0-preview3

TakeSnapshot

rpc TakeSnapshot (TakeSnapshotInput) returns (google.protobuf.Empty){}

message TakeSnapshotInput {
aelf.Hash voting_item_id = 1;
sint64 snapshot_number = 2;

}

Distributes profits and saves the state every round.

• TakeSnapshotInput

– voting item id: voting activity id.

– snapshot number: the round number.

AddOption

rpc AddOption (AddOptionInput) returns (google.protobuf.Empty){
}

message AddOptionInput {
aelf.Hash voting_item_id = 1;
string option = 2;

}

Adds an option (a choice) to a voting activity.

• AddOptionInput

– voting item id: vote activity id.

– option: the new option.

AddOptions

rpc AddOptions (AddOptionsInput) returns (google.protobuf.Empty){
}

message AddOptionsInput {
aelf.Hash voting_item_id = 1;
repeated string options = 2;

}

Adds multiple options (choices) to a voting activity.

• AddOptionsInput

– voting item id: voting activity id.

– option: the list of new options.

RemoveOption

284 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

rpc RemoveOption (RemoveOptionInput) returns (google.protobuf.Empty){
}

message RemoveOptionInput {
aelf.Hash voting_item_id = 1;
string option = 2;

}

Removes an option from a voting activity.

• RemoveOptionInput

– voting item id: voting activity id.

– option: the option to remove.

RemoveOptions

rpc RemoveOptions (RemoveOptionsInput) returns (google.protobuf.Empty){}

message RemoveOptionsInput {
aelf.Hash voting_item_id = 1;
repeated string options = 2;

}

Removes multiple options from a voting activity.

• RemoveOptionsInput

– voting item id: voting activity id.

– option: the options to remove.

19.11.2 View methods

For reference, you can find here the available view methods.

GetVotingItem

rpc GetVotingItem (GetVotingItemInput) returns (VotingItem){
}

message GetVotingItemInput {
aelf.Hash voting_item_id = 1;

}

message VotingItem {
aelf.Hash voting_item_id = 1;
string accepted_currency = 2;
bool is_lock_token = 3;
sint64 current_snapshot_number = 4;
sint64 total_snapshot_number = 5;
repeated string options = 6;
google.protobuf.Timestamp register_timestamp = 7;
google.protobuf.Timestamp start_timestamp = 8;

(continues on next page)

19.11. Vote Contract 285

AElf, Release release/1.0.0-preview3

(continued from previous page)

google.protobuf.Timestamp end_timestamp = 9;
google.protobuf.Timestamp current_snapshot_start_timestamp = 10;
aelf.Address sponsor = 11;

}

Gets the information related to a voting activity.

• GetVotingItemInput

– voting item id: voting activity id.

• Returns

– voting item id: voting activity id.

– accepted currency: vote token.

– is lock token: indicates if the token will be locked after voting.

– current snapshot number: current round.

– total snapshot number: total number of round.

– register timestamp: register time.

– start timestamp: start time.

– end timestamp: end time.

– current snapshot start timestamp: current round start time.

– sponsor: activity creator.

GetVotingResult

rpc GetVotingResult (GetVotingResultInput) returns (VotingResult){}

message GetVotingResultInput {
aelf.Hash voting_item_id = 1;
sint64 snapshot_number = 2;

}

message VotingResult {
aelf.Hash voting_item_id = 1;
map<string, sint64> results = 2; // option -> amount
sint64 snapshot_number = 3;
sint64 voters_count = 4;
google.protobuf.Timestamp snapshot_start_timestamp = 5;
google.protobuf.Timestamp snapshot_end_timestamp = 6;
sint64 votes_amount = 7;

}

Gets a voting result according to the provided voting activity id and round number.

• GetVotingResultInput

– voting item id: voting activity id.

– snapshot number: round number.

• Returns:

286 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– voting item id: voting activity id.

– results: candidate => vote amount.

– snapshot number: round number.

– voters count: how many voters.

– snapshot start timestamp: start time.

– snapshot end timestamp: end time.

– votes amount total votes(excluding withdraws).

GetLatestVotingResult

rpc GetLatestVotingResult (aelf.Hash) returns (VotingResult){}

message Hash
{

bytes value = 1;
}

message VotingResult {
aelf.Hash voting_item_id = 1;
map<string, sint64> results = 2; // option -> amount
sint64 snapshot_number = 3;
sint64 voters_count = 4;
google.protobuf.Timestamp snapshot_start_timestamp = 5;
google.protobuf.Timestamp snapshot_end_timestamp = 6;
sint64 votes_amount = 7;

}

Gets the latest result of the provided voting activity.

• Hash

– value: voting activity id.

• Returns

– voting item id: voting activity id.

– results: candidate => vote amount.

– snapshot number: round number.

– voters count: how many voters.

– snapshot start timestamp: start time.

– snapshot end timestamp: end time.

– votes amount: total votes(excluding withdraws).

GetVotingRecord

rpc GetVotingRecord (aelf.Hash) returns (VotingRecord){
}

message Hash{
(continues on next page)

19.11. Vote Contract 287

AElf, Release release/1.0.0-preview3

(continued from previous page)

bytes value = 1;
}

message VotingRecord {
aelf.Hash voting_item_id = 1;
aelf.Address voter = 2;
sint64 snapshot_number = 3;
sint64 amount = 4;
google.protobuf.Timestamp withdraw_timestamp = 5;
google.protobuf.Timestamp vote_timestamp = 6;
bool is_withdrawn = 7;
string option = 8;
bool is_change_target = 9;

}

Get the voting record for the given record ID.

• Hash

– value: transaction id.

• Returns

– voting item id: voting activity id.

– voter: voter’s address.

– snapshot number: round number.

– withdraw timestamp: withdraw time.

– vote timestamp: vote time.

– is withdrawn: indicate whether the vote has been withdrawn.

– option: candidate id.

– is change target: has withdrawn and vote to others.

GetVotingRecords

rpc GetVotingRecords (GetVotingRecordsInput) returns (VotingRecords){}

message GetVotingRecordsInput {
repeated aelf.Hash ids = 1;

}

message Hash
{

bytes value = 1;
}

message VotingRecords {
repeated VotingRecord records = 1;

}

message VotingRecord {
aelf.Hash voting_item_id = 1;
aelf.Address voter = 2;

(continues on next page)

288 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

sint64 snapshot_number = 3;
sint64 amount = 4;
google.protobuf.Timestamp withdraw_timestamp = 5;
google.protobuf.Timestamp vote_timestamp = 6;
bool is_withdrawn = 7;
string option = 8;
bool is_change_target = 9;

}

Get the voting records for the given record IDs.

• GetVotingRecordsInput

– ids: transaction ids.

• Hash

– value: transaction id.

• Returns

– records: records.

• VotingRecord

– voting item id: voting activity id.

– voter: voter’s address.

– snapshot number: round number.

– withdraw timestamp: withdraw time.

– vote timestamp: vote time.

– is withdrawn: indicates whether the vote has been withdrawn.

– option: candidate id.

– is change target: has withdrawn and vote to others.

GetVotedItems

rpc GetVotedItems (aelf.Address) returns (VotedItems){
}

message Address{
bytes value = 1;

}

message VotedItems {
map<string, VotedIds> voted_item_vote_ids = 1;

}

message VotedIds {
repeated aelf.Hash active_votes = 1;
repeated aelf.Hash withdrawn_votes = 2;

}

Get the voter’s withdrawn and valid transaction ids respectively.

• Address

19.11. Vote Contract 289

AElf, Release release/1.0.0-preview3

– value: voter’s address.

• Returns

– voted item vote ids: voting activity id => vote information.

• VotedIds

– active votes: valid transaction id.

– withdrawn votes: withdrawn transaction id.

GetVotingIds

rpc GetVotingIds (GetVotingIdsInput) returns (VotedIds){
}

message GetVotingIdsInput {
aelf.Address voter = 1;
aelf.Hash voting_item_id = 2;

}

message VotedIds {
repeated aelf.Hash active_votes = 1;
repeated aelf.Hash withdrawn_votes = 2;

}

Get the voter’s withdrawn and valid transaction ids respectively according to voting activity id.

• GetVotingIdsInput

– voter: voter’s address.

– voting item id: voting activity id.

• Returns

– active votes: valid transaction id.

– withdrawn votes: withdrawn transaction id.

19.12 Token Holder Contract

The TokenHolder contract is essentially used for building a bouns model for distributing bonus’ to whom hold the
token.

19.12.1 Actions

CreateScheme

rpc CreateScheme (CreateTokenHolderProfitSchemeInput) returns (google.protobuf.Empty)
→˓{}

message CreateTokenHolderProfitSchemeInput {
string symbol = 1;
sint64 minimum_lock_minutes = 2;

(continues on next page)

290 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

(continued from previous page)

map<string, sint64> auto_distribute_threshold = 3;
}

It creates a scheme which stores relevant information about dividend in profit contract.

• CreateTokenHolderProfitSchemeInput

– symbol: the token that will be used for locking and distributing profits.

– minimum lock time: minimum lock time before withdrawing.

– automatic distribution threshold: used when registering for profits (RegisterForProfits).

AddBeneficiary

rpc AddBeneficiary (AddTokenHolderBeneficiaryInput) returns (google.protobuf.Empty){}

message AddTokenHolderBeneficiaryInput {
aelf.Address beneficiary = 1;
sint64 shares = 2;

}

Add a Beneficiary to a scheme.

• AddTokenHolderBeneficiaryInput

– beneficiary: the new beneficiary.

– shares: the shares to attribute to this beneficiary.

RemoveBeneficiary

rpc RemoveBeneficiary (RemoveTokenHolderBeneficiaryInput) returns (google.protobuf.
→˓Empty){}

message RemoveTokenHolderBeneficiaryInput {
aelf.Address beneficiary = 1;
sint64 amount = 2;

}

Remove a Beneficiary from a scheme. Note: this method can be used to remove a beneficiary or update its shares.

• RemoveTokenHolderBeneficiaryInput

– beneficiary: the beneficiary to remove or update.

– amount: 0 to remove the beneficiary. A positive integer, smaller than the current shares.

ContributeProfits

rpc ContributeProfits (ContributeProfitsInput) returns (google.protobuf.Empty){}

message ContributeProfitsInput {
aelf.Address scheme_manager = 1;
sint64 amount = 2;

(continues on next page)

19.12. Token Holder Contract 291

AElf, Release release/1.0.0-preview3

(continued from previous page)

string symbol = 3;
}

Contribute some token to a scheme.

• ContributeProfitsInput

– scheme manager: manager of the scheme; when creating the scheme the Sender is set to manager.

– amount: the amount of tokens to contribute.

– symbol: the token to contribute.

DistributeProfits

rpc DistributeProfits (DistributeProfitsInput) returns (google.protobuf.Empty){}

message DistributeProfitsInput {
aelf.Address scheme_manager = 1;
string symbol = 2;

}

Distribute a profit plan, which means its beneficiaries are going to get the shares.

• DistributeProfitsInput

– scheme manager: manager of the scheme; when creating the scheme the Sender is set to manager.

– symbol: the token to contribute.

RegisterForProfits

rpc RegisterForProfits (RegisterForProfitsInput) returns (google.protobuf.Empty){}

message RegisterForProfitsInput {
aelf.Address scheme_manager = 1;
sint64 amount = 2;

}

• RegisterForProfitsInput

– scheme manager: manager of the scheme; when creating the scheme the Sender is set to manager.

– amount: the amount of tokens to lock (and will correspond to the amount of shares).

Withdraw

rpc Withdraw (aelf.Address) returns (google.protobuf.Empty){}

This method will withdraw the given address for the Token Holder contract, this will also unlock the previously locked
tokens.

292 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

ClaimProfits

rpc ClaimProfits (ClaimProfitsInput) returns (google.protobuf.Empty){}

message ClaimProfitsInput {
aelf.Address scheme_manager = 1;
aelf.Address beneficiary = 2;
string symbol = 3;

}

The sender withdraws his/her token from the scheme.

• ClaimProfitsInput

– scheme manager: manager of the scheme; when creating the scheme the Sender is set to manager.

– beneficiary: the beneficiary, defaults to the Sender.

– symbol: the symbol to claim.

19.12.2 View methods

GetScheme

rpc GetScheme (aelf.Address) returns (TokenHolderProfitScheme) { }

message TokenHolderProfitScheme {
string symbol = 1;
aelf.Hash scheme_id = 2;
sint64 period = 3;
sint64 minimum_lock_minutes = 4;
map<string, sint64> auto_distribute_threshold = 5;

}

Returns a description of the scheme, wrapped in a TokenHolderProfitScheme object:

• Returns

– symbol: the scheme’s token.

– scheme id: the id of the scheme.

– period: the current period of the scheme.

– minimum lock minutes: minimum lock time.

– automatic distribution threshold: distribution info.

19.13 Economic Contract

The Economic contract establishes the economic system of the AElf. When the block chain starts to work, this contract
will initialize other contracts related to economic activities.

19.13. Economic Contract 293

AElf, Release release/1.0.0-preview3

19.13.1 Actions

InitialEconomicSystem

rpc InitialEconomicSystem (InitialEconomicSystemInput) returns (google.protobuf.Empty)
→˓{}

message InitialEconomicSystemInput {
string native_token_symbol = 1;
string native_token_name = 2;
int64 native_token_total_supply = 3;
int32 native_token_decimals = 4;
bool is_native_token_burnable = 5;
int64 mining_reward_total_amount = 6;
int64 transaction_size_fee_unit_price = 7;

}

It will initialize other contracts related to economic activities (For instance, create the native token). This transaction
only can be send once because after the first sending, its state will be set to initialized.

• IssueNativeTokenInput

– native token symbol: the native token symbol.

– native token name: the native token name.

– native token total supply: the native token total supply.

– native token decimals: the token calculation is accurated to which decimal.

– is native token burnable: it indicaites if the token is burnable.

– mining reward total amount: It determines how much native token is used to reward the miners.

– transaction size fee unit price: the transaction fee = transaction size * unit fee.

IssueNativeToken

rpc IssueNativeToken (IssueNativeTokenInput) returns (google.protobuf.Empty) {}

message IssueNativeTokenInput {
int64 amount = 1;
string memo = 2;
aelf.Address to = 3;

}

Only ZeroContract is able to issue the native token.

• IssueNativeTokenInput

– amount: amount of token.

– memo: memo.

– to: the recipient of the token.

19.13.2 Acs1 specific methods

For reference, you can find here the methods implementing acs1.

294 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

SetMethodFee

rpc SetMethodFee (MethodFees) returns (google.protobuf.Empty){}

message MethodFees {
string method_name = 1;
repeated MethodFee fees = 2;

}

message MethodFee {
string symbol = 1;
int64 basic_fee = 2;

}

It sets method fee.

• MethodFees

– method name: the method name in this contract.

– fees: fee list.

• MethodFee

– symbol: token symbol.

– basic fee: fee.

ChangeMethodFeeController

rpc ChangeMethodFeeController (AuthorityInfo) returns (google.protobuf.Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Change the method fee controller, the default is Parliament.

• AuthorityInfo

– contract address: new controller’s contract address.

– owner address: new controller’s address.

GetMethodFee

rpc GetMethodFee (google.protobuf.StringValue) returns (MethodFees){}

message MethodFees {
string method_name = 1;
repeated MethodFee fees = 2;

}

This mehtod is used to query the method fee information.

note: for MethodFees see SetMethodFee

19.13. Economic Contract 295

AElf, Release release/1.0.0-preview3

GetMethodFeeController

rpc GetMethodFeeController (google.protobuf.Empty) returns (acs1.AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

This mehtod is used to query the controller of the method fee.

note: for AuthorityInfo see ChangeMethodFeeController

19.14 TokenConvert Contract

Using this contract can build a connection between the base token(the default is native token) and other tokens created
on the chain. After building the connection, users can trade tokens with the Bancor model. You can find the detail
information about Bancor in AElf Economic System White Paper.

19.14.1 Actions

InitializeInput

rpc Initialize (InitializeInput) returns (google.protobuf.Empty){}

message InitializeInput {
string base_token_symbol = 1;
string fee_rate = 2;
repeated Connector connectors = 3;

}

message Connector {
string symbol = 1;
int64 virtual_balance = 2;
string weight = 3;
bool is_virtual_balance_enabled = 4;
bool is_purchase_enabled = 5;
string related_symbol = 6;
bool is_deposit_account = 7;

}

This method is used to initialize this contract (add base token, connections, etc.).

• InitializeInput

– base token symbol: base token, default is the native token.

– fee rate: buy/sell token need pay the fee(= cost * feeRate).

– connectors: the default added connectors.

We use Bancor model to build the connection between base token and other tokens. Each pair connectors include the
coefficients used by calculating the token price based on the base token, and it consists of the base token connector
and the new token connector.

• Connector

296 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

– symbol: the connector symbol.

– related symbol: indicates its related connector, the pair connector includes a new created token connector
and the base token connector.

– virtual balance: used in bancor model.

– weight: the weight is linked to the related connector’s weight.

– is virtual balance enabled: true indicates that the virtual balance is used in price calculation.

– is purchase enabled: after build a pair connector, you can not buy/sell the token immediately, the default
is false.

– is deposit account: indicates if the connector is base token connector.

AddPairConnector

rpc AddPairConnector(PairConnectorParam) returns (google.protobuf.Empty){}

message PairConnectorParam {
string resource_connector_symbol = 1;
string resource_weight = 2;
int64 native_virtual_balance = 3;
string native_weight = 4;

}

With Bancor model, each new token need a pair connectors to calculate its price. Only the connector contoller(the
default is parliament) is allowed to call this API.

• PairConnectorParam

– resource connector symbol: the new token connector’s symbol.

– resource weight: the new token connector’s weight.

– native virtual balance: the related base token connector’s virtual balance.

– native weight: base token’s weight.

EnableConnector

rpc EnableConnector (ToBeConnectedTokenInfo) returns (google.protobuf.Empty){}

message ToBeConnectedTokenInfo{
string token_symbol = 1;
int64 amount_to_token_convert = 2;

}

To make the connection work, the connector contoller need send this transaction.

• ToBeConnectedTokenInfo

– token symbol: the token symbol.

– amount to token convert: to make the token trade, maybe you need deposit some base token.

19.14. TokenConvert Contract 297

AElf, Release release/1.0.0-preview3

UpdateConnector

rpc UpdateConnector(Connector) returns (google.protobuf.Empty){}

Before calling the EnableConnector, the connector contoller update the pair connctors’ information.

note: for Connector see Initialize

Buy

rpc Buy (BuyInput) returns (google.protobuf.Empty){}

message BuyInput {
string symbol = 1;
int64 amount = 2;
int64 pay_limit = 3;

}

After building the connection and enabling it, you can buy the new token with the base token.

• BuyInput

– symbol: the token symbol.

– amount: the amount you want to buy.

– pay limit: no buy if paying more than this, 0 if no limit.

Sell

rpc Sell (SellInput) returns (google.protobuf.Empty){}

message SellInput {
string symbol = 1;
int64 amount = 2;
int64 receive_limit = 3;

}

After building the connection and enabling it, you can sell the new token.

• SellInput

– symbol: the token symbol.

– amount: the amount you want to sell.

– receive limit: no sell if receiving less than this, 0 if no limit.

ChangeConnectorController

rpc ChangeConnectorController (acs1.AuthorityInfo) returns (google.protobuf.Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

298 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

The controller can be transferred to others.

note: for AuthorityInfo see ChangeMethodFeeController

19.14.2 Acs1 specific methods

For reference, you can find here the methods implementing acs1.

SetMethodFee

rpc SetMethodFee (MethodFees) returns (google.protobuf.Empty){}

message MethodFees {
string method_name = 1;
repeated MethodFee fees = 2;

}

message MethodFee {
string symbol = 1;
int64 basic_fee = 2;

}

It sets method fee.

• MethodFees

– method name: the method name in this contract.

– fees: fee list.

• MethodFee

– symbol token symbol.

– basic fee fee.

ChangeMethodFeeController

rpc ChangeMethodFeeController (AuthorityInfo) returns (google.protobuf.Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Change the method fee controller, the default is Parliament.

• AuthorityInfo

– contract address: new controller’s contract address.

– owner address: new controller’s address.

GetMethodFee

19.14. TokenConvert Contract 299

AElf, Release release/1.0.0-preview3

rpc GetMethodFee (google.protobuf.StringValue) returns (MethodFees){}

message MethodFees {
string method_name = 1;
repeated MethodFee fees = 2;

}

This mehtod is used to query the method fee information.

note: for MethodFees see SetMethodFee

GetMethodFeeController

rpc GetMethodFeeController (google.protobuf.Empty) returns (acs1.AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

This mehtod is used to query the controller of the method fee.

note: for AuthorityInfo see ChangeMethodFeeController

19.14.3 View methods

For reference, you can find here the available view methods.

GetFeeReceiverAddress

rpc GetFeeReceiverAddress (google.protobuf.Empty) returns (aelf.Address){}

message Address{
bytes value = 1;

}

This method is used to query the fee receiver.

• Returns

– value the receiver’s address, the half fee is burned and the other half is transferred to receiver.

GetControllerForManageConnector

rpc GetControllerForManageConnector (google.protobuf.Empty) returns (acs1.
→˓AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

300 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

his method is used to query the controller of the connector.

note: for AuthorityInfo see ChangeConnectorController

GetPairConnector

rpc GetPairConnector (TokenSymbol) returns (PairConnector){}

message TokenSymbol {
string symbol = 1;

}

message PairConnector{
Connector resource_connector = 1;
Connector deposit_connector = 2;

}

This method is used to get the connection information between the base token and other token, which inlcudes a pair
connctors.

• TokenSymbol

– symbol: the token symbol.

• Returns

– resource connector: the new add token connector.

– deposit connector: the corresponding base token connector.

note: for Connector see Initialize

GetFeeRate

rpc GetFeeRate (google.protobuf.Empty) returns (google.protobuf.StringValue){}

message StringValue {
string value = 1;

}

This method is used to query the fee rate.

• Returns

– value: the fee rate.

GetBaseTokenSymbol

rpc GetBaseTokenSymbol (google.protobuf.Empty) returns (TokenSymbol){}

message TokenSymbol {
string symbol = 1;

}

This method is used to query the base token symbol.

• Returns:

19.14. TokenConvert Contract 301

AElf, Release release/1.0.0-preview3

– symbol: the token symbol.

GetBaseGetNeededDeposit

rpc GetNeededDeposit(ToBeConnectedTokenInfo) returns (DepositInfo){}

message ToBeConnectedTokenInfo{
string token_symbol = 1;
int64 amount_to_token_convert = 2;

}

message DepositInfo{
int64 need_amount = 1;
int64 amount_out_of_token_convert = 2;

}

This method is used to query how much the base token need be deposited before enabling the connectors.

• ToBeConnectedTokenInfo

– token symbol: the token symbol.

– amount to token convert: the added token amount you decide to transfer to TokenConvert.

• Returns

– need amount: besides the amount you transfer to TokenConvert, how much base token you need deposit.

– amount out of token convert: how much the added token have not transferred to TokenConvert.

GetDepositConnectorBalance

rpc GetDepositConnectorBalance(google.protobuf.StringValue) returns (google.protobuf.
→˓Int64Value){}

message StringValue {
string value = 1;

}

message Int64Value {
int64 value = 1;

}

This method is used to query how much the base token have been deposited.

• StringValue:

– value: the token symbol.

• Returns:

– value: indicates for this token how much the base token have been deposited.

19.15 Configuration Contract

This contract’s controller(the default is parliament) is able to save data(configuration) on the block chain.

302 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

19.15.1 Actions

SetConfiguration

rpc SetConfiguration (SetConfigurationInput) returns (google.protobuf.Empty){}

message SetConfigurationInput {
string key = 1;
bytes value = 2;

}

This method is used to add or reset configurations.

• SetConfigurationInput

– key: the configuration’s key.

– value: the configuration’s value(bianry data).

ChangeConfigurationController

rpc ChangeConfigurationController (acs1.AuthorityInfo) returns (google.protobuf.Empty)
→˓{}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

The controller can be transfer to others.

• AuthorityInfo

– contract address: new controller’s contract address.

– owner address: new controller’s address.

19.15.2 Acs1 specific methods

For reference, you can find here the methods implementing acs1.

SetMethodFee

rpc SetMethodFee (MethodFees) returns (google.protobuf.Empty){}

message MethodFees {
string method_name = 1;
repeated MethodFee fees = 2;

}

message MethodFee {
string symbol = 1;
int64 basic_fee = 2;

}

It sets method fee.

19.15. Configuration Contract 303

AElf, Release release/1.0.0-preview3

• MethodFees

– omethod name: the method name in this contract.

– fees: fee list.

• MethodFee:

– symbol: token symbol.

– basic fee: fee.

ChangeMethodFeeController

rpc ChangeMethodFeeController (AuthorityInfo) returns (google.protobuf.Empty){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

Change the method fee controller, the default is Parliament.

note: for AuthorityInfo see ChangeConfigurationController

GetMethodFee

rpc GetMethodFee (google.protobuf.StringValue) returns (MethodFees){}

message MethodFees {
string method_name = 1;
repeated MethodFee fees = 2;

}

This mehtod is used to query the method fee information.

note: for MethodFees see SetMethodFee

GetMethodFeeController

rpc GetMethodFeeController (google.protobuf.Empty) returns (acs1.AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

This mehtod is used to query the method fee information.

note: for AuthorityInfo see ChangeMethodFeeController

19.15.3 View methods

For reference, you can find here the available view methods.

304 Chapter 19. Smart Contract APIs

AElf, Release release/1.0.0-preview3

GetConfiguration

rpc GetConfiguration (google.protobuf.StringValue) returns (google.protobuf.
→˓BytesValue){}

message StringValue {
string value = 1;

}

message BytesValue {
bytes value = 1;

}

This method is used to query a configurations.

• StringValue

– value: the configuration’s key.

• Returns

– value: the configuration’s data(bianry).

GetConfigurationController

This method is used to query the controller information.

rpc GetConfigurationController (google.protobuf.Empty) returns (acs1.AuthorityInfo){}

message AuthorityInfo {
aelf.Address contract_address = 1;
aelf.Address owner_address = 2;

}

• Returns

– contract address: new controller’s contract address.

– owner address: new controller’s address.

19.15. Configuration Contract 305

AElf, Release release/1.0.0-preview3

306 Chapter 19. Smart Contract APIs

CHAPTER 20

Acs Introduction

20.1 ACS1 - Transaction Fee Standard

ACS1 is used to manage the transfer fee.

20.1.1 Interface

The contract inherited from ACS1 need implement the APIs below:

• SetMethodFee, the parameter type MethodFees defined in acs1.proto indicates the method name and its fee.

• GetMethodFee is used to get the method fee according to your input(method name).

• ChangeMethodFeeController is used to set who has the ablitity to call SetMethodFee, and its parameter’s type
AuthorityInfo is defined in authority_info.proto.

• GetMehodFeeController is used to get who has the ablitity to call SetMethodFee.

Attention: just the system contract on main chain is able to implement acs1.

20.1.2 Usage

On AElf main chain, before a transactoin start to execute, a pre-transaction is generated by pre-plugin FeeChargePre-
ExecutionPlugin. It is used to charge the transaction fee.

The generated transaction’s method is ChargeTransactionFees. The implementation is roughly like that (part of the
code is omitted):

/// <summary>
/// Related transactions will be generated by acs1 pre-plugin service,
/// and will be executed before the origin transaction.
/// </summary>
/// <param name="input"></param>

(continues on next page)

307

AElf, Release release/1.0.0-preview3

(continued from previous page)

/// <returns></returns>
public override BoolValue ChargeTransactionFees(ChargeTransactionFeesInput input)
{

// ...
// Record tx fee bill during current charging process.
var bill = new TransactionFeeBill();
var fromAddress = Context.Sender;
var methodFees = Context.Call<MethodFees>(input.ContractAddress,

→˓nameof(GetMethodFee),
new StringValue {Value = input.MethodName});

var successToChargeBaseFee = true;
if (methodFees != null && methodFees.Fees.Any())
{

successToChargeBaseFee = ChargeBaseFee(GetBaseFeeDictionary(methodFees), ref
→˓bill);

}
var successToChargeSizeFee = true;
if (!IsMethodFeeSetToZero(methodFees))
{

// Then also do not charge size fee.
successToChargeSizeFee = ChargeSizeFee(input, ref bill);

}
// Update balances.
foreach (var tokenToAmount in bill.FeesMap)
{

ModifyBalance(fromAddress, tokenToAmount.Key, -tokenToAmount.Value);
Context.Fire(new TransactionFeeCharged
{

Symbol = tokenToAmount.Key,
Amount = tokenToAmount.Value

});
if (tokenToAmount.Value == 0)
{

//Context.LogDebug(() => $"Maybe incorrect charged tx fee of
→˓{tokenToAmount.Key}: it's 0.");

}
}
return new BoolValue {Value = successToChargeBaseFee && successToChargeSizeFee};

}

In this method, the transaction fee consists of two parts:

1. The system calls GetMethodFee(line 15) to get the transacion fee you should pay. Then, it will check whether
your balance is enough. If your balance is sufficient, the fee will be signed in the bill (variant bill). If not, your
transaction will be rejected.

2. If the method fee is not set to 0 by the contract developer, the system will charge size fee. (the size if calculate
by the paramter’s size)

After charging successfully, an TransactionFeeCharged event is thrown, and the balance of the sender is modified.

The TransactionFeeCharged event will be captured and processed on the chain to calculate the total amount of trans-
action fees charged in the block. In the next block, the 10% of the transaction fee charged in this block is destroyed,
the remaining 90% flows to dividend pool on the main chain, and is transferred to the FeeReciever on the side chain.
The code is:

/// <summary>

(continues on next page)

308 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

/// Burn 10% of tx fees.
/// If Side Chain didn't set FeeReceiver, burn all.
/// </summary>
/// <param name="symbol"></param>
/// <param name="totalAmount"></param>
private void TransferTransactionFeesToFeeReceiver(string symbol, long totalAmount)
{

Context.LogDebug(() => "Transfer transaction fee to receiver.");
if (totalAmount <= 0) return;
var burnAmount = totalAmount.Div(10);
if (burnAmount > 0)

Context.SendInline(Context.Self, nameof(Burn), new BurnInput
{

Symbol = symbol,
Amount = burnAmount

});
var transferAmount = totalAmount.Sub(burnAmount);
if (transferAmount == 0)

return;
var treasuryContractAddress =

Context.GetContractAddressByName(SmartContractConstants.
→˓TreasuryContractSystemName);

if (treasuryContractAddress!= null)
{

// Main chain would donate tx fees to dividend pool.
if (State.DividendPoolContract.Value == null)

State.DividendPoolContract.Value = treasuryContractAddress;
State.DividendPoolContract.Donate.Send(new DonateInput
{

Symbol = symbol,
Amount = transferAmount

});
}
else
{

if (State.FeeReceiver.Value != null)
{

Context.SendInline(Context.Self, nameof(Transfer), new TransferInput
{

To = State.FeeReceiver.Value,
Symbol = symbol,
Amount = transferAmount,

});
}
else
{

// Burn all!
Context.SendInline(Context.Self, nameof(Burn), new BurnInput
{

Symbol = symbol,
Amount = transferAmount

});
}

}
}

In this way, AElf charges the transaction fee via the GetMethodFee provided by ACS1, and the other three methods

20.1. ACS1 - Transaction Fee Standard 309

AElf, Release release/1.0.0-preview3

are used to help with the implementations of GetMethodFee.

20.1.3 Implementation

The easiest way to do this is to just implement the method GetMethodFee.

If there are Foo1, Foo2, Bar1 and Bar2 methods related to business logic in a contract, they are priced as 1, 1, 2, 2 ELF
respectively, and the transaction fees of these four methods will not be easily modified later, they can be implemented
as follows:

public override MethodFees GetMethodFee(StringValue input)
{

if (input.Value == nameof(Foo1) || input.Value == nameof(Foo2))
{

return new MethodFees
{

MethodName = input.Value,
Fees =
{

new MethodFee
{

BasicFee = 1_00000000,
Symbol = Context.Variables.NativeSymbol

}
}

};
}
if (input.Value == nameof(Bar1) || input.Value == nameof(Bar2))
{

return new MethodFees
{

MethodName = input.Value,
Fees =
{

new MethodFee
{

BasicFee = 2_00000000,
Symbol = Context.Variables.NativeSymbol

}
}

};
}
return new MethodFees();

}

This implementation can modify the transaction fee only by upgrading the contract, without implementing the other
three interfaces.

A more recommended implementation needs to define an MappedState in the State file for the contract:

public MappedState<string, MethodFees> TransactionFees { get; set; }

Modify the TransactionFees data structure in the SetMethodFee method, and return the value in the GetMethodFee
method.

In this solution, the implementation of GetMethodFee is very easy:

310 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

public override MethodFees GetMethodFee(StringValue input)
return State.TransactionFees[input.Value];

}

The implementation of SetMethodFee requires the addition of permission management, since contract developers
don’t want the transaction fees of their contract methods to be arbitrarily modified by others.

Referring to the MultiToken contract, it can be implemented as follows:

Firstly, define a SingletonState AuthorityInf(the AuthorityInf is defined in authority_info.proto)

public SingletonState<AuthorityInfo> MethodFeeController { get; set; }

Then, check the sender’s right by comparing its address with OwnerAdress.

public override Empty SetMethodFee(MethodFees input)
{

foreach (var symbolToAmount in input.Fees)
{

AssertValidToken(symbolToAmount.Symbol, symbolToAmount.BasicFee);
}
RequiredMethodFeeControllerSet();
Assert(Context.Sender == State.MethodFeeController.Value.OwnerAddress,

→˓"Unauthorized to set method fee.");
State.TransactionFees[input.MethodName] = input;
return new Empty();

}

AssertValidToken checks if the token symbol exists, and the BasicFee is reasonable.

The permission check code is in the lines 8 and 9, and RequiredMethodFeeControllerSet prevents the permission is
not set before.

If permissions are not set, the SetMethodFee method can only be called by the default address of the Parliamentary
contract. If a method is sent through the default address of Parliament, it means that two-thirds of the block producers
have agreed to the proposal.

private void RequiredMethodFeeControllerSet()
{

if (State.MethodFeeController.Value != null) return;
if (State.ParliamentContract.Value == null)
{

State.ParliamentContract.Value = Context.
→˓GetContractAddressByName(SmartContractConstants.ParliamentContractSystemName);

}
var defaultAuthority = new AuthorityInfo();
// Parliament Auth Contract maybe not deployed.
if (State.ParliamentContract.Value != null)
{
defaultAuthority.OwnerAddress = State.ParliamentContract.

→˓GetDefaultOrganizationAddress.Call(new Empty());
defaultAuthority.ContractAddress = State.ParliamentContract.Value;

}
State.MethodFeeController.Value = defaultAuthority;

}

Of course, the authority of SetMethodFee can also be changed, provided that the transaction to modify the authority
is sent from the default address of the Parliamentary contract:

20.1. ACS1 - Transaction Fee Standard 311

AElf, Release release/1.0.0-preview3

public override Empty ChangeMethodFeeController(AuthorityInfo input)
{

RequiredMethodFeeControllerSet();
AssertSenderAddressWith(State.MethodFeeController.Value.OwnerAddress);
var organizationExist = CheckOrganizationExist(input);
Assert(organizationExist, "Invalid authority input.");
State.MethodFeeController.Value = input;
return new Empty();

}

The implementation of GetMethodFeeController is also very easy

public override AuthorityInfo GetMethodFeeController(Empty input)
{

RequiredMethodFeeControllerSet();
return State.MethodFeeController.Value;

}

Above all, these are the two ways to implement acs1. Mostly, implementations will use a mixture of the two: part of
methods’ fee is set to a fixed value, the other part of method is not set method fee.

20.1.4 Test

Create ACS1’s Stub, and call GetMethodFee and GetMethodFeeController to check if the return value is expected.

20.1.5 Example

All AElf system contracts implement ACS1, which can be used as a reference.

20.2 ACS2 - Parallel Execution Standard

ACS2 is used to provide information for parallel execution of transactions.

20.2.1 Interface

A contract that inherits ACS2 only needs to implement one method:

• GetResourceInfo

The parameter is the Transaction type, and the return value is the type ResourceInfo defined in acs2.proto:

message ResourceInfo {
repeated aelf.ScopedStatePath paths = 1;
bool non_parallelizable = 2;

}

aelf.ScopedStatePath is defined in aelf\core.proto:

message ScopedStatePath {
Address address = 1;
StatePath path = 2;

}

(continues on next page)

312 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

message StatePath {
repeated string parts = 1;

}

20.2.2 Usage

AElf uses the key-value database to store data. For the data generated during the contract execution, a mechanism
called State Path is used to determine the key of the data.

For example Token contract‘s State file defines a property MappedState < Address, string, long >Balances, it can be
used to access, modify balance.

Assuming that the address of the Token contract is Nmjj7noTpMqZ522j76SDsFLhiKkThv1u3d4TxqJMD8v89tWmE.
If you want to know the balance of the address 2EM5uV6bSJh6xJfZTUa1pZpYsYcCUAdPvZvFUJzMDJEx3rbioz,
you can directly use this key to access redis / ssdb to get its value.

Nmjj7noTpMqZ522j76SDsFLhiKkThv1u3d4TxqJMD8v89tWmE/Balances/
→˓2EM5uV6bSJh6xJfZTUa1pZpYsYcCUAdPvZvFUJzMDJEx3rbioz/ELF

On AElf, the implementation of parallel transaction execution is also based on the key , developers need to provide a
method may access to the StatePath, then the corresponding transactions will be properly grouped before executing:
if the two methods do not access the same StatePath, then you can safely place them in different groups.

Attention: The transaction will be canceled and labeled to “can not be groupped” when the StatePath mismatchs the
method.

If you are interested in the logic, you can view the code ITransactionGrouper, as well as IParallelTransactionExecut-
ingService .

20.2.3 Implementation

A example: within the Token contract, the core logic of method Transfer is to modify the balance of address. It
accesses the balances property mentioned above twice.

At this point, we need to notify ITransactionGrouper via the GetResourceInfo method of the key of the ELF balance
of address A and address B:

var args = TransferInput.Parser.ParseFrom(txn.Params);
var resourceInfo = new ResourceInfo
{

Paths =
{

GetPath(nameof(TokenContractState.Balances), txn.From.ToString(), args.
→˓Symbol),

GetPath(nameof(TokenContractState.Balances), args.To.ToString(), args.Symbol),
}

};
return resourceInfo;

The GetPath forms a ScopedStatePath from several pieces of data that make up the key:

private ScopedStatePath GetPath(params string[] parts)
{

return new ScopedStatePath

(continues on next page)

20.2. ACS2 - Parallel Execution Standard 313

AElf, Release release/1.0.0-preview3

(continued from previous page)

{
Address = Context.Self,
Path = new StatePath
{

Parts =
{

parts
}

}
}

}

20.2.4 Test

You can construct two transactions, and the transactions are passed directly to an implementation instance of ITrans-
actionGrouper, and the GroupAsync method is used to see if the two transactions are parallel.

We prepare two stubs that implement the ACS2 contract with different addresses to simulate the Transfer:

var keyPair1 = SampleECKeyPairs.KeyPairs[0];
var acs2DemoContractStub1 = GetACS2DemoContractStub(keyPair1);
var keyPair2 = SampleECKeyPairs.KeyPairs[1];
var acs2DemoContractStub2 = GetACS2DemoContractStub(keyPair2);

Then take out some services and data needed for testing from Application:

var transactionGrouper = Application.ServiceProvider.GetRequiredService
→˓<ITransactionGrouper>();
var blockchainService = Application.ServiceProvider.GetRequiredService
→˓<IBlockchainService>();
var chain = await blockchainService.GetChainAsync();

Finally, check it via transactionGrouper:

// Situation can be parallel executed.
{

var groupedTransactions = await transactionGrouper.GroupAsync(new ChainContext
{

BlockHash = chain.BestChainHash,
BlockHeight = chain.BestChainHeight

}, new List<Transaction>
{

acs2DemoContractStub1.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[2].PublicKey),
Symbol = "ELF",
Amount = 1

}),
acs2DemoContractStub2.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[3].PublicKey),
Symbol = "ELF",
Amount = 1

}),
});

(continues on next page)

314 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

groupedTransactions.Parallelizables.Count.ShouldBe(2);
}
// Situation cannot.
{

var groupedTransactions = await transactionGrouper.GroupAsync(new ChainContext
{

BlockHash = chain.BestChainHash,
BlockHeight = chain.BestChainHeight

}, new List<Transaction>
{

acs2DemoContractStub1.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[2].PublicKey),
Symbol = "ELF",
Amount = 1

}),
acs2DemoContractStub2.TransferCredits.GetTransaction(new TransferCreditsInput
{

To = Address.FromPublicKey(SampleECKeyPairs.KeyPairs[2].PublicKey),
Symbol = "ELF",
Amount = 1

}),
});
groupedTransactions.Parallelizables.Count.ShouldBe(1);

}

20.2.5 Example

You can refer to the implementation of the MultiToken contract for GetResourceInfo. Noting that for the ResourceInfo
provided by the method Tranfer, you need to consider charging a transaction fee in addition to the two keys mentioned
in this article.

20.3 ACS3 - Contract Proposal Standard

Using the AuthorityInfo defined in authority_info.proto restricts a method to be called by a certain address:

Assert(Context.Sender == State.AuthorityInfo.Value.OwnerAddress, "No permission.");

When a method needs to be agreed by multiple parties, the above solution is obviously inadequate. At this time, you
can consider using some of the interfaces provided by ACS3.

20.3.1 Interface

If you want multiple addresses vote to get agreement to do something, you can implement the following methods
defined in ACS3:

• CreateProposal, it is to specify a method for a contract and its parameters. When the proposal is approved by
multiple addresses, it can be released: use a virtual address as a Sender, and execute this method by sending
an inline transaction. Therefore, the parameter CreateProposalInput defines the basic information of the inline
transaction to be executed finally. The return value is a hash, which is used to uniquely identify this proposal;

20.3. ACS3 - Contract Proposal Standard 315

AElf, Release release/1.0.0-preview3

• Approve, Reject, Abstain, the parameters are Hash, called the proposal Id, created by CreateProposal, is used to
agree, reject, and abstain respectively .

• Release, the parameter is the proposal Id, is used to release the proposal: when the requirements are met, it can
be released;

• ClearProposal is used to clean invalid data in DB.

It can be seen that before a proposal is released, the account with voting rights can agree, object, and abstain. Which
specific accounts have the right to vote? ACS3 introduces the concept of Organization. A proposal is attached to an
organization from its creation, and only members of the organization can vote.

However, due to the different forms of organization, the Organization structure needs to be defined by the contract
implementing the ACS3. Here is an example:

message Organization {
acs3.ProposalReleaseThreshold proposal_release_threshold = 1;
string token_symbol = 2;
aelf.Address organization_address = 3;
aelf.Hash organization_hash = 4;
acs3.ProposerWhiteList proposer_white_list = 5;

}

Because each organization has a default virtual address, adding the code like the begining at this document can verify
if the sender is authorized.

Assert(Context.Sender == someOrganization.OrganizationAddress, "No permission.");

How to know what an orgnanization has agreed on a proposal? ACS3 defines a data structure ProposalReleaseThresh-
old:

message ProposalReleaseThreshold {
int64 minimal_approval_threshold = 1;
int64 maximal_rejection_threshold = 2;
int64 maximal_abstention_threshold = 3;
int64 minimal_vote_threshold = 4;

}

The orgnaization determines how to deal with the proposal according to the data:

• the minimal approval the proposal can be released.

• The most rejection amount the proposal can tolerate.

• The most abstention amount the proposal can tolerate.

• the minimal vote amount the proposal is valid.

Interfaces referencing organization in ACS3:

• ChangeOrganizationThresholdits paramenter is ProposalReleaseThreshold that is used to modify the threshold.
Of course, this method also needs permission control

• ChangeOrganizationProposerWhiteList, The organization can restrict which addresses can create proposals. Its
parameter is ProposerWhiteList, defined in acs3.proto, which is actually an Address list;

• CreateProposalBySystemContract, The original intention is that the system contract can create a proposal via
the virtual address, that is, there are some senders have privileges, and must be a contract:

The type of APIs mentioned above is action, there are some APIs with type View used to query:

• GetProposal is used to get the proposal detailed information.

316 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

• ValidateOrganizationExist is used to check if the organization exists in a contract.

• ValidateProposerInWhiteList is used to check if the address is in the whitelist of a organization.

20.3.2 Implementation

It is assumed here that there is only one organization in a contract, that is, there is no need to specifically define the
Organization type. Since the organization is not explicitly declared and created, the organization’s proposal whitelist
does not exist. The process here is that the voter must use a certain token to vote.

For simplicity, only the core methods CreateProposal, Approve, Reject, Abstain, and Release are implemented here.

There are only two necessary State attributes:

public MappedState<Hash, ProposalInfo> Proposals { get; set; }
public SingletonState<ProposalReleaseThreshold> ProposalReleaseThreshold { get; set; }

The Proposals stores all proposal’s information, and the ProposalReleaseThreshold is used to save the requirements
that the contract needs to meet to release the proposal.

When the contract is initialized, the proposal release requirements should be set:

public override Empty Initialize(Empty input)
{

State.TokenContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenContractSystemName);
State.ProposalReleaseThreshold.Value = new ProposalReleaseThreshold
{

MinimalApprovalThreshold = 1,
MinimalVoteThreshold = 1

};
return new Empty();

}

The requirement is at least one member who vote and at least one approval. Create proposal:

public override Hash CreateProposal(CreateProposalInput input)
{

var proposalId = Context.GenerateId(Context.Self, input.Token);
Assert(State.Proposals[proposalId] == null, "Proposal with same token already

→˓exists.");
State.Proposals[proposalId] = new ProposalInfo
{

ProposalId = proposalId,
Proposer = Context.Sender,
ContractMethodName = input.ContractMethodName,
Params = input.Params,
ExpiredTime = input.ExpiredTime,
ToAddress = input.ToAddress,
ProposalDescriptionUrl = input.ProposalDescriptionUrl

};
return proposalId;

}

Vote:

20.3. ACS3 - Contract Proposal Standard 317

AElf, Release release/1.0.0-preview3

public override Empty Abstain(Hash input)
{

Charge();
var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
proposal.Abstentions.Add(Context.Sender);
State.Proposals[input] = proposal;
return new Empty();

}
public override Empty Approve(Hash input)
{

Charge();
var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
proposal.Approvals.Add(Context.Sender);
State.Proposals[input] = proposal;
return new Empty();

}
public override Empty Reject(Hash input)
{

Charge();
var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
proposal.Rejections.Add(Context.Sender);
State.Proposals[input] = proposal;
return new Empty();

}
private void Charge()
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = Context.Variables.NativeSymbol,
Amount = 1_00000000

});
}

Release is just count the vote, here is a recommended implementation:

public override Empty Release(Hash input)
{

var proposal = State.Proposals[input];
if (proposal == null)
{

throw new AssertionException("Proposal not found.");
}
Assert(IsReleaseThresholdReached(proposal), "Didn't reach release threshold.");

(continues on next page)

318 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

Context.SendInline(proposal.ToAddress, proposal.ContractMethodName, proposal.
→˓Params);

return new Empty();
}
private bool IsReleaseThresholdReached(ProposalInfo proposal)
{

var isRejected = IsProposalRejected(proposal);
if (isRejected)

return false;
var isAbstained = IsProposalAbstained(proposal);
return !isAbstained && CheckEnoughVoteAndApprovals(proposal);

}
private bool IsProposalRejected(ProposalInfo proposal)
{

var rejectionMemberCount = proposal.Rejections.Count;
return rejectionMemberCount > State.ProposalReleaseThreshold.Value.

→˓MaximalRejectionThreshold;
}
private bool IsProposalAbstained(ProposalInfo proposal)
{

var abstentionMemberCount = proposal.Abstentions.Count;
return abstentionMemberCount > State.ProposalReleaseThreshold.Value.

→˓MaximalAbstentionThreshold;
}
private bool CheckEnoughVoteAndApprovals(ProposalInfo proposal)
{

var approvedMemberCount = proposal.Approvals.Count;
var isApprovalEnough =

approvedMemberCount >= State.ProposalReleaseThreshold.Value.
→˓MinimalApprovalThreshold;

if (!isApprovalEnough)
return false;

var isVoteThresholdReached =
proposal.Abstentions.Concat(proposal.Approvals).Concat(proposal.Rejections).

→˓Count() >=
State.ProposalReleaseThreshold.Value.MinimalVoteThreshold;

return isVoteThresholdReached;
}

20.3.3 Test

Before testing, two methods were added to the contract, that had just implemented ACS3. We will test the proposal
with these mehods.

Define a singleton string in the State file:

public StringState Slogan { get; set; }

Then implement a pair of Set/Get methods:

public override StringValue GetSlogan(Empty input)
{

return State.Slogan.Value == null ? new StringValue() : new StringValue {Value =
→˓State.Slogan.Value};
}

(continues on next page)

20.3. ACS3 - Contract Proposal Standard 319

AElf, Release release/1.0.0-preview3

(continued from previous page)

public override Empty SetSlogan(StringValue input)
{

Assert(Context.Sender == Context.Self, "No permission.");
State.Slogan.Value = input.Value;
return new Empty();

}

In this way, during the test, create a proposal for the SetSlogan. After passing and releasing, use the GetSlogan method
to check whether the Slogan has been modified.

Prepare a Stub that implements the ACS3 contract:

var keyPair = SampleECKeyPairs.KeyPairs[0];
var acs3DemoContractStub =

GetTester<ACS3DemoContractContainer.ACS3DemoContractStub>(DAppContractAddress,
→˓keyPair);

Since approval requires the contract to charge users, the user should send Approve transaction of the Token contract.

var tokenContractStub =
GetTester<TokenContractContainer.TokenContractStub>(

GetAddress(TokenSmartContractAddressNameProvider.StringName), keyPair);
await tokenContractStub.Approve.SendAsync(new ApproveInput
{

Spender = DAppContractAddress,
Symbol = "ELF",
Amount = long.MaxValue

});

Create a proposal, the target method is SetSlogan, here we want to change the Slogan to “AElf” :

var proposalId = (await acs3DemoContractStub.CreateProposal.SendAsync(new
→˓CreateProposalInput
{

ContractMethodName = nameof(acs3DemoContractStub.SetSlogan),
ToAddress = DAppContractAddress,
ExpiredTime = TimestampHelper.GetUtcNow().AddHours(1),
Params = new StringValue {Value = "AElf"}.ToByteString(),
Token = HashHelper.ComputeFrom("AElf")

})).Output;

Make sure that the Slogan is still an empty string at this time and then vote:

// Check slogan
{

var slogan = await acs3DemoContractStub.GetSlogan.CallAsync(new Empty());
slogan.Value.ShouldBeEmpty();

}
await acs3DemoContractStub.Approve.SendAsync(proposalId);

Release proposal, and the Slogan becomes “AElf”.

await acs3DemoContractStub.Release.SendAsync(proposalId);
// Check slogan
{

var slogan = await acs3DemoContractStub.GetSlogan.CallAsync(new Empty());

(continues on next page)

320 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

slogan.Value.ShouldBe("AElf");
}

20.4 ACS4 - Consensus Standard

ACS4 is used to customize consensus mechanisms.

20.4.1 Interface

If you want to customize the consensus mechanism, you need to implement the following five interfaces:

• GetConsensusCommand, whose parameter is a binary array, returns ConsensusCommand defined in acs4.proto.
This type is used to indicate the start time of the next block, the block time limit, and the final cut-off time for
the account calling GetConsensus Command;

• GetConsensusExtraData, the parameters and return values are binary arrays, which are used to generate consen-
sus block header information through consensus contracts when a new block is produced;

• GenerateConsensusTransactions, the parameter is a binary array, and the return value is of type TransactionList.
It is used to generate a consensus system transaction when a block is generated. Each block will contain only
one consensus transaction, which is used to write the latest consensus information to the State database;

• ValidateConsensusBeforeExecution, the parameter is a binary array, and the return value is of type Validation-
Result, is used to verify whether the consensus information in the block header is correct before the block
executes;

• ValidateConsensusAfterExecution, with the same parameter and return value, is used to verify that the consensus
information written to the State is correct after the block executes.

ConsensusCommand, ValidationResult and TransactionList are defined as:

message ConsensusCommand {
int32 limit_milliseconds_of_mining_block = 1;// Time limit of mining next block.
bytes hint = 2;// Context of Hint is diverse according to the consensus protocol

→˓we choose, so we use bytes.
google.protobuf.Timestamp arranged_mining_time = 3;
google.protobuf.Timestamp mining_due_time = 4;

}
message ValidationResult {

bool success = 1;
string message = 2;
bool is_re_trigger = 3;

}
message TransactionList {

repeated aelf.Transaction transactions = 1;
}

20.4.2 Usage

The five interfaces defined in ACS4 basically correspond to the five methods of the IConsensusService interface in the
AElf.Kernel.Consensus project:

20.4. ACS4 - Consensus Standard 321

AElf, Release release/1.0.0-preview3

ACS4 IConsensusService Methodology The Timing To Call
GetConsensusCommand Task TriggerConsen-

susAsync
(ChainContext chainCon-
text);

When TriggerConsen-
susAsync is called,
it will use the account
configured by
the node to call the Get-
ConsensusCommand
method of the consensus
contract
to obtain block informa-
tion
ConsensusCommand),
and use it to
(see IConsensusScheduler
implementation)
.

1. When the node is
started;

2. When the
BestChainFound-

EventData event is
thrown;

3. When the validation
of consensus

data fails and the consen-
sus needs
to be triggered again (The
IsReTrigger field of the
ValidationResult type is
true);

GetConsensus-
ExtraData

Task<byte[]> GetConsen-
sus
ExtraDataAsync(ChainContext
chainContext);

When a node produces a
block, it will
generate block header in-
formation for
the new block by IBlock-
ExtraDataService.
This service is imple-
mented to traverse
all IBlockExtraDat-
aProvider
implementations, and they
generate
binary array information
into the
ExtraData field of Block-
Header. The
consensus block header
information is
provided by Consensu-
sExtraDataProvider,
in which the GetConsen-
susExtraDataAsync
of the IConsensusService
in the
consensus contract is
called, and the
GetConsensusExtraDataAsync
method is
implemented by calling
the
GetConsensusExtraData
in the consensus
contract.

At the time that the node
produces
a new block.

GenerateConsensus-
Transactions

Task<List<Transaction>>
GenerateConsensus-
TransactionsAsync(
ChainContext chainCon-
text);

In the process of generat-
ing new blocks,
a consensus transaction
needs to be
generated as one of the
system
transactions. The basic
principle is the
same as GetConsensusEx-
traData.

At the time that the node
produces
a new block.

ValidateConsensus-
BeforeExecution

Task<bool> ValidateCon-
sensus
BeforeExecutionAsync(
chainContext, byte[]
consensusExtraData);

As long as the IBlockVal-
idationProvider
interface is implemented,
a new block
validator can be added.
The consensus
validator is Consensus-
ValidationProvider
, where ValidateBlockBe-
foreExecuteAsync
is implemented by calling
the
ValidateConsensusBeforeExecution
method
of the consensus contract.

At the time that the node
produces
a new block.

ValidateConsensus-
AfterExecution

Task<bool> ValidateCon-
sensus
AfterExecutionAsync
(ChainContext chainCon-
text,
byte[] consensusExtra-
Data);

The implementation of
ValidateBlockAfterExecuteAsync
in
ConsensusValidationProvider
is to call
the ValidateConsen-
susAfterExecution
in the consensus contract.

At the time that the node
produces
a new block.

322 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

20.4.3 Example

You can refer to the implementation of the AEDPoS contract.

20.5 ACS5 - Contract Threshold Standard

If you want to raise the threshold for using contract, consider implementing ACS5.

20.5.1 Interface

To limit to call a method in a contract, you only need to implement an interface:

• GetMethodCallingThreshold, the parameter is string, and the return value is the MethodCallingThreshold de-
fined in the acs5.proto file.

If you want to modify the threshold after the contract is deployed, another interface can be implemented:

• SetMethodCallingThreshold, the parameter is SetMethodCallingThresholdInput.

The definition of MethodCallingThreshold type is:

message MethodCallingThreshold {
map<string, int64> symbol_to_amount = 1;// The order matters.
ThresholdCheckType threshold_check_type = 2;

}
enum ThresholdCheckType {

BALANCE = 0;
ALLOWANCE = 1;

}

The significance of the enumeration ThresholdCheckType is that there are two types of thresholds for contract method
calls:

1. It can be called when the balance of a certain token in the account is sufficient, which corresponds to Thresh-
oldCheckType.Balance;

2. Not only does the balance of a token in the account be required to be sufficient, but the account also needs
sufficient authorization for the target contract, which corresponds to The ThresholdCheckType.Allowance.

3. SetMethodCallingThresholdInput definition

message SetMethodCallingThresholdInput {
string method = 1;
map<string, int64> symbol_to_amount = 2;// The order matters.
ThresholdCheckType threshold_check_type = 3;

}

20.5.2 Usage

Similar to ACS1, which uses an automatically generated pre-plugin transaction called ChargeTransactionFees to
charge a transaction fee, ACS5 automatically generates a pre-plugin transaction called CheckThreshold to test whether
the account that sent the transaction can invoke the corresponding method.

The implementation of CheckThreshold:

20.5. ACS5 - Contract Threshold Standard 323

AElf, Release release/1.0.0-preview3

public override Empty CheckThreshold(CheckThresholdInput input)
{

var meetThreshold = false;
var meetBalanceSymbolList = new List<string>();
foreach (var symbolToThreshold in input.SymbolToThreshold)
{

if (GetBalance(input.Sender, symbolToThreshold.Key) < symbolToThreshold.Value)
continue;

meetBalanceSymbolList.Add(symbolToThreshold.Key);
}
if (meetBalanceSymbolList.Count > 0)
{

if (input.IsCheckAllowance)
{

foreach (var symbol in meetBalanceSymbolList)
{

if (State.Allowances[input.Sender][Context.Sender][symbol] <
input.SymbolToThreshold[symbol]) continue;

meetThreshold = true;
break;

}
}
else
{

meetThreshold = true;
}

}
if (input.SymbolToThreshold.Count == 0)
{

meetThreshold = true;
}
Assert(meetThreshold, "Cannot meet the calling threshold.");
return new Empty();

}

In other words, if the token balance of the sender of the transaction or the amount authorized for the target contract does
not reach the set limit, the pre-plugin transaction will throw an exception, thereby it prevents the original transaction
from executing.

20.5.3 Implementation

As the GetMethodFee of ACS1, you can implement only one GetMethodCallingThreshold method.

It can also be achieved by using MappedState<string, MethodCallingThreshold> in the State file:

public MappedState<string, MethodCallingThreshold> MethodCallingThresholds { get; set;
→˓ }

But at the same time, do not forget to configure the call permission of SetMethodCallingThreshold, which requires the
definition of an Admin in the State (of course, you can also use ACS3):

public SingletonState<Address> Admin { get; set; }

The easiest implementation

324 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

public override Empty SetMethodCallingThreshold(SetMethodCallingThresholdInput input)
{

Assert(State.Admin.Value == Context.Sender, "No permission.");
State.MethodCallingThresholds[input.Method] = new MethodCallingThreshold
{

SymbolToAmount = {input.SymbolToAmount}
};
return new Empty();

}
public override MethodCallingThreshold GetMethodCallingThreshold(StringValue input)
{

return State.MethodCallingThresholds[input.Value];
}
public override Empty Foo(Empty input)
{

return new Empty();
}

20.5.4 Test

You can test the Foo method defined above.

Make a Stub:

var keyPair = SampleECKeyPairs.KeyPairs[0];
var acs5DemoContractStub =

GetTester<ACS5DemoContractContainer.ACS5DemoContractStub>(DAppContractAddress,
→˓keyPair);

Before setting the threshold, check the current threshold, which should be 0:

var methodResult = await acs5DemoContractStub.GetMethodCallingThreshold.CallAsync(
new StringValue
{

Value = nameof(acs5DemoContractStub.Foo)
});

methodResult.SymbolToAmount.Count.ShouldBe(0);

The ELF balance of the caller of Foo should be greater than 1 ELF:

await acs5DemoContractStub.SetMethodCallingThreshold.SendAsync(
new SetMethodCallingThresholdInput
{

Method = nameof(acs5DemoContractStub.Foo),
SymbolToAmount =
{

{"ELF", 1_0000_0000}
},
ThresholdCheckType = ThresholdCheckType.Balance

});

Check the threshold again:

methodResult = await acs5DemoContractStub.GetMethodCallingThreshold.CallAsync(
new StringValue
{

(continues on next page)

20.5. ACS5 - Contract Threshold Standard 325

AElf, Release release/1.0.0-preview3

(continued from previous page)

Value = nameof(acs5DemoContractStub.Foo)
});

methodResult.SymbolToAmount.Count.ShouldBe(1);
methodResult.ThresholdCheckType.ShouldBe(ThresholdCheckType.Balance);

Send the Foo transaction via an account who has sufficient balance can succeed:

// Call with enough balance.
{

var executionResult = await acs5DemoContractStub.Foo.SendAsync(new Empty());
executionResult.TransactionResult.Status.ShouldBe(TransactionResultStatus.Mined);

}

Send the Foo transaction via another account without ELF fails:

// Call without enough balance.
{

var poorStub =
GetTester<ACS5DemoContractContainer.ACS5DemoContractStub>(DAppContractAddress,

SampleECKeyPairs.KeyPairs[1]);
var executionResult = await poorStub.Foo.SendWithExceptionAsync(new Empty());
executionResult.TransactionResult.Error.ShouldContain("Cannot meet the calling

→˓threshold.");
}

20.6 todo

20.7 ACS7 - Contract CrossChain Standard

ACS7 is for cross chain related contract implementation.

20.7.1 Interface

This involves methods for chain creation and indexing:

• ProposeCrossChainIndexing

– Propose cross chain to be indexed and wait for approvals from authorized organizations;

• ReleaseCrossChainIndexing

– Release the proposed indexing if already approved.

• RecordCrossChainData

– The method to record cross chain data and complete indexing.

• RequestSideChainCreation

– Request to create a new side chain e wait for approvals from authorized organizations;.

• ReleaseSideChainCreation

– Release the side chain creation request if already approved and it will call the method Cre-
ateSideChain.

326 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

• CreateSideChain

– The method to create a new side chain.

• Recharge

– Recharge for one specific side chain.

• DisposeSideChain

– Stop indexing for one specific side chain.

• AdjustIndexingFeePrice

– Adjust indexing fee for one specific side chain.

• VerifyTransaction

– Transaction cross chain verification.

• GetChainInitializationData

– Get side chain initialization data which is needed during the first time startup of side chain node.

20.7.2 Usage

ACS7 declares methods for the scenes about cross chain. AElf provides the implementation for ACS7, CrossChain-
Contract. Please refer api docs of this contract for more details.

20.8 ACS8 - Transaction Resource Token Fee Standard

ACS8 has some similarities to ACS1, both of them are charge transaction fee standard.

The difference is that ACS1 charges the user a transaction fee, ACS8 charges the called contract, and the transaction
fee charged by ACS8 is the specified four tokens: WRITE, READ, NET, TRAFFIC.

In another word, if a contract declares that it inherits from ACS8, each transaction in this contract will charge four
kinds of resource token.

20.8.1 Interface

Only one method is defined in the acs8.proto file:

• BuyResourceToken, the parameter is the BuyResourceTokenInput defined in the Proto file.

message BuyResourceTokenInput {
string symbol = 1;
int64 amount = 2;
int64 pay_limit = 3; // No buy if paying more than this, 0 if no limit

}

This method can be used to purchase one of the four resource coins, which consumes the ELF balance in the contract
account (you can recharge it yourself, or you can collect the user’s ELF tokens as a profit to be self-sufficient).

Of course, it is possible for developers to purchase resource token and then directly transfer to the address of this
contract via the Transfer method of the Token contract. Therefore, this interface does not have to be implemented.

20.8. ACS8 - Transaction Resource Token Fee Standard 327

AElf, Release release/1.0.0-preview3

20.8.2 Usage

The contract inherited from ACS1 uses a pre-plugin transaction called ChargeTransactionFees for charging transaction
fee.

Because the specific charge amount is determined by the actual consumption of the transaction, the post-plugin gener-
ates ChargeResourceToken tansaction to charge resource token.

The implementation of ChargeResourceToken is also similar to it of ChargeTransactionFees:

public override Empty ChargeResourceToken(ChargeResourceTokenInput input)
{

Context.LogDebug(() => string.Format("Start executing ChargeResourceToken.{0}",
→˓input));

if (input.Equals(new ChargeResourceTokenInput()))
{

return new Empty();
}
var bill = new TransactionFeeBill();
foreach (var pair in input.CostDic)
{

Context.LogDebug(() => string.Format("Charging {0} {1} tokens.", pair.Value,
→˓pair.Key));

var existingBalance = GetBalance(Context.Sender, pair.Key);
Assert(existingBalance >= pair.Value,

string.Format("Insufficient resource of {0}. Need balance: {1}; Current
→˓balance: {2}.", pair.Key, pair.Value, existingBalance));

bill.FeesMap.Add(pair.Key, pair.Value);
}
foreach (var pair in bill.FeesMap)
{

Context.Fire(new ResourceTokenCharged
{

Symbol = pair.Key,
Amount = pair.Value,
ContractAddress = Context.Sender

});
if (pair.Value == 0)
{

Context.LogDebug(() => string.Format("Maybe incorrect charged resource
→˓fee of {0}: it's 0.", pair.Key));

}
}
return new Empty();

}

The amount of each resource token should be calculated by AElf.Kernel.FeeCalculation. In detail, A data structure
named CalculateFeeCoefficients is defined in token_contract.proto, whose function is to save all coefficients of a
polynomial, and every three coefficients are a group, such as a, b, c, which means (b / c) * x ^ a. Each resource token
has a polynomial that calculates it. Then according to the polynomial and the actual consumption of the resource,
calculate the cost of the resource token. Finally, the cost is used as the parameter of ChargeResourceToken to generate
this post-plugin transaction.

In addition, the method of the contract that has been owed cannot be executed before the contract top up resource
token. As a result, a pre-plugin transaction is added, similar to the ACS5 pre-plugin transaction, which checks the
contract’s resource token balance, and the transaction’s method name is CheckResourceToken :

328 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

public override Empty CheckResourceToken(Empty input)
{

foreach (var symbol in Context.Variables.GetStringArray(TokenContractConstants.
→˓PayTxFeeSymbolListName))

{
var balance = GetBalance(Context.Sender, symbol);
var owningBalance = State.OwningResourceToken[Context.Sender][symbol];
Assert(balance > owningBalance,

string.Format("Contract balance of {0} token is not enough. Owning {1}.",
→˓symbol, owningBalance));

}
return new Empty();

}

20.9 ACS9 - Contract profit dividend standard

On the AElf’s side chain, the contract needs to declare where its profits are going, and implemente ACS9.

20.9.1 Interface

ACS9 contains an method which does not have to be implemented:

• TakeContractProfits is used for the developer to collect the profits from the contract. and the profits will be
distributed in this method. There are also other methods for developers to claim profits. However, these methods
needs to be approved before deployment/upgrade.

Two View methods that must be implemented. They are mostly used in the AElf blockchain browser:

• GetProfitConfig, whose return value is the ProfitConfig defined in acs9.proto, includes the profit token symbol
list, the token symbol that the user can lock them to claim the profit, and the portion of the profit that will be
donated to the dividend pool each time the developer receives the profit. When reviewing the contract code, you
should check if the same ProfitConfig data is actually used for distributing the profits.

• GetProfitsAmount, as the name implies, is used to query the profits of the contract so far, with a return value of
type ProfitsMap.

ProfitConfig is defined as:

message ProfitConfig {
int32 donation_parts_per_hundred = 1;
repeated string profits_token_symbol_list = 2;
string staking_token_symbol = 3;

}

The ProfitsMap type is essentially a map from token symbol to the amount:

message ProfitsMap {
map<string, int64> value = 1;

}

20.9.2 Implementation

Here we define a contract. The contract creates a token called APP at the time of initialization and uses the Token-
Holder contract to create a token holder bonus scheme with the lock token is designated to APP.

20.9. ACS9 - Contract profit dividend standard 329

AElf, Release release/1.0.0-preview3

The user will be given 10 APP when to sign up.

Users can purchase 1 APP with 1 ELF using method Deposit, and they can redeem the ELF using the method Withdraw.

When the user sends the Use transaction, the APP token is consumed.

Contract initialization is as follows:

public override Empty Initialize(InitializeInput input)
{

State.TokenHolderContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenHolderContractSystemName);
State.TokenContract.Value =

Context.GetContractAddressByName(SmartContractConstants.
→˓TokenContractSystemName);

State.DividendPoolContract.Value =
Context.GetContractAddressByName(input.DividendPoolContractName.Value.

→˓ToBase64());
State.Symbol.Value = input.Symbol == string.Empty ? "APP" : input.Symbol;
State.ProfitReceiver.Value = input.ProfitReceiver;
CreateToken(input.ProfitReceiver);
// To test TokenHolder Contract.
CreateTokenHolderProfitScheme();
// To test ACS9 workflow.
SetProfitConfig();
State.ProfitReceiver.Value = input.ProfitReceiver;
return new Empty();

}
private void CreateToken(Address profitReceiver, bool isLockWhiteListIncludingSelf =
→˓false)
{

var lockWhiteList = new List<Address>
{Context.GetContractAddressByName(SmartContractConstants.

→˓TokenHolderContractSystemName)};
if (isLockWhiteListIncludingSelf)

lockWhiteList.Add(Context.Self);
State.TokenContract.Create.Send(new CreateInput
{

Symbol = State.Symbol.Value,
TokenName = "DApp Token",
Decimals = ACS9DemoContractConstants.Decimal,
Issuer = Context.Self,
IsBurnable = true,
IsProfitable = true,
TotalSupply = ACS9DemoContractConstants.TotalSupply,
LockWhiteList =
{

lockWhiteList
}

});
State.TokenContract.Issue.Send(new IssueInput
{

To = profitReceiver,
Amount = ACS9DemoContractConstants.TotalSupply / 5,
Symbol = State.Symbol.Value,
Memo = "Issue token for profit receiver"

});
}

(continues on next page)

330 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

private void CreateTokenHolderProfitScheme()
{

State.TokenHolderContract.CreateScheme.Send(new CreateTokenHolderProfitSchemeInput
{

Symbol = State.Symbol.Value
});

}
private void SetProfitConfig()
{

State.ProfitConfig.Value = new ProfitConfig
{

DonationPartsPerHundred = 1,
StakingTokenSymbol = "APP",
ProfitsTokenSymbolList = {"ELF"}

};
}

The State.symbol is a singleton of type string, state.Profitconfig is a singleton of type ProfitConfig, and
state.profitreceiver is a singleton of type Address.

The user can use the SighUp method to register and get the bonus. Besides, it will create a archive for him:

/// <summary>
/// When user sign up, give him 10 APP tokens, then initialize his profile.
/// </summary>
/// <param name="input"></param>
/// <returns></returns>
public override Empty SignUp(Empty input)
{

Assert(State.Profiles[Context.Sender] == null, "Already registered.");
var profile = new Profile
{

UserAddress = Context.Sender
};
State.TokenContract.Issue.Send(new IssueInput
{

Symbol = State.Symbol.Value,
Amount = ACS9DemoContractConstants.ForNewUser,
To = Context.Sender

});
// Update profile.
profile.Records.Add(new Record
{

Type = RecordType.SignUp,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} +{1}",State.Symbol.Value,

→˓ACS9DemoContractConstants.ForNewUser)
});
State.Profiles[Context.Sender] = profile;
return new Empty();

}

Recharge and redemption:

public override Empty Deposit(DepositInput input)
{

// User Address -> DApp Contract.

(continues on next page)

20.9. ACS9 - Contract profit dividend standard 331

AElf, Release release/1.0.0-preview3

(continued from previous page)

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = "ELF",
Amount = input.Amount

});
State.TokenContract.Issue.Send(new IssueInput
{

Symbol = State.Symbol.Value,
Amount = input.Amount,
To = Context.Sender

});
// Update profile.
var profile = State.Profiles[Context.Sender];
profile.Records.Add(new Record
{

Type = RecordType.Deposit,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} +{1}", State.Symbol.Value, input.Amount)

});
State.Profiles[Context.Sender] = profile;
return new Empty();

}
public override Empty Withdraw(WithdrawInput input)
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = State.Symbol.Value,
Amount = input.Amount

});
State.TokenContract.Transfer.Send(new TransferInput
{

To = Context.Sender,
Symbol = input.Symbol,
Amount = input.Amount

});
State.TokenHolderContract.RemoveBeneficiary.Send(new

→˓RemoveTokenHolderBeneficiaryInput
{

Beneficiary = Context.Sender,
Amount = input.Amount

});
// Update profile.
var profile = State.Profiles[Context.Sender];
profile.Records.Add(new Record
{

Type = RecordType.Withdraw,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} -{1}", State.Symbol.Value, input.Amount)

});
State.Profiles[Context.Sender] = profile;
return new Empty();

}

332 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

In the implementation of Use, 1/3 profits are directly transferred into the token holder dividend scheme:

public override Empty Use(Record input)
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
To = Context.Self,
Symbol = State.Symbol.Value,
Amount = ACS9DemoContractConstants.UseFee

});
if (input.Symbol == string.Empty)

input.Symbol = State.TokenContract.GetPrimaryTokenSymbol.Call(new Empty()).
→˓Value;

var contributeAmount = ACS9DemoContractConstants.UseFee.Div(3);
State.TokenContract.Approve.Send(new ApproveInput
{

Spender = State.TokenHolderContract.Value,
Symbol = input.Symbol,
Amount = contributeAmount

});
// Contribute 1/3 profits (ELF) to profit scheme.
State.TokenHolderContract.ContributeProfits.Send(new ContributeProfitsInput
{

SchemeManager = Context.Self,
Amount = contributeAmount,
Symbol = input.Symbol

});
// Update profile.
var profile = State.Profiles[Context.Sender];
profile.Records.Add(new Record
{

Type = RecordType.Withdraw,
Timestamp = Context.CurrentBlockTime,
Description = string.Format("{0} -{1}", State.Symbol.Value,

→˓ACS9DemoContractConstants.UseFee),
Symbol = input.Symbol

});
State.Profiles[Context.Sender] = profile;
return new Empty();

}

The implementation of this contract has been completed. Next, implement ACS9 to perfect the profit distribution:

public override Empty TakeContractProfits(TakeContractProfitsInput input)
{

var config = State.ProfitConfig.Value;
// For Side Chain Dividends Pool.
var amountForSideChainDividendsPool = input.Amount.Mul(config.

→˓DonationPartsPerHundred).Div(100);
State.TokenContract.Approve.Send(new ApproveInput
{

Symbol = input.Symbol,
Amount = amountForSideChainDividendsPool,
Spender = State.DividendPoolContract.Value

});
State.DividendPoolContract.Donate.Send(new DonateInput
{

(continues on next page)

20.9. ACS9 - Contract profit dividend standard 333

AElf, Release release/1.0.0-preview3

(continued from previous page)

Symbol = input.Symbol,
Amount = amountForSideChainDividendsPool

});
// For receiver.
var amountForReceiver = input.Amount.Sub(amountForSideChainDividendsPool);
State.TokenContract.Transfer.Send(new TransferInput
{

To = State.ProfitReceiver.Value,
Amount = amountForReceiver,
Symbol = input.Symbol

});
// For Token Holder Profit Scheme. (To distribute.)
State.TokenHolderContract.DistributeProfits.Send(new DistributeProfitsInput
{

SchemeManager = Context.Self
});
return new Empty();

}
public override ProfitConfig GetProfitConfig(Empty input)
{

return State.ProfitConfig.Value;
}
public override ProfitsMap GetProfitsAmount(Empty input)
{

var profitsMap = new ProfitsMap();
foreach (var symbol in State.ProfitConfig.Value.ProfitsTokenSymbolList)
{

var balance = State.TokenContract.GetBalance.Call(new GetBalanceInput
{

Owner = Context.Self,
Symbol = symbol

}).Balance;
profitsMap.Value[symbol] = balance;

}
return profitsMap;

}

20.9.3 Test

Since part of the profits from the ACS9 contract transfer to the Token contract and the other transfer to the dividend
pool, a TokenHolder Stub and a contract implementing ACS10 Stub are required in the test. Accordingly, the contracts
that implements ACS9 or ACS10 need to be deployed. Before the test begins, the contract implementing ACS9 can be
initialized by interface IContractInitializationProvider, and sets the dividend pool’s name to the other contract’s name:

public class ACS9DemoContractInitializationProvider : IContractInitializationProvider
{

public List<InitializeMethod> GetInitializeMethodList(byte[] contractCode)
{

return new List<InitializeMethod>
{

new InitializeMethod
{

MethodName = nameof(ACS9DemoContract.Initialize),
Params = new InitializeInput
{

(continues on next page)

334 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

ProfitReceiver = Address.FromPublicKey(SampleECKeyPairs.KeyPairs.
→˓Skip(3).First().PublicKey),

DividendPoolContractName = ACS10DemoSmartContractNameProvider.Name
}.ToByteString()

}
};

}
public Hash SystemSmartContractName { get; } = ACS9DemoSmartContractNameProvider.

→˓Name;
public string ContractCodeName { get; } = "AElf.Contracts.ACS9DemoContract";

}

Prepare a user account:

protected List<ECKeyPair> UserKeyPairs => SampleECKeyPairs.KeyPairs.Skip(2).Take(3).
→˓ToList();

Prepare some Stubs:

var keyPair = UserKeyPairs[0];
var address = Address.FromPublicKey(keyPair.PublicKey);
// Prepare stubs.
var acs9DemoContractStub = GetACS9DemoContractStub(keyPair);
var acs10DemoContractStub = GetACS10DemoContractStub(keyPair);
var userTokenStub =

GetTester<TokenContractImplContainer.TokenContractImplStub>(TokenContractAddress,
→˓UserKeyPairs[0]);
var userTokenHolderStub =

GetTester<TokenHolderContractContainer.TokenHolderContractStub>
→˓(TokenHolderContractAddress,

UserKeyPairs[0]);

Then, transfer ELF to the user (TokenContractStub is the Stub of the initial bp who has much ELF) :

// Transfer some ELFs to user.
await TokenContractStub.Transfer.SendAsync(new TransferInput
{

To = address,
Symbol = "ELF",
Amount = 1000_00000000

});

Have the user call SignUp to check if he/she has got 10 APP tokens:

await acs9DemoContractStub.SignUp.SendAsync(new Empty());
// User has 10 APP tokens because of signing up.
(await GetFirstUserBalance("APP")).ShouldBe(10_00000000);

Test the recharge method of the contract itself:

var elfBalanceBefore = await GetFirstUserBalance("ELF");
// User has to Approve an amount of ELF tokens before deposit to the DApp.
await userTokenStub.Approve.SendAsync(new ApproveInput
{

Amount = 1000_00000000,
Spender = ACS9DemoContractAddress,

(continues on next page)

20.9. ACS9 - Contract profit dividend standard 335

AElf, Release release/1.0.0-preview3

(continued from previous page)

Symbol = "ELF"
});
await acs9DemoContractStub.Deposit.SendAsync(new DepositInput
{

Amount = 100_00000000
});
// Check the change of balance of ELF.
var elfBalanceAfter = await GetFirstUserBalance("ELF");
elfBalanceAfter.ShouldBe(elfBalanceBefore - 100_00000000);
// Now user has 110 APP tokens.
(await GetFirstUserBalance("APP")).ShouldBe(110_00000000);

The user locks up 57 APP via the TokenHolder contract in order to obtain profits from the contract:

// User lock some APP tokens for getting profits. (APP -57)
await userTokenHolderStub.RegisterForProfits.SendAsync(new RegisterForProfitsInput
{

SchemeManager = ACS9DemoContractAddress,
Amount = 57_00000000

});

The Use method is invoked 10 times and 0.3 APP is consumed each time, and finally the user have 50 APP left:

await userTokenStub.Approve.SendAsync(new ApproveInput
{

Amount = long.MaxValue,
Spender = ACS9DemoContractAddress,
Symbol = "APP"

});
// User uses 10 times of this DApp. (APP -3)
for (var i = 0; i < 10; i++)
{

await acs9DemoContractStub.Use.SendAsync(new Record());
}
// Now user has 50 APP tokens.
(await GetFirstUserBalance("APP")).ShouldBe(50_00000000);

Using the TakeContractProfits method, the developer attempts to withdraw 10 ELF as profits. The 10 ELF will be
transferred to the developer in this method:

const long baseBalance = 0;
{

var balance = await TokenContractStub.GetBalance.CallAsync(new GetBalanceInput
{

Owner = UserAddresses[1], Symbol = "ELF"
});
balance.Balance.ShouldBe(baseBalance);

}
// Profits receiver claim 10 ELF profits.
await acs9DemoContractStub.TakeContractProfits.SendAsync(new TakeContractProfitsInput
{

Symbol = "ELF",
Amount = 10_0000_0000

});
// Then profits receiver should have 9.9 ELF tokens.
{

(continues on next page)

336 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

var balance = await TokenContractStub.GetBalance.CallAsync(new GetBalanceInput
{

Owner = UserAddresses[1], Symbol = "ELF"
});
balance.Balance.ShouldBe(baseBalance + 9_9000_0000);

}

Next check the profit distribution results. The dividend pool should be allocated 0.1 ELF:

// And Side Chain Dividends Pool should have 0.1 ELF tokens.
{

var scheme = await TokenHolderContractStub.GetScheme.
→˓CallAsync(ACS10DemoContractAddress);

var virtualAddress = await ProfitContractStub.GetSchemeAddress.CallAsync(new
→˓SchemePeriod

{
SchemeId = scheme.SchemeId,
Period = 0

});
var balance = await TokenContractStub.GetBalance.CallAsync(new GetBalanceInput
{

Owner = virtualAddress,
Symbol = "ELF"

});
balance.Balance.ShouldBe(1000_0000);

}

The user receives 1 ELF from the token holder dividend scheme:

// Help user to claim profits from token holder profit scheme.
await TokenHolderContractStub.ClaimProfits.SendAsync(new ClaimProfitsInput
{

Beneficiary = UserAddresses[0],
SchemeManager = ACS9DemoContractAddress,

});
// Profits should be 1 ELF.
(await GetFirstUserBalance("ELF")).ShouldBe(elfBalanceAfter + 1_0000_0000);

Finally, let’s test the Withdraw method.

// Withdraw
var beforeBalance =

await userTokenStub.GetBalance.CallAsync(new GetBalanceInput
{

Symbol = "APP",
Owner = UserAddresses[0]

});
var withDrawResult = await userTokenHolderStub.Withdraw.
→˓SendAsync(ACS9DemoContractAddress);
withDrawResult.TransactionResult.Status.ShouldBe(TransactionResultStatus.Mined);
var resultBalance = await userTokenStub.GetBalance.CallAsync(new GetBalanceInput
{

Symbol = "APP",
Owner = UserAddresses[0]

});
resultBalance.Balance.ShouldBe(beforeBalance.Balance + 57_00000000);

20.9. ACS9 - Contract profit dividend standard 337

AElf, Release release/1.0.0-preview3

20.10 ACS10 - Dividend Pool Standard

ACS10 is used to construct a dividend pool in the contract.

20.10.1 Interface

To construct a dividend pool, you can implement the following interfaces optionally:

• Donate is used to donate dividend pool, parameters include the token symbol and the amount to be donated to
the dividend pool;

• Release is used to release the dividend pool. The parameter is the number of sessions to release dividends. Be
careful to set its calling permission.

• SetSymbolList is used to set the token symbols dividend pool supports. The parameter is of type SymbolList.

• GetSymbolList is used to get the token symbols dividend pool supports. The return type is SymbolList.

• GetUndistributdividends is used to obtain tokens’ balance that have not been distributed. The return type is
Dividends;

• GetDividends, whose return type is also Dividends, is used to obtain additional dividends from the height of a
block.

SymbolList is a string list:

message SymbolList {
repeated string value = 1;

}

The type of Dividends is a map from token symbol to amount:

message Dividends {
map<string, int64> value = 1;

}

20.10.2 Usage

ACS10 only unifies the standard interface of the dividend pool, which does not interact with the AElf chain.

20.10.3 Implementaion

With the Profit contract

A Profit Scheme can be created using the Profit contract’s CreateScheme method:

State.ProfitContract.Value =
Context.GetContractAddressByName(SmartContractConstants.ProfitContractSystemName);

var schemeToken = HashHelper.ComputeFrom(Context.Self);
State.ProfitContract.CreateScheme.Send(new CreateSchemeInput
{

Manager = Context.Self,
CanRemoveBeneficiaryDirectly = true,
IsReleaseAllBalanceEveryTimeByDefault = true,
Token = schemeToken

(continues on next page)

338 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

});
State.ProfitSchemeId.Value = Context.GenerateId(State.ProfitContract.Value,
→˓schemeToken);

The Context.GenerateId method is a common method used by the AElf to generate Id. We use the address of the Profit
contract and the schemeToken provided to the Profit contract to calculate the Id of the scheme, and we set this id to
State.ProfitSchemeId (SingletonState<Hash>).

After the establishment of the dividend scheme:

• ContributeProfits method of Profit can be used to implement the method Donate in ACS10.

• The Release in the ACS10 can be implemented using the method DistributeProfits in the Profit contract;

• Methods such as AddBeneficiary and RemoveBeneficiary can be used to manage the recipients and their weight.

• AddSubScheme, RemoveSubScheme and other methods can be used to manage the sub-dividend scheme and
its weight;

• The SetSymbolList and GetSymbolList can be implemented by yourself. Just make sure the symbol list you set
is used correctly in Donate and Release.

• GetUndistributedDividends returns the balance of the token whose symbol is includeded in symbol list.

With TokenHolder Contract

When initializing the contract, you should create a token holder dividend scheme using the CreateScheme in the
TokenHolder contract(Token Holder Profit Scheme

State.TokenHolderContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenHolderContractSystemName);
State.TokenHolderContract.CreateScheme.Send(new CreateTokenHolderProfitSchemeInput
{

Symbol = Context.Variables.NativeSymbol,
MinimumLockMinutes = input.MinimumLockMinutes

});
return new Empty();

In a token holder dividend scheme, a scheme is bound to its creator, so SchemeId is not necessary to compute (in fact,
the scheme is created via the Profit contract).

Considering the GetDividends returns the dividend information according to the input height, so each Donate need
update dividend information for each height . A Donate can be implemented as:

public override Empty Donate(DonateInput input)
{

State.TokenContract.TransferFrom.Send(new TransferFromInput
{

From = Context.Sender,
Symbol = input.Symbol,
Amount = input.Amount,
To = Context.Self

});
State.TokenContract.Approve.Send(new ApproveInput
{

Symbol = input.Symbol,
Amount = input.Amount,

(continues on next page)

20.10. ACS10 - Dividend Pool Standard 339

AElf, Release release/1.0.0-preview3

(continued from previous page)

Spender = State.TokenHolderContract.Value
});
State.TokenHolderContract.ContributeProfits.Send(new ContributeProfitsInput
{

SchemeManager = Context.Self,
Symbol = input.Symbol,
Amount = input.Amount

});
Context.Fire(new DonationReceived
{

From = Context.Sender,
Symbol = input.Symbol,
Amount = input.Amount,
PoolContract = Context.Self

});
var currentReceivedDividends = State.ReceivedDividends[Context.CurrentHeight];
if (currentReceivedDividends != null && currentReceivedDividends.Value.

→˓ContainsKey(input.Symbol))
{

currentReceivedDividends.Value[input.Symbol] =
currentReceivedDividends.Value[input.Symbol].Add(input.Amount);

}
else
{

currentReceivedDividends = new Dividends
{

Value =
{

{
input.Symbol, input.Amount

}
}

};
}
State.ReceivedDividends[Context.CurrentHeight] = currentReceivedDividends;
Context.LogDebug(() => string.Format("Contributed {0} {1}s to side chain

→˓dividends pool.", input.Amount, input.Symbol));
return new Empty();

}

The method Release directly sends the TokenHolder’s method DistributeProfits transaction:

public override Empty Release(ReleaseInput input)
{

State.TokenHolderContract.DistributeProfits.Send(new DistributeProfitsInput
{

SchemeManager = Context.Self
});
return new Empty();

}

In the TokenHolder contract, the default implementation is to release what token is received, so SetSymbolList does
not need to be implemented, and GetSymbolList returns the symbol list recorded in dividend scheme:

public override Empty SetSymbolList(SymbolList input)
{

(continues on next page)

340 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

Assert(false, "Not support setting symbol list.");
return new Empty();

}
public override SymbolList GetSymbolList(Empty input)
{

return new SymbolList
{

Value =
{

GetDividendPoolScheme().ReceivedTokenSymbols
}

};
}
private Scheme GetDividendPoolScheme()
{

if (State.DividendPoolSchemeId.Value == null)
{

var tokenHolderScheme = State.TokenHolderContract.GetScheme.Call(Context.
→˓Self);

State.DividendPoolSchemeId.Value = tokenHolderScheme.SchemeId;
}
return Context.Call<Scheme>(

Context.GetContractAddressByName(SmartContractConstants.
→˓ProfitContractSystemName),

nameof(ProfitContractContainer.ProfitContractReferenceState.GetScheme),
State.DividendPoolSchemeId.Value);

}

The implementation of GetUndistributdividendeds is the same as described in the previous section, and it returns the
balance:

public override Dividends GetUndistributedDividends(Empty input)
{

var scheme = GetDividendPoolScheme();
return new Dividends
{

Value =
{

scheme.ReceivedTokenSymbols.Select(s => State.TokenContract.GetBalance.
→˓Call(new GetBalanceInput

{
Owner = scheme.VirtualAddress,
Symbol = s

})).ToDictionary(b => b.Symbol, b => b.Balance)
}

};
}

In addition to the Profit and TokenHolder contracts, of course, you can also implement a dividend pool on your own
contract.

20.10.4 Test

The dividend pool, for example, is tested in two ways with the token Holder contract.

One way is for the dividend pool to send Donate, Release and a series of query operations;

20.10. ACS10 - Dividend Pool Standard 341

AElf, Release release/1.0.0-preview3

The other way is to use an account to lock up, and then take out dividends.

Define the required Stubs:

const long amount = 10_00000000;
var keyPair = SampleECKeyPairs.KeyPairs[0];
var address = Address.FromPublicKey(keyPair.PublicKey);
var acs10DemoContractStub =

GetTester<ACS10DemoContractContainer.ACS10DemoContractStub>(DAppContractAddress,
→˓keyPair);
var tokenContractStub =

GetTester<TokenContractContainer.TokenContractStub>(TokenContractAddress,
→˓keyPair);
var tokenHolderContractStub =

GetTester<TokenHolderContractContainer.TokenHolderContractStub>
→˓(TokenHolderContractAddress,

keyPair);

Before proceeding, You should Approve the TokenHolder contract and the dividend pool contract.

await tokenContractStub.Approve.SendAsync(new ApproveInput
{

Spender = TokenHolderContractAddress,
Symbol = "ELF",
Amount = long.MaxValue

});
await tokenContractStub.Approve.SendAsync(new ApproveInput
{

Spender = DAppContractAddress,
Symbol = "ELF",
Amount = long.MaxValue

});

Lock the position, at which point the account balance is reduced by 10 ELF:

await tokenHolderContractStub.RegisterForProfits.SendAsync(new RegisterForProfitsInput
{

SchemeManager = DAppContractAddress,
Amount = amount

});

Donate, at which point the account balance is reduced by another 10 ELF:

await acs10DemoContractStub.Donate.SendAsync(new DonateInput
{

Symbol = "ELF",
Amount = amount

});

At this point you can test the GetUndistributedDividends and GetDividends:

// Check undistributed dividends before releasing.
{

var undistributedDividends =
await acs10DemoContractStub.GetUndistributedDividends.CallAsync(new Empty());

undistributedDividends.Value["ELF"].ShouldBe(amount);
}
var blockchainService = Application.ServiceProvider.GetRequiredService
→˓<IBlockchainService>();

(continues on next page)

342 Chapter 20. Acs Introduction

AElf, Release release/1.0.0-preview3

(continued from previous page)

var currentBlockHeight = (await blockchainService.GetChainAsync()).BestChainHeight;
var dividends =

await acs10DemoContractStub.GetDividends.CallAsync(new Int64Value {Value =
→˓currentBlockHeight});
dividends.Value["ELF"].ShouldBe(amount);

Release bonus, and test GetUndistributedDividends again:

await acs10DemoContractStub.Release.SendAsync(new ReleaseInput
{

PeriodNumber = 1
});
// Check undistributed dividends after releasing.
{

var undistributedDividends =
await acs10DemoContractStub.GetUndistributedDividends.CallAsync(new Empty());

undistributedDividends.Value["ELF"].ShouldBe(0);
}

Finally, let this account receive the dividend and then observe the change in its balance:

var balanceBeforeClaimForProfits = await tokenContractStub.GetBalance.CallAsync(new
→˓GetBalanceInput
{

Owner = address,
Symbol = "ELF"

});
await tokenHolderContractStub.ClaimProfits.SendAsync(new ClaimProfitsInput
{

SchemeManager = DAppContractAddress,
Beneficiary = address

});
var balanceAfterClaimForProfits = await tokenContractStub.GetBalance.CallAsync(new
→˓GetBalanceInput
{

Owner = address,
Symbol = "ELF"

});
balanceAfterClaimForProfits.Balance.ShouldBe(balanceBeforeClaimForProfits.Balance +
→˓amount);

20.10.5 Example

The dividend pool of the main chain and the side chain is built by implementing ACS10.

The dividend pool provided by the Treasury contract implementing ACS10 is on the main chain.

The dividend pool provided by the ACS10 contract implementing ACS10 is on the side chain.

20.10. ACS10 - Dividend Pool Standard 343

AElf, Release release/1.0.0-preview3

344 Chapter 20. Acs Introduction

CHAPTER 21

Command line interface

21.1 Introduction to the CLI

The aelf-command tool is a CLI tool built for interacting with an AElf node. This section will walk you through some
of the most commonly used features and show you how to install the tool.

21.1.1 Features

• Get or Set common configs, endpoint, account, datadir, password.

• For new users who are not familiar with the CLI parameters, any missing parameters will be asked in a prompting
way.

• Create a new account.

• Load an account from a given private key or mnemonic.

• Show wallet details which include private key, address, public key and mnemonic.

• Encrypt account info into keyStore format and save to file.

• Get current Best Height of the chain.

• Get block info by a given height or block hash.

• Get transaction result by a given transaction id.

• Send a transaction or call a read-only method on a smart contract.

• Deploy a smart contract.

• Open a REPL for using JavaScript to interact with the chain.

• Friendly interactions, beautify with chalk & ora.

• Get current chain status.

• Create a proposal on any contract method.

345

AElf, Release release/1.0.0-preview3

• Deserialize the result returned by executing a transaction.

• Start a socket.io server for supplying services for dApps.

21.1.2 Install aelf-command

npm i aelf-command -g

21.1.3 Using aelf-command

First Step

You need to create a new account or load a account by a private key or mnemonic you already have.

• Create a new wallet

$ aelf-command create
Your wallet info is :
Mnemonic : great mushroom loan crisp ... door juice embrace
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea
Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Save account info into a file? ... no / yes
XXX Enter a password ... ********
XXX Confirm password ... ********
XXX
Account info has been saved to "/Users/young/.local/share/aelf/keys/
→˓2Ue31YTuB5Szy7cnr...Gi5uMQBYarYUR5oGin1sys6H.json"

• Load wallet from private key

$ aelf-command load e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Your wallet info is :
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea
Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Save account info into a file?
XXX Enter a password ... ********
XXX Confirm password ... ********
XXX
Account info has been saved to "/Users/young/.local/share/aelf/keys/
→˓2Ue31YTuB5Szy7cnr...Gi5uMQBYarYUR5oGin1sys6H.json"

• show wallet info you already have

$ aelf-command wallet -a 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
Your wallet info is :
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea
Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H

Here you can get the account info and decide whether to encrypt account info and save into a file.

346 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

Examples:

$ aelf-command console -a 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk
aelf | the instance of an aelf-sdk, connect to

| http://127.0.0.1:8000
_account | the instance of an AElf wallet, address

| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

Any missed parameters you did not give in CLI parameters will be asked in a prompting way

$ aelf-command console
XXX Enter a valid wallet address, if you don\'t have, create one by aelf-command create
→˓... 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk
aelf | the instance of an aelf-sdk, connect to

| http://13.231.179.27:8000
_account | the instance of an AElf wallet, address

| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

Help

Type

$ aelf-command -h
Usage: aelf-command [command] [options]

Options:
-v, --version output the version number
-e, --endpoint <URI> The URI of an AElf node.

→˓Eg: http://127.0.0.1:8000
-a, --account <account> The address of AElf wallet

(continues on next page)

21.1. Introduction to the CLI 347

AElf, Release release/1.0.0-preview3

(continued from previous page)

-p, --password <password> The password of encrypted
→˓keyStore
-d, --datadir <directory> The directory that

→˓contains the AElf related files. Defaults to {home}/.local/share/aelf
-h, --help output usage information

Commands:
call [contract-address|contract-name] [method] [params] Call a read-only method

→˓on a contract.
send [contract-address|contract-name] [method] [params] Execute a method on a

→˓contract.
get-blk-height Get the current block

→˓height of specified chain
get-chain-status Get the current chain

→˓status
get-blk-info [height|block-hash] [include-txs] Get a block info
get-tx-result [tx-id] Get a transaction result
console Open a node REPL
create [options] [save-to-file] Create a new account
wallet Show wallet details

→˓which include private key, address, public key and mnemonic
load [private-key|mnemonic] [save-to-file] Load wallet from a

→˓private key or mnemonic
proposal [proposal-contract] [organization] [expired-time] Send a proposal to an

→˓origination with a specific contract method
deploy [category] [code-path] Deprecated! Please use

→˓`aelf-command send` , check details in aelf-command `README.md`
config <flag> [key] [value] Get, set, delete or

→˓list aelf-command config
event [tx-id] Deserialize the result

→˓returned by executing a transaction
dapp-server [options] Start a dAPP SOCKET.IO

→˓server

in your terminal and get useful information.

Any sub-commands such as call, you can get help by typing this

$ aelf-command call -h
Usage: aelf-command call [options] [contract-address|contract-name] [method] [params]

Call a read-only method on a contract.

Options:
-h, --help output usage information

Examples:

aelf-command call <contractName|contractAddress> <method> <params>
aelf-command call <contractName|contractAddress> <method>
aelf-command call <contractName|contractAddress>
aelf-command call

$ aelf-command console -h
Usage: aelf-command console [options]

Open a node REPL

(continues on next page)

348 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

(continued from previous page)

Options:
-h, --help output usage information

Examples:

aelf-command console
...

21.2 Commands

21.2.1 Common options

• datadir: The directory that contains aelf-command files, such as encrypted account info
keyStore files. Default to be {home}/.local/share/aelf

• endpoint: The endpoint for the RPC service.

• account: The account to be used to interact with the blockchain endpoint.

• password: The password for unlocking the given account.

You can specified options above in several ways, and the priority is in the order of low to high.

1. export variables in shell.

This is datadir
$ export AELF_CLI_DATADIR=/Users/{you}/.local/share/aelf
This is endpoint
$ export AELF_CLI_ENDPOINT=http://127.0.0.1:8000
This is account
$ export AELF_CLI_ACCOUNT=2Ue31YTuB5Szy7c...gtGi5uMQBYarYUR5oGin1sys6H

2. aelf-command global .aelfrc config file

The global config file is stored in the <datadir>/.aelfrc file, you can read the config file, but better not
modify it by yourself.

Modify this config file by aelf-command config.

• set: set and save config in the file, remember just set the datadir, endpoint, account, password
four keys.

$ aelf-command config set endpoint http://127.0.0.1:8000
XXX Succeed!

$ aelf-command config -h
Usage: aelf-command config [options] <flag> [key] [value]

get, set, delete or list aelf-command config

Options:
-h, --help output usage information

Examples:

(continues on next page)

21.2. Commands 349

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf-command config get <key>
aelf-command config set <key> <value>
aelf-command config delete <key>
aelf-command config list

• get: get the value of given key from global .aelfrc file

$ aelf-command config get endpoint
http://127.0.0.1:8000

• delete: delete the <key, value> from global .aelfrc file by a given key

$ aelf-command config delete endpoint
XXX Succeed!

• list: get the list of all configs stored in global .aelfrc file

$ aelf-command config list
endpoint=http://127.0.0.1:8000
password=password

Remember config command only can be used to modify the global .aelfrc file for now, more usages such
as modify working directory will be implemented in later.

3. aelf-command working directory .aelfrc file

The current working directory of aelf-command can have a file named .aelfrc and store configs, the
format of this file is like global .aelfrc file:

endpoint http://127.0.0.1:8000
password yourpassword

each line is <key, value> config and a whitespace is needed to separate them.

4. aelf-command options.

You can give common options by passing them in CLI parameters.

aelf-command console -a sadaf -p password -e http://127.0.0.1:8000

Notice the priority, the options given in higher priority will overwrite the lower priority.

21.2.2 create - Create a new account

This command will create a new account.

$ aelf-command create -h
Usage: aelf-command create [options] [save-to-file]

create a new account

Options:
-c, --cipher [cipher] Which cipher algorithm to use, default to be aes-128-ctr
-h, --help output usage information

Examples:

(continues on next page)

350 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf-command create <save-to-file>
aelf-command create

Example:

• Specify the cipher way to encrypt account info by passing option -c [cipher], such as:

aelf-command create -c aes-128-cbc

21.2.3 load - Load an account by a given private key or mnemonic

This command allow you load an account from backup.

load from mnemonic
$ aelf-command load 'great mushroom loan crisp ... door juice embrace'
load from private key
$ aelf-command load 'e038eea7e151eb451ba2901f7...b08ba5b76d8f288'
load from prompting
$ aelf-command load
? Enter a private key or mnemonic › e038eea7e151eb451ba2901f7...b08ba5b76d8f288
...

21.2.4 wallet - Show wallet details which include private key, address, public
key and mnemonic

This command allows you to print wallet info.

$ aelf-command wallet -a C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuw...8qYjGsESanXR
AElf [Info]: Private Key : 97ca9fbece296231f26bee0e493500810f...
→˓cbd984f69a8dc22ec9ec89ebb00
AElf [Info]: Public Key : 04c30dd0c3b5abfc85a11b15dabd0de926...
→˓74fe04e92eaebf2e4fef6445d9b9b11efe6f4b70c8e86644b72621f9987dc00bb1eab44a9bd7512ea53f93937a5d0
AElf [Info]: Address : C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuw...8qYjGsESanXR

21.2.5 proposal - Create a proposal

There are three kinds of proposal contracts in AElf:

• AElf.ContractNames.Parliament

• AElf.ContractNames.Referendum

• AElf.ContractNames.Association

depending on your needs you can choose one and create a proposal.

• Get an organization address or create one

Get the default organization’s address with the parliament contract (AElf.ContractNames.Parliament):

21.2. Commands 351

AElf, Release release/1.0.0-preview3

$ aelf-command call AElf.ContractNames.Parliament GetDefaultOrganizationAddress
XXX Fetching contract successfully!
XXX Calling method successfully!
AElf [Info]:
Result:
"BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc"
XXX Succeed!

BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc is the default organization address.

The default organization is an organization that contains all miners; every proposal under AElf.ContractNames.
Parliament can only be released when it has got over 2/3 miners approval.

Create an organization with the Referendum contract (AElf.ContractNames.Referendum):

$ aelf-command send AElf.ContractNames.Referendum
XXX Fetching contract successfully!
? Pick up a contract method: CreateOrganization

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional parameters:
? Enter the required param <tokenSymbol>: ELF
? Enter the required param <proposalReleaseThreshold.minimalApprovalThreshold>: 666
? Enter the required param <proposalReleaseThreshold.maximalRejectionThreshold>: 666
? Enter the required param <proposalReleaseThreshold.maximalAbstentionThreshold>: 666
? Enter the required param <proposalReleaseThreshold.minimalVoteThreshold>: 666
? Enter the required param <proposerWhiteList.proposers>: [
→˓"2hxkDg6Pd2d4yU1A16PTZVMMrEDYEPR8oQojMDwWdax5LsBaxX"]
The params you entered is:
{

"tokenSymbol": "ELF",
"proposalReleaseThreshold": {
"minimalApprovalThreshold": 666,
"maximalRejectionThreshold": 666,
"maximalAbstentionThreshold": 666,
"minimalVoteThreshold": 666

},
"proposerWhiteList": {
"proposers": [

"2hxkDg6Pd2d4yU1A16PTZVMMrEDYEPR8oQojMDwWdax5LsBaxX"
]

}
}
XXX Succeed!
AElf [Info]:
Result:
{

"TransactionId": "273285c7e8825a0af5291dd5d9295f746f2bb079b30f915422564de7a64fc874"
}
XXX Succeed!

• Create a proposal

$ aelf-command proposal
? Pick up a contract name to create a proposal: AElf.ContractNames.Parliament
? Enter an organization address: BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc

(continues on next page)

352 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

(continued from previous page)

? Select the expired time for this proposal: 2022/09/23 22:06
? Optional, input an URL for proposal description:
? Enter a contract address or name: AElf.ContractNames.Token
XXX Fetching contract successfully!
? Pick up a contract method: Transfer

If you need to pass file contents to the contractMethod, you can enter the relative
→˓or absolute path of the file instead

Enter required params one by one:
? Enter the required param <to>: 2hxkDg6Pd2d4yU1A16PTZVMMrEDYEPR8oQojMDwWdax5LsBaxX
? Enter the required param <symbol>: ELF
? Enter the required param <amount>: 100000000
? Enter the required param <memo>: test
AElf [Info]:
{ TransactionId:
'09c8c824d2e3aea1d6cd15b7bb6cefe4e236c5b818d6a01d4f7ca0b60fe99535' }

XXX loading proposal id...
AElf [Info]: Proposal id:
→˓"bafe83ca4ec5b2a2f1e8016d09b21362c9345954a014379375f1a90b7afb43fb".
XXX Succeed!

You can get the proposal id, then get the proposal’s status.

• Get proposal status

$ aelf-command call AElf.ContractNames.Parliament GetProposal
→˓bafe83ca4ec5b2a2f1e8016d09b21362c9345954a014379375f1a90b7afb43fb
{

...
"expiredTime": {
"seconds": "1663942010",
"nanos": 496000

},
"organizationAddress": "BkcXRkykRC2etHp9hgFfbw2ec1edx7ERBxYtbC97z3Q2bNCwc",
"proposer": "2tj7Ea67fuQfVAtQZ3WBmTv7AAJ8S9D2L4g6PpRRJei6JXk7RG",
"toBeReleased": false

}
XXX Succeed!

toBeReleased indicates whether you can release this proposal. By default, a proposal needs over 2/3 BP nodes
approval.

• Release a proposal

You can release a proposal when it got approved.

$ aelf-command send AElf.ContractNames.Parliament Release
→˓bafe83ca4ec5b2a2f1e8016d09b21362c9345954a014379375f1a90b7afb43fb
AElf [Info]:
{ TransactionId:
'09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535' }

Get the transaction result

$ aelf-command get-tx-result 09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535
AElf [Info]: {

(continues on next page)

21.2. Commands 353

AElf, Release release/1.0.0-preview3

(continued from previous page)

"TransactionId": "09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535",
"Status": "MINED",
"Logs": [
{
"Address": "25CecrU94dmMdbhC3LWMKxtoaL4Wv8PChGvVJM6PxkHAyvXEhB",
"Name": "Transferred",
"Indexed": [

"CiIKIJTPGZ24g4eHwSVNLit8jgjFJeeYCEEYLDpFiCeCT0Bf",
"EiIKIO0jJRxjHdRQmUTby8klRVSqYpwhOyUsnXYV3IrQg8N1",
"GgNFTEY="

],
"NonIndexed": "IICgt4fpBSomVC00MzFkMjc0Yi0zNWJjLTRjYzgtOGExZC1iODhhZTgxYzU2Zjc="
}

],
"Bloom":

→˓"AAAAAAAAABAAgAAAQAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAACAAAAAAAAAAACAAAAAAAAAAAgAAAgAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAQAAA==
→˓",
"BlockNumber": 28411,
"BlockHash": "fa22e4eddff12a728895a608db99d40a4b21894f7c07df1a4fa8f0625eb914a2",
"Transaction": {
"From": "2tj7Ea67fuQfVAtQZ3WBmTv7AAJ8S9D2L4g6PpRRJei6JXk7RG",
"To": "29RDBXTqwnpWPSPHGatYsQXW2E17YrQUCj7QhcEZDnhPb6ThHW",
"RefBlockNumber": 28410,
"RefBlockPrefix": "0P+eTw==",
"MethodName": "Release",
"Params": "\"ad868c1e0d74127dd746ccdf3443a09459c55cf07d247df053ddf718df258c86\"",
"Signature": "DQcv55EBWunEFPXAbqZG20OLO5T0Sq/s0A+/

→˓iuwv1TdQqIV4318HrqFLsGpx9m3+sp5mzhAnMlrG7CSxM6EuIgA="
},
"ReturnValue": "",
"Error": null

}

If you want to call a contract method by creating a proposal and released it, the released transaction result could be
confusing, you can use another aelf-command sub-command to get the readable result;

Take the example above which has transferred token by proposal, transferred result can be viewed by decoding the
Logs field in the transaction result. Use aelf-command event to decode the results.

Pass the transaction id as a parameter:

$ aelf-command event 09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535
[Info]:
The results returned by
Transaction: 09c8c824d2e3aea1d...cefe4e236c5b818d6a01d4f7ca0b60fe99535 is:
[

{
"Address": "25CecrU94dmMdbhC3LWMKxtoaL4Wv8PChGvVJM6PxkHAyvXEhB",
"Name": "Transferred",
"Indexed": [

"CiIKIJTPGZ24g4eHwSVNLit8jgjFJeeYCEEYLDpFiCeCT0Bf",
"EiIKIO0jJRxjHdRQmUTby8klRVSqYpwhOyUsnXYV3IrQg8N1",
"GgNFTEY="

],
"NonIndexed": "IICgt4fpBSomVC00MzFkMjc0Yi0zNWJjLTRjYzgtOGExZC1iODhhZTgxYzU2Zjc=",
"Result": {

"from": "28Y8JA1i2cN6oHvdv7EraXJr9a1gY6D1PpJXw9QtRMRwKcBQMK",

(continues on next page)

354 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

(continued from previous page)

"to": "2oSMWm1tjRqVdfmrdL8dgrRvhWu1FP8wcZidjS6wPbuoVtxhEz",
"symbol": "ELF",
"amount": "200000000000",
"memo": "T-431d274b-35bc-4cc8-8a1d-b88ae81c56f7"

}
}

]

The Result field is the decoded result.

For more details, check the descriptions of aelf-command event.

21.2.6 deploy - Deploy a smart contract

This command has been deprecated, use aelf-command send or aelf-command proposal instead

Examples:

1. Use Genesis Contract to deploy a new smart contract

$ aelf-command get-chain-status
XXX Succeed
{
"ChainId": "AELF",
"Branches": {

"41a8a1ebf037197b7e2f10a67d81f741d46a6af41775bcc4e52ab855c58c4375": 8681551,
"ed4012c21a2fbf810db52e9869ef6a3fb0629b36d23c9be2e3692a24703b3112": 8681597,
"13476b902ef137ed63a4b52b2902bb2b2fa5dbe7c256fa326c024a73dc63bcb3": 8681610

},
"NotLinkedBlocks": {},
"LongestChainHeight": 8681610,
"LongestChainHash":

→˓"13476b902ef137ed63a4b52b2902bb2b2fa5dbe7c256fa326c024a73dc63bcb3",
"GenesisBlockHash":

→˓"cd5ce1bfa0cd97a1dc34f735c57bea2fcb9d88fc8f76bece2592fe7d82d5660c",
"GenesisContractAddress": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"LastIrreversibleBlockHash":

→˓"4ab84cdfe0723b191eedcf4d2ca86b0f64e57105e61486c21d98d562b14f2ab0",
"LastIrreversibleBlockHeight": 8681483,
"BestChainHash":

→˓"0dbc2176aded950020577552c92c82e66504ea109d4d6588887502251b7e932b",
"BestChainHeight": 8681609

}

use GenesisContractAddress as a parameter of aelf-command send
use contract method `DeploySmartContract` if the chain you are connecting to
→˓requires no limit of authority
$ aelf-command send 2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8
→˓DeploySmartContract
XXX Fetching contract successfully!

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:

(continues on next page)

21.2. Commands 355

AElf, Release release/1.0.0-preview3

(continued from previous page)

? Enter the required param <category>: 0
? Enter the required param <code>: /Users/test/contract.dll
...

use contract method `ProposeNewContract` if the chain you are connecting to
→˓requires create new propose when deploying smart contracts
$ aelf-command send 2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8
→˓ProposeNewContract
XXX Fetching contract successfully!

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <category>: 0
? Enter the required param <code>: /Users/test/contract.dll
...

• You must input contract method parameters in the prompting way, note that you can input a relative or
absolute path of contract file to pass a file to aelf-command, aelf-command will read the file content
and encode it as a base64 string.

• After call ProposeNewContract, you need to wait for the organization members to approve your
proposal and you can release your proposal by calling releaseApprove and releaseCodeCheck
in this order.

21.2.7 event - Deserialize the result return by executing a transaction

Only transaction id is required as the parameter.

$ aelf-command event fe1974fde291e44e16c55db666f2c747323cdc584d616de05c88c8bae18ecceb
[Info]:
The results returned by
Transaction: fe1974fde291e44e16c55db666f2c747323cdc584d616de05c88c8bae18ecceb is:
[

{
"Address": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"Name": "ContractDeployed",
"Indexed": [

"CiIKIN2O6lDDGWbgbkomYr6+9+2B0JpHsuses3KfLwzHgSmu",
"EiIKIDXZGwZLKqm78WpYDXuBlyd6Dv+RMjrgOUEnwamfIA/z"

],
"NonIndexed": "GiIKIN2O6lDDGWbgbkomYr6+9+2B0JpHsuses3KfLwzHgSmu",
"Result": {

"author": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"codeHash": "35d91b064b2aa9bbf16a580d7b8197277a0eff91323ae0394127c1a99f200ff3",
"address": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8"

}
}

]
XXX Succeed!

This command get the Log field of a transaction result and deserialize the Log field with the correspond protobuf
descriptors.

A transaction may be related with several Contract Method’s events, so the transaction result can include several

356 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

Logs.

In each item:

• Address: the contract address.

• Name: name of event published from related contract method.

• Indexed: indexed data of event in type of base64

• NoIndexed: no indexed data of event in type of base64.

• Result: the decoded result, this is readable and you can use it and get what the fields means inside the Result
by reading the contract documents or contract related protobuf files. In this example, you can read the protobuf
file;

21.2.8 send - Send a transaction

$ aelf-command send
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid wallet address, if you do not have, create one by aelf-command create
→˓... D3vSjRYL8MpeRpvUDy85ktXijnBe2tHn8NTACsggUVteQCNGP
XXX Enter the password you typed when creating a wallet ... ********
XXX Enter contract name (System contracts only) or the address of contract ... AElf.
→˓ContractNames.Token
XXX Fetching contract successfully!
? Pick up a contract method: Transfer

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <to>: C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuwfQu8qYjGsESanXR
? Enter the required param <symbol>: ELF
? Enter the required param <amount>: 100000000
? Enter the required param <memo>: 'test command'
The params you entered is:
{

"to": "C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuwfQu8qYjGsESanXR",
"symbol": "ELF",
"amount": 100000000,
"memo": "'test command'"

}
XXX Succeed!
AElf [Info]:
Result:
{

"TransactionId": "85d4684cb6e4721a63893240f73f675ac53768679c291abeb54974ff4e063bb5"
}
XXX Succeed!

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELF", "to":
→˓"C91b1SF5mMbenHZTfdfbJSkJcK7HMjeiuwfQu8qYjGsESanXR", "amount": "1000000"}'

21.2. Commands 357

https://github.com/AElfProject/AElf/blob/master/protobuf/acs0.proto#L95
https://github.com/AElfProject/AElf/blob/master/protobuf/acs0.proto#L95

AElf, Release release/1.0.0-preview3

21.2.9 call - Call a read-only method on a contract

$ aelf-command call
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid wallet address, if you do not have, create one by aelf-command create
→˓... D3vSjRYL8MpeRpvUDy85ktXijnBe2tHn8NTACsggUVteQCNGP
XXX Enter the password you typed when creating a wallet ... ********
XXX Enter contract name (System contracts only) or the address of contract ... AElf.
→˓ContractNames.Token
XXX Fetching contract successfully!
? Pick up a contract method: GetTokenInfo

If you need to pass file contents as a parameter, you can enter the relative or
→˓absolute path of the file

Enter the params one by one, type `Enter` to skip optional param:
? Enter the required param <symbol>: ELF
The params you entered is:
{

"symbol": "ELF"
}
XXX Calling method successfully!
AElf [Info]:
Result:
{

"symbol": "ELF",
"tokenName": "Native Token",
"supply": "99732440917954549",
"totalSupply": "100000000000000000",
"decimals": 8,
"issuer": "FAJcKnSpbViZfAufBFzX4nC8HtuT93rxUS4VCMACUwXWYurC2",
"isBurnable": true,
"issueChainId": 9992731,
"burned": "267559132045477"

}
XXX Succeed!

aelf-command call AElf.ContractNames.Token GetTokenInfo '{"symbol":"ELF"}'

21.2.10 get-chain-status - Get the current status of the block chain

$ aelf-command get-chain-status
XXX Succeed
{

"ChainId": "AELF",
"Branches": {
"59937e3c16860dedf0c80955f4995a5604ca43ccf39cd52f936fb4e5a5954445": 4229086

},
"NotLinkedBlocks": {},
"LongestChainHeight": 4229086,
"LongestChainHash":

→˓"59937e3c16860dedf0c80955f4995a5604ca43ccf39cd52f936fb4e5a5954445",
"GenesisBlockHash":

→˓"da5e200259320781a1851081c99984fb853385153991e0f00984a0f5526d121c",
"GenesisContractAddress": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",

(continues on next page)

358 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

(continued from previous page)

"LastIrreversibleBlockHash":
→˓"497c24ff443f5cbd33da24a430f5c6c5e0be2f31651bd89f4ddf2790bcbb1906",
"LastIrreversibleBlockHeight": 4229063,
"BestChainHash": "59937e3c16860dedf0c80955f4995a5604ca43ccf39cd52f936fb4e5a5954445",
"BestChainHeight": 4229086

}

21.2.11 get-tx-result - Get a transaction result

$ aelf-command get-tx-result
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid transaction id in hex format ...
→˓7b620a49ee9666c0c381fdb33f94bd31e1b5eb0fdffa081463c3954e9f734a02
XXX Succeed!
{ TransactionId:

'7b620a49ee9666c0c381fdb33f94bd31e1b5eb0fdffa081463c3954e9f734a02',
Status: 'MINED',
Logs: null,
Bloom:

→˓'AA==
→˓',
BlockNumber: 7900508,
BlockHash:
'a317c5ecf4a22a481f88ab08b8214a8e8c24da76115d9ddcef4afc9531d01b4b',
Transaction:
{ From: 'D3vSjRYL8MpeRpvUDy85ktXijnBe2tHn8NTACsggUVteQCNGP',

To: 'WnV9Gv3gioSh3Vgaw8SSB96nV8fWUNxuVozCf6Y14e7RXyGaM',
RefBlockNumber: 7900503,
RefBlockPrefix: 'Q6WLSQ==',
MethodName: 'GetTokenInfo',
Params: '{ "symbol": "ELF" }',
Signature:

→˓'JtSpWbMX13tiJD0klMSJQyPBa0aRNFY4hTh3hltdWqhBpv4IRTbjjZfQj39lbBSCOy68vnLg6rUerEcyCsqwfgE=
→˓' },
ReadableReturnValue:
'{ "symbol": "ELF", "tokenName": "elf token", "supply": "1000000000", "totalSupply

→˓": "1000000000", "decimals": 2, "issuer":
→˓"2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8", "isBurnable": true }',
Error: null }

21.2.12 get-blk-height - Get the block height

$ aelf-command get-blk-height
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
> 7902091

21.2.13 get-blk-info - Get the block info by a block height or a block hash

You can pass a block height or a block hash to this sub-command.

21.2. Commands 359

AElf, Release release/1.0.0-preview3

$ aelf-command get-blk-info
XXX Enter the the URI of an AElf node: http://13.231.179.27:8000
XXX Enter a valid height or block hash: 123
XXX Include transactions whether or not: no / yes
{ BlockHash:

'6034db3e02e283d3b81a4528442988d28997d3828f87cca1a89457b294517372',
Header:
{ PreviousBlockHash:

'9d6bcc588c0bc10942899e7ec4536665c86f23286029ed45287babf22c582f5a',
MerkleTreeRootOfTransactions:
'7ceb349715787ececa647ad48576467d294de6dcc44d14e19f60c4a91a7a9536',

MerkleTreeRootOfWorldState:
'b529e2775283edc39cd4e3f685616085b18bd5521a87ea7904ad99cd2dc50910',

Extra:
'[

→˓"CkEEJT3FEw+k9cuqv7uruq1fEwQwEjKtYxbXK86wUGrAOH7BgCVkMendLkQZmpEpMgzcz+JXnaVpWtFt3AJcGmGycxL+DggIEvIDCoIBMDQyNTNkYzUxMzBmYTRmNWNiYWFiZmJiYWJiYWFkNWYxMzA0MzAxMjMyYWQ2MzE2ZDcyYmNlYjA1MDZhYzAzODdlYzE4MDI1NjQzMWU5ZGQyZTQ0MTk5YTkxMjkzMjBjZGNjZmUyNTc5ZGE1Njk1YWQxNmRkYzAyNWMxYTYxYjI3MxLqAggCIiIKIOAP2QU8UpM4u9Y3OxdKdI5Ujm3DSyQ4JaRNf7q5ka5mKiIKIH5yNJs87wb/
→˓AkWcIrCxvCX/
→˓Te3fGHVXFxE8xsnfT1HtMgwIoJro6AUQjOa1pQE4TkqCATA0MjUzZGM1MTMwZmE0ZjVjYmFhYmZiYmFiYmFhZDVmMTMwNDMwMTIzMmFkNjMxNmQ3MmJjZWIwNTA2YWMwMzg3ZWMxODAyNTY0MzFlOWRkMmU0NDE5OWE5MTI5MzIwY2RjY2ZlMjU3OWRhNTY5NWFkMTZkZGMwMjVjMWE2MWIyNzNiIgogHY83adsNje+EtL0lLEte8KfT6X/
→˓836zXZTbntbqyjgtoBHAEegwIoJro6AUQzOybpgF6DAigmujoBRCk8MG1AnoLCKGa6OgFEOCvuBF6CwihmujoBRCg/
→˓JhzegwIoZro6AUQ9Lml1wF6DAihmujoBRDYyOO7AnoMCKGa6OgFEKy+ip8DkAEOEp8CCoIBMDQ4MWMyOWZmYzVlZjI5NjdlMjViYTJiMDk0NGVmODQzMDk0YmZlOTU0NWFhZGFjMGQ3Nzk3MWM2OTFjZTgyMGQxYjNlYzQxZjNjMDllNDZjNmQxMjM2NzA5ZTE1ZTEyY2U5N2FhZGNjYTBmZGU4NDY2M2M3OTg0OWZiOGYwM2RkMhKXAQgEMgwIpJro6AUQjOa1pQE4IkqCATA0ODFjMjlmZmM1ZWYyOTY3ZTI1YmEyYjA5NDRlZjg0MzA5NGJmZTk1NDVhYWRhYzBkNzc5NzFjNjkxY2U4MjBkMWIzZWM0MWYzYzA5ZTQ2YzZkMTIzNjcwOWUxNWUxMmNlOTdhYWRjY2EwZmRlODQ2NjNjNzk4NDlmYjhmMDNkZDISnwIKggEwNDFiZTQwMzc0NjNjNTdjNWY1MjgzNTBhNjc3ZmRkZmEzMzcxOWVlZjU5NDMwNDY5ZTlmODdkY2IyN2Y0YTQ1NjY0OTI4NmZhNzIxYzljOWVjZDMxMmY0YjdlZDBmZGE4OTJmZTNlZDExZWFjYTBmMzcxOTBkMjAzYTczYTA2YjFmEpcBCAYyDAiomujoBRCM5rWlATgySoIBMDQxYmU0MDM3NDYzYzU3YzVmNTI4MzUwYTY3N2ZkZGZhMzM3MTllZWY1OTQzMDQ2OWU5Zjg3ZGNiMjdmNGE0NTY2NDkyODZmYTcyMWM5YzllY2QzMTJmNGI3ZWQwZmRhODkyZmUzZWQxMWVhY2EwZjM3MTkwZDIwM2E3M2EwNmIxZhKfAgqCATA0OTMzZmYzNDRhNjAxMTdmYzRmYmRmMDU2ODk5YTk0NDllNjE1MzA0M2QxYzE5MWU4NzlkNjlkYzEzZmIyMzM2NWJmNTQxZWM1NTU5MWE2MTQ3YmM1Y2M3ZjUzMjQ0OTY2ZGE5NzA2ZWZmNzZiY2Y2ZjViY2EyOTYzNmVmODNkYzYSlwEICjIMCLCa6OgFEIzmtaUBOCJKggEwNDkzM2ZmMzQ0YTYwMTE3ZmM0ZmJkZjA1Njg5OWE5NDQ5ZTYxNTMwNDNkMWMxOTFlODc5ZDY5ZGMxM2ZiMjMzNjViZjU0MWVjNTU1OTFhNjE0N2JjNWNjN2Y1MzI0NDk2NmRhOTcwNmVmZjc2YmNmNmY1YmNhMjk2MzZlZjgzZGM2EpUDCoIBMDRiNmMwNzcxMWJjMzBjZGY5OGM5ZjA4MWU3MDU5MWY5OGYyYmE3ZmY5NzFlNWExNDZkNDcwMDlhNzU0ZGFjY2ViNDY4MTNmOTJiYzgyYzcwMDk3MWFhOTM5NDVmNzI2YTk2ODY0YTJhYTM2ZGE0MDMwZjA5N2Y4MDZiNWFiZWNhNBKNAggIEAEyDAismujoBRCM5rWlATgwQAJKggEwNGI2YzA3NzExYmMzMGNkZjk4YzlmMDgxZTcwNTkxZjk4ZjJiYTdmZjk3MWU1YTE0NmQ0NzAwOWE3NTRkYWNjZWI0NjgxM2Y5MmJjODJjNzAwOTcxYWE5Mzk0NWY3MjZhOTY4NjRhMmFhMzZkYTQwMzBmMDk3ZjgwNmI1YWJlY2E0egwInJro6AUQjOa1pQF6DAicmujoBRCkz+mjAnoMCJya6OgFEIj8yfECegwInJro6AUQ7KiH0wN6CwidmujoBRCko6hXegwInZro6AUQ6LTNugF6DAidmujoBRCY4NObAnoMCJ2a6OgFEMzWv+oCkAEQIFg6ggEwNGI2YzA3NzExYmMzMGNkZjk4YzlmMDgxZTcwNTkxZjk4ZjJiYTdmZjk3MWU1YTE0NmQ0NzAwOWE3NTRkYWNjZWI0NjgxM2Y5MmJjODJjNzAwOTcxYWE5Mzk0NWY3MjZhOTY4NjRhMmFhMzZkYTQwMzBmMDk3ZjgwNmI1YWJlY2E0QAIYBQ==
→˓", ""]',

Height: 123,
Time: '2019-07-01T13:39:45.8704899Z',
ChainId: 'AELF',
Bloom:

→˓'00
→˓',

SignerPubkey:

→˓'04253dc5130fa4f5cbaabfbbabbaad5f1304301232ad6316d72bceb0506ac0387ec180256431e9dd2e44199a9129320cdccfe2579da5695ad16ddc025c1a61b273
→˓' },
Body:
{ TransactionsCount: 1,

Transactions:
['a365a682caf3b586cbd167b81b167979057246a726c7282530554984ec042625'] } }

aelf-command get-blk-info
→˓ca61c7c8f5fc1bc8af0536bc9b51c61a94f39641a93a748e72802b3678fea4a9 true

21.2.14 console - Open an interactive console

$ aelf-command console
XXX Enter the the URI of an AElf node ... http://13.231.179.27:8000
XXX Enter a valid wallet address, if you do not have, create one by aelf-command create
→˓... 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk

(continues on next page)

360 Chapter 21. Command line interface

AElf, Release release/1.0.0-preview3

(continued from previous page)

aelf | instance of aelf-sdk, connect to
| http://13.231.179.27:8000

_account | instance of AElf wallet, wallet address
| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

21.2.15 dapp-server - Start a socket.io server for supplying services for dApps

If you’re developing a dApp and you need an environment to hold wallet info and connect to the AElf chain, you can
use this sub-command to start a server for dApp local development.

$ aelf-command dapp-server
AElf [Info]: DApp server is listening on port 35443

or listen on a specified port
$ aelf-command dapp-server --port 40334
AElf [Info]: DApp server is listening on port 40334

This server uses Socket.io to listen on local port 35443 and you can use aelf-bridge to connect to this server like this:

import AElfBridge from 'aelf-bridge';
const bridgeInstance = new AElfBridge({
proxyType: 'SOCKET.IO',
socketUrl: 'http://localhost:35443',
channelType: 'ENCRYPT'

});
// connect to dapp-server
bridgeInstance.connect().then(console.log).catch(console.error);

checkout more information in aelf-bridge and aelf-bridge-demo.

21.2. Commands 361

https://github.com/AElfProject/aelf-bridge
https://github.com/AElfProject/aelf-bridge
https://github.com/AElfProject/aelf-bridge-demo

AElf, Release release/1.0.0-preview3

362 Chapter 21. Command line interface

CHAPTER 22

Wallet and Block Explorer

22.1 Explorer

Github

Currently, the explorer provides functions such as viewing blocks, transactions, purchasing resources, voting and node
campaigning as well as viewing contracts.

22.2 iOS/Android Wallet

iOS/Android Wallet provides basic asset management and cross-chain trading capabilities. It also provides an open
application platform for developers to access the wallet according to the usage document of the wallet SDK.

22.3 Web Wallet

Github

The Web Wallet provides basic transaction related functionality.

22.3.1 Explorer-api

To get more informantion by code

Block

363

https://github.com/AElfProject/aelf-block-explorer
https://github.com/AElfProject/aelf-web-wallet
https://github.com/AElfProject/aelf-block-api

AElf, Release release/1.0.0-preview3

Get Block List

URL: api/all/blocks?limit={limit}&page={page}
Method: GET
SuccessResponse:
{

"total": 5850,
"blocks": [

{
"block_hash":

→˓"7e1c2fb6d3cc5e8c2cef7d75de9c1adf0e25e9d17d4f22e543fa20f5f23b20e9",
"pre_block_hash":

→˓"6890fa74156b1a88a3ccef1fef72f4f78ff2755ffcd4fb5434ed7b3c153061f5",
"chain_id": "AELF",
"block_height": 5719,
"tx_count": 1,
"merkle_root_tx":

→˓"47eabbc7a499764d0b25c7216ba75fe39717f9866a0716c8a0d1798e64852d84",
"merkle_root_state":

→˓"d14e78dc3c7811b7c17c8b04ebad9e547c35b3faa8bfcc9189b8c12e9f6a4aae",
"time": "2019-04-27T02:00:34.691118Z"

},
{

"block_hash":
→˓"6890fa74156b1a88a3ccef1fef72f4f78ff2755ffcd4fb5434ed7b3c153061f5",

"pre_block_hash":
→˓"f1098bd6df58acf74d8877529702dffc444cb401fc8236519606aa9165d945ae",

"chain_id": "AELF",
"block_height": 5718,
"tx_count": 1,
"merkle_root_tx":

→˓"b29b416148b4fb79060eb80b49bb6ac25a82da2d7a1c5d341e0bf279a7c57362",
"merkle_root_state":

→˓"4dbef401f6d9ed303cf1b5e609a64b1c06a7fb77620b9d13b0e4649719e2fe55",
"time": "2019-04-27T02:00:34.691118Z"

},
{

"block_hash":
→˓"f1098bd6df58acf74d8877529702dffc444cb401fc8236519606aa9165d945ae",

"pre_block_hash":
→˓"1fbdf3a4fb3c41e9ddf25958715815d9d643dfb39e1aaa94631d197e9b1a94bb",

"chain_id": "AELF",
"block_height": 5717,
"tx_count": 1,
"merkle_root_tx":

→˓"776abba03d66127927edc6437d406f708b64c1653a1cc22af9c490aa4f0c22dc",
"merkle_root_state":

→˓"ccc32ab23d619b2b8e0e9b82a53bb66b3a6d168993188b5d3f7f0ac2cb17206f",
"time": "2019-04-27T02:00:26.690003Z"

},
]

}

364 Chapter 22. Wallet and Block Explorer

AElf, Release release/1.0.0-preview3

Get Block List By Bock Hash

URL: api/block/transactions?limit={limit}&page={page}&order={order}&block_hash={block_
→˓hash}
Method: GET
SuccessResponse:
{

"transactions": [
{

"tx_id": "209ceb8ee88eeb2c55db7783c48ec0b1adf6badba89fc7ddb86e968601027cbb
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 590,
"address_from": "csoxW4vTJNT9gdvyWS6W7UqEdkSo9pWyJqBoGSnUHXVnj4ykJ",
"address_to": "2gaQh4uxg6tzyH1ADLoDxvHA14FMpzEiMqsQ6sDG5iHT8cmjp8",
"params": "",
"method": "DeploySmartContract",
"block_hash":

→˓"79584a99b7f5da5959a26ff02cbe174d632eb5ef3c6c8d5192de48b6f5584c8d",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T06:47:00.265604Z"

},
{

"tx_id": "d9398736920a5c87ea7cae46c265efa84ac7be4cf8edd37bea54078abef1b44c
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 590,
"address_from": "2EyPedNTscFK5EwR8FqTrCeW2LZzuPQ7vr18Y5QWuEUApdCkM6",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"79584a99b7f5da5959a26ff02cbe174d632eb5ef3c6c8d5192de48b6f5584c8d",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T06:47:00.265604Z"

}
]

}

Transactions

Get Transactions List

URL: api/all/transactions?limit={limit}&page={limit}
Method: GET
SuccessResponse:
{

"total": 1179,
"transactions": [

{
"tx_id": "c65d1206e65aaf2e7e08cc818c372ff2c2947cb6cbec746efe6a5e20b7adefa9

→˓", (continues on next page)

22.3. Web Wallet 365

AElf, Release release/1.0.0-preview3

(continued from previous page)

"params_to": "",
"chain_id": "AELF",
"block_height": 1064,
"address_from": "grSAEQ5vJ7UfCN2s1v4fJJnk98bu4SHa2hpQkQ9HT88rmaZLz",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"8c922b20164ad3774b56d19673154f383ed89656cbd56433d1681c8c3a4dcab9",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "4780a7b2737b6f044894719b9bb4cb09862c0b4a7cae267131a0b5c3e7c12850
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1063,
"address_from": "QUYYqzTQmugruHYmuJVftwmVjnUM82pXnMTnT5jh55qwZKrMw",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "UpdateValue",
"block_hash":

→˓"381114b86b09886f59956851a1d47d8442b29f44f3785dade3c667ca320e23bb",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "0230385e3f060059d2a62addac09ad6d01f96d32ec076cfbf44c6a3b70c6e092
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1062,
"address_from": "zizPhdDpQCZxMChMxn1oZ4ttJGJUo61Aocg5BpTYvzLQGmBjT",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"06a3ceb783480f4cf5b8402f6749617093d9ea5f9a053f65e86554aeed6d98f4",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:28.635113Z"

},
]

}

Get Transactions List By Address

URL: api/address/transactions?contract_address={contract_address}&limit={limit}&page=
→˓{page}&address={address}
Method: GET
SuccessResponse:

(continues on next page)

366 Chapter 22. Wallet and Block Explorer

AElf, Release release/1.0.0-preview3

(continued from previous page)

{
"total": 1179,
"transactions": [

{
"tx_id": "c65d1206e65aaf2e7e08cc818c372ff2c2947cb6cbec746efe6a5e20b7adefa9

→˓",
"params_to": "",
"chain_id": "AELF",
"block_height": 1064,
"address_from": "grSAEQ5vJ7UfCN2s1v4fJJnk98bu4SHa2hpQkQ9HT88rmaZLz",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"8c922b20164ad3774b56d19673154f383ed89656cbd56433d1681c8c3a4dcab9",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "4780a7b2737b6f044894719b9bb4cb09862c0b4a7cae267131a0b5c3e7c12850
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1063,
"address_from": "QUYYqzTQmugruHYmuJVftwmVjnUM82pXnMTnT5jh55qwZKrMw",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "UpdateValue",
"block_hash":

→˓"381114b86b09886f59956851a1d47d8442b29f44f3785dade3c667ca320e23bb",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:36.636701Z"

},
{

"tx_id": "0230385e3f060059d2a62addac09ad6d01f96d32ec076cfbf44c6a3b70c6e092
→˓",

"params_to": "",
"chain_id": "AELF",
"block_height": 1062,
"address_from": "zizPhdDpQCZxMChMxn1oZ4ttJGJUo61Aocg5BpTYvzLQGmBjT",
"address_to": "xw6U3FRE5H8rU3z8vAgF9ivnWSkxULK5cibdZzMC9UWf7rPJf",
"params": "",
"method": "NextRound",
"block_hash":

→˓"06a3ceb783480f4cf5b8402f6749617093d9ea5f9a053f65e86554aeed6d98f4",
"quantity": 0,
"tx_status": "Mined",
"time": "2019-04-26T07:18:28.635113Z"

},
]

}

TPS

22.3. Web Wallet 367

AElf, Release release/1.0.0-preview3

Get TPS Record

URL: api/tps/list?start_time={unix_timestamp}&end_time={unix_timestamp}&order={order}
Method: GET
SuccessResponse:
{

"total": 178,
"tps": [

{
"id": 12498,
"start": "2019-11-22T01:12:14Z",
"end": "2019-11-22T01:13:14Z",
"txs": 1878,
"blocks": 120,
"tps": 31,
"tpm": 1878,
"type": 1

},
{

"id": 12499,
"start": "2019-11-22T01:13:14Z",
"end": "2019-11-22T01:14:14Z",
"txs": 1889,
"blocks": 117,
"tps": 31,
"tpm": 1889,
"type": 1

},
{

"id": 12500,
"start": "2019-11-22T01:14:14Z",
"end": "2019-11-22T01:15:14Z",
"txs": 1819,
"blocks": 114,
"tps": 30,
"tpm": 1819,
"type": 1

},
{

"id": 12501,
"start": "2019-11-22T01:15:14Z",
"end": "2019-11-22T01:16:14Z",
"txs": 1779,
"blocks": 105,
"tps": 30,
"tpm": 1779,
"type": 1

}
]

}

368 Chapter 22. Wallet and Block Explorer

CHAPTER 23

aelf-web-extension

You can get more information in Github

23.1 For User

release version, please waiting

dev version

If you are using qq browser,etc, you can add the extention too.

23.1.1 Notice

Note: Using File:/// protocol may can not use the extenstion // https://developer.chrome.com/extensions/match_
patterns Note: Access to file URLs isn’t automatic. The user must visit the extensions management page and opt in to
file access for each extension that requests it.

23.2 For Dapp Developers

23.2.1 Interaction Flow

• 1.Make sure the user get the Extension

• 2.Connect Chain

• 3.Initialize Contract

• 4.Call contract methods

369

https://github.com/AElfProject/aelf-web-extension
https://chrome.google.com/webstore/detail/aelf-explorer-extension-d/mlmlhipeonlflbcclinpbmcjdnpnmkpf
File:///
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns

AElf, Release release/1.0.0-preview3

23.2.2 How to use

If you need complete data structure. you can click here

• 0. Check Extension Demo

• 1. GET_CHAIN_STATUS

• 2. CALL_AELF_CHAIN

• 3. LOGIN

• 4. INIT_AELF_CONTRACT

• 5. CALL_AELF_CONTRACT / CALL_AELF_CONTRACT_READONLY

• 6. CHECK_PERMISSION

• 7. SET_CONTRACT_PERMISSION

• 8. REMOVE_CONTRACT_PERMISSION

• 9. REMOVE_METHODS_WHITELIST

23.3 Data Format

NightElf = {
histories: [],
keychain: {

keypairs: [
{

name: 'your keypairs name',
address: 'your keypairs address',
mnemonic: 'your keypairs mnemonic',
privateKey: 'your keupairs privateKey',
publicKey: {

x: 'you keupairs publicKey',
y: 'you keupairs publicKey'

}
}

],
permissions: [

{
chainId: 'AELF',
contractAddress: 'contract address',
contractName: 'contract name',
description: 'contract description',
github: 'contract github',
whitelist: {

Approve: {
parameter1: 'a',
parameter2: 'b',
parameter3: 'c'

}
}

}
]

}
}

370 Chapter 23. aelf-web-extension

AElf, Release release/1.0.0-preview3

23.3.1 Demo of Checking the Extension

let nightElfInstance = null;
class NightElfCheck {

constructor() {
const readyMessage = 'NightElf is ready';
let resovleTemp = null;
this.check = new Promise((resolve, reject) => {

if (window.NightElf) {
resolve(readyMessage);

}
setTimeout(() => {

reject({
error: 200001,
message: 'timeout / can not find NightElf / please install the

→˓extension'
});

}, 1000);
resovleTemp = resolve;

});
document.addEventListener('NightElf', result => {

console.log('test.js check the status of extension named nightElf: ',
→˓result);

resovleTemp(readyMessage);
});

}
static getInstance() {

if (!nightElfInstance) {
nightElfInstance = new NightElfCheck();
return nightElfInstance;

}
return nightElfInstance;

}
}
const nightElfCheck = NightElfCheck.getInstance();
nightElfCheck.check.then(message => {

// connectChain -> Login -> initContract -> call contract methods
});

23.3.2 1.GET_CHAIN_STATUS

You can see the demo ./devDemos/test.html. [demo.js just a draft]

If you want to check Token Transfer Demo. You can click here

The methods calls act the same as the methods call of the aelf-sdk.js

Note: '...' stands for omitted data.

const aelf = new window.NightElf.AElf({
httpProvider: [

'http://192.168.197.56:8101/chain',
null,
null,
null,
[{

name: 'Accept',

(continues on next page)

23.3. Data Format 371

https://github.com/hzz780/aelf-web-extension/tree/1.0/devDemos
https://github.com/hzz780/aelf-web-extension/tree/master/demo/token

AElf, Release release/1.0.0-preview3

(continued from previous page)

value: 'text/plain;v=1.0'
}]

],
appName: 'Test'

});

aelf.chain.getChainStatus((error, result) => {
console.log('>>>>>>>>>>>>> connectChain >>>>>>>>>>>>>');
console.log(error, result);

});

// result = {
// ChainId: "AELF"
// GenesisContractAddress: "61W3AF3Voud7cLY2mejzRuZ4WEN8mrDMioA9kZv3H8taKxF"
// }

23.3.3 2.CALL_AELF_CHAIN

const txid = 'c45edfcca86f4f528cd8e30634fa4ac53801aae05365cfefc3bfe9b652fe5768';
aelf.chain.getTxResult(txid, (err, result) => {

console.log('>>>>>>>>>>>>> getTxResult >>>>>>>>>>>>>');
console.log(err, result);

});

// result = {
// Status: "NotExisted"
// TransactionId:
→˓"ff5bcd126f9b7f22bbfd0816324390776f10ccb3fe0690efc84c5fcf6bdd3fc6"
// }

23.3.4 3. LOGIN

aelf.login({
appName: 'hzzTest',
chainId: 'AELF',
payload: {

method: 'LOGIN',
contracts: [{

chainId: 'AELF',
contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
contractName: 'token',
description: 'token contract',
github: ''

}, {
chainId: 'AELF TEST',
contractAddress: '2Xg2HKh8vusnFMQsHCXW1q3vys5JxG5ZnjiGwNDLrrpb9Mb',
contractName: 'TEST contractName',
description: 'contract description',
github: ''

}]
}

}, (error, result) => {

(continues on next page)

372 Chapter 23. aelf-web-extension

AElf, Release release/1.0.0-preview3

(continued from previous page)

console.log('login>>>>>>>>>>>>>>>>>>', result);
});

// keychain = {
// keypairs: [{
// name: 'your keypairs name',
// address: 'your keypairs address',
// mnemonic: 'your keypairs mnemonic',
// privateKey: 'your keypairs privateKey'
// publicKey: {
// x: 'f79c25eb......',
// y: '7fa959ed......'
// }
// }],
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',
// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: ''
// }],
// domain: 'Dapp domain'
// }]
// }

23.3.5 4.INIT_AELF_CONTRACT

// In aelf-sdk.js wallet is the realy wallet.
// But in extension sdk, we just need the address of the wallet.
const tokenContract;
const wallet = {

address: '2JqnxvDiMNzbSgme2oxpqUFpUYfMjTpNBGCLP2CsWjpbHdu'
};
// It is different from the wallet created by Aelf.wallet.getWalletByPrivateKey();
// There is only one value named address;
aelf.chain.contractAtAsync(

'4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
wallet,
(error, result) => {

console.log('>>>>>>>>>>>>> contractAtAsync >>>>>>>>>>>>>');
console.log(error, result);
tokenContract = result;

}
);

// result = {
// Approve: ƒ (),
// Burn: ƒ (),
// ChargeTransactionFees: ƒ (),
// ClaimTransactionFees: ƒ (),
//
// }

23.3. Data Format 373

AElf, Release release/1.0.0-preview3

23.3.6 5.CALL_AELF_CONTRACT / CALL_AELF_CONTRACT_READONLY

// tokenContract from the contractAsync
tokenContract.GetBalance.call(

{
symbol: 'AELF',
owner: '65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9'

},
(err, result) => {

console.log('>>>>>>>>>>>>>>>>>>>', result);
}

);

tokenContract.Approve(
{

symbol: 'AELF',
spender: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
amount: '100'

},
(err, result) => {

console.log('>>>>>>>>>>>>>>>>>>>', result);
}

);

// If you use tokenContract.GetBalance.call this method is only applicable to
→˓queries that do not require extended authorization validation.(CALL_AELF_CONTRACT_
→˓READONLY)
// If you use tokenContract.Approve this requires extended authorization validation
→˓(CALL_AELF_CONTRACT)

// tokenContract.GetBalance.call(payload, (error, result) => {})
// result = {
// symbol: "AELF",
// owner: "65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuYQToNefSgqk9",
// balance: 0
// }

23.3.7 6.CHECK_PERMISSION

aelf.checkPermission({
appName: 'hzzTest',
type: 'address', // if you did not set type, it aways get by domain.
address: '4WBgSL2fSem9ABD4LLZBpwP8eEymVSS1AyTBCqXjt5cfxXK'

}, (error, result) => {
console.log('checkPermission>>>>>>>>>>>>>>>>>', result);

});

// result = {
// ...,
// permissions:[
// {
// address: '...',
// appName: 'hzzTest',
// contracts: [{
// chainId: 'AELF',

(continues on next page)

374 Chapter 23. aelf-web-extension

AElf, Release release/1.0.0-preview3

(continued from previous page)

// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: ''
// },
// {
// chainId: 'AELF TEST',
// contractAddress: 'TEST contractAddress',
// contractName: 'TEST contractName',
// description: 'contract description',
// github: ''
// }],
// domian: 'Dapp domain'
// }
//]
// }

23.3.8 7.SET_CONTRACT_PERMISSION

aelf.setContractPermission({
appName: 'hzzTest',
hainId: 'AELF',
payload: {

address: '2JqnxvDiMNzbSgme2oxpqUFpUYfMjTpNBGCLP2CsWjpbHdu',
contracts: [{

chainId: 'AELF',
contractAddress: 'TEST contractAddress',
contractName: 'AAAA',
description: 'contract description',
github: ''

}]
}

}, (error, result) => {
console.log('>>>>>>>>>>>>>', result);

});

// keychain = {
// keypairs: {...},
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',
// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: '',
// whitelist: {}
// },
// {
// chainId: 'AELF',
// contractAddress: 'TEST contractAddress',
// contractName: 'AAAA',
// description: 'contract description',
// github: ''

(continues on next page)

23.3. Data Format 375

AElf, Release release/1.0.0-preview3

(continued from previous page)

// }],
// domain: 'Dapp domain'
// }]
// }

23.3.9 8.REMOVE_CONTRACT_PERMISSION

aelf.removeContractPermission({
appName: 'hzzTest',
chainId: 'AELF',
payload: {

contractAddress: '2Xg2HKh8vusnFMQsHCXW1q3vys5JxG5ZnjiGwNDLrrpb9Mb'
}

}, (error, result) => {
console.log('removeContractPermission>>>>>>>>>>>>>>>>>>>', result);

});

// keychain = {
// keypairs: {...},
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',
// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: ''
// }],
// domain: 'Dapp domain'
// }]
// }

23.3.10 9.REMOVE_METHODS_WHITELIST

aelf.removeMethodsWhitelist({
appName: 'hzzTest',
chainId: 'AELF',
payload: {

contractAddress: '2Xg2HKh8vusnFMQsHCXW1q3vys5JxG5ZnjiGwNDLrrpb9Mb',
whitelist: ['Approve']

}
}, (error, result) => {

console.log('removeWhitelist>>>>>>>>>>>>>>>>>', result);
});
// keychain = {
// keypairs: {...},
// permissions: [{
// appName: 'hzzTest',
// address: 'your keyparis address',
// contracts: [{
// chainId: 'AELF',

(continues on next page)

376 Chapter 23. aelf-web-extension

AElf, Release release/1.0.0-preview3

(continued from previous page)

// contractAddress: '4rkKQpsRFt1nU6weAHuJ6CfQDqo6dxruU3K3wNUFr6ZwZYc',
// contractName: 'token',
// description: 'token contract',
// github: '',
// whitelist: {}
// }],
// domain: 'Dapp domain'
// }]
// }

23.4 For Extension Developers

1. Download the code

git clone https://github.com/hzz780/aelf-web-extension.git

2. Install dependent

npm install

3. Run webpack

webpack -w

4. Add to the browser

open development mode, add the webpack output app/public.

23.5 Project Information

We use ECDH to use public key to encryt data and private key to decrypt data.

23.4. For Extension Developers 377

https://github.com/indutny/elliptic

AElf, Release release/1.0.0-preview3

378 Chapter 23. aelf-web-extension

CHAPTER 24

DevOps

24.1 Open source development

We want to stay as open as possible during AElf’s development. For this we follow a certain amount rules and
guidelines to try and keep the project as accessible as possible. Our project is open source and we publish our code as
well as current issues online. It is our responsibility to make it as transparent as possible.

AElf is a collaborative project and welcomes outside opinion and requests/discussion for modifications of the code,
but since we work in an open environment all collaborator need to respect a certain standard. We clarify this in the
following standard:

•

We encourage collaborators that want to participate to first read the white paper and the documentations to understand
the ideas surrounding AElf. Also a look at our code and architecture and the way current functionality has been
implemented. After this if any questions remain, you can open an issues on GitHub stating as clearly as possible what
you need to clarify.

Finally, any collaborator wanting to participate in the development should open a pull request following our rules. It
will be formally reviewed and discussed through GitHub and if validated by core members of AElf, can be merged.

24.2 Deployment

For versioning we use the semver versioning system: https://semver.org

Daily build

Integrated with github we have cron job that will publish the latest version of devs myget packets.

- MyGet: https://www.myget.org/gallery/aelf-project-dev

Release branch

379

AElf, Release release/1.0.0-preview3

- Nuget: https://www.nuget.org/profiles/AElf

24.3 Testing

Testing is one of the most important aspects of software development. Non tested software is difficult to improve.
There are two main types of testing that we perform: unit testing and performance testing. The unit testing covers
functionality and protocol, which is an essential part of a blockchain system. The performance tests are also very
important to show that modifications have not impacted the speed at which our nodes process incoming transactions
and blocks.

24.3.1 Unit testing

To ensure the quality of our system and avoid regression, as well as permit safe modifications, we try to cover as much
of our functionality as possible through unit tests. We mostly use the xUnit framework and follow generally accepted
best practices when testing. Our workflow stipulates that for any new functionality, we cover it with tests and make
sure other unit tests.

24.3.2 Perf testing

The performance testing is crucial to AElf since a strong point of our system is speed.

24.4 Monitoring

• Server monitoring: Zabbix monitors instances of aelf metrics like cpu, db. . .

• Chain monitoring: project on github with Grafana dashboard from Influxdb

• Akka monitoring: monitor actors.

380 Chapter 24. DevOps

CHAPTER 25

QuickStart

25.1 Manual build & run the sources

This method is not as straightforward as the docker quickstart but is a lot more flexible. If your aim is to develop
some dApps it’s better you follow these more advanced ways of launching a node. This section will walk you through
configuring, running and interacting with an AElf node.

First, if you haven’t already done it, clone our repository

git clone https://github.com/AElfProject/AElf.git aelf
cd aelf/src

Navigate into the newly created aelf directory.

25.1.1 Generating the nodes account

First you need to install the aelf-command command packet. Open a terminal and enter the following command:

npm i -g aelf-command

Windows Note: it’s possible that you get some errors about python not being installed, you can safely ignore these.

After installing aelf-command you can use the following command to create an account/key-pair:

aelf-command create

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

Your wallet info is :
Mnemonic : great mushroom loan crisp ... door juice embrace
Private Key : e038eea7e151eb451ba2901f7...b08ba5b76d8f288
Public Key : 0478903d96aa2c8c0...
→˓6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea

(continues on next page)

381

https://github.com/AElfProject/AElf

AElf, Release release/1.0.0-preview3

(continued from previous page)

Address : 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H
XXX Save account info into a file? ... no / yes
XXX Enter a password ... ********
XXX Confirm password ... ********
XXX
Account info has been saved to "/Users/xxx/.local/share/**aelf**/keys/
→˓2Ue31YTuB5Szy7cnr...Gi5uMQBYarYUR5oGin1sys6H.json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf is the data
directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

25.1.2 Node configuration

We have one last step before we can run the node, we have to set up some configuration. Navigate into the
AElf.Launcher directory:

cd AElf.Launcher/

This folder contains the default appsettings.json file, with some default values already given. There’s still some fields
that are empty and that need configuring. This will require the information printed during the creation of the account.
Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

{
"Account":
{

"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H",
"NodeAccountPassword": "********"

},
}

The NodeAccount field corresponds to the address, you also have to enter the password that you entered earlier.

{
"InitialMinerList" : [

"0478903d96aa2c8c0...6a3e7d810cacd136117ea7b13d2c9337e1ec88288111955b76ea"
],

}

This is a configuration that is used to specify the initial miners for the DPoS consensus, for now just configure one,
it’s the accounts public key that was printed during the account creation.

Note that if your Redis server is on another host listening on a different port than the default, you will also have to
configure the connection strings (port/db number):

{
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:6379?db=1"

},
}

382 Chapter 25. QuickStart

AElf, Release release/1.0.0-preview3

We’ve created an account/key-pair and modified the configuration to use this account for the node and mining, we’re
now ready to launch the node.

25.1.3 Launch and test

Now we will build and run the node with the following commands:

dotnet build AElf.Launcher.csproj --configuration Release
dotnet bin/Release/netcoreapp3.1/AElf.Launcher.dll > aelf-logs.logs &
cd ..

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

aelf-command get-blk-height -e http://127.0.0.1:8000

25.1.4 Cleanup

To stop the node you can simply find and kill the process:

On mac/Linux:

ps -f | grep [A]Elf.Launcher.dll | awk '{print $2}'

On Windows (Powershell):

Get-CimInstance Win32_Process -Filter "name = 'dotnet.exe'" | select CommandLine,
→˓ProcessId | Where-Ob
ject {$_.CommandLine -like "*AElf.Launcher.dll"} | Stop-Process -ID {$_.ProcessId}

If needed you should also clean your redis database, with either of the following commands:

redis-cli FLUSHALL (clears all dbs)

redis-cli -n <database_number> FLUSHDB (clear a specified db)

25.1.5 Extra

For reference and after you’ve started a node, you can get infos about an account with the aelf-command console
command:

aelf-command console -a 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR5oGin1sys6H

XXX Enter the password you typed when creating a wallet ... ********
XXX Succeed!
Welcome to aelf interactive console. Ctrl + C to terminate the program. Double tap
→˓Tab to list objects

NAME | DESCRIPTION
AElf | imported from aelf-sdk
aelf | the instance of an aelf-sdk, connect to

(continues on next page)

25.1. Manual build & run the sources 383

AElf, Release release/1.0.0-preview3

(continued from previous page)

| http://127.0.0.1:8000
_account | the instance of an AElf wallet, address

| is
| 2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMQBYarYUR...
| 5oGin1sys6H

384 Chapter 25. QuickStart

CHAPTER 26

todo

385

AElf, Release release/1.0.0-preview3

386 Chapter 26. todo

CHAPTER 27

Developing smart contracts

AElf is part of a relatively new software type called the blockchain. From a high-level perspective, a blockchain is a
network of interconnected nodes that process transactions in order to form blocks. Transactions are usually broadcast
to the network by sending them to a node; this node verifies the transaction, and if it’s correct will broadcast it to other
nodes. The client that sent the transaction can be of many types, including a browser, script or any client that can
connect and send HTTP requests to a node.

Internally blockchains keep a record of all the transactions ever executed by the network, and these transactions are
contained in cryptographically linked blocks. AElf uses a DPoS consensus type in which miners collect transactions
and, according to a schedule, package them into blocks that are broadcast to the network. These linked blocks effec-
tively constitute the blockchain (here, blockchain refers to the data structure rather than the software). In AElf the
transaction and blocks are usually referred to as chain data.

Smart contracts are pieces of code that can be executed by transactions, and that will usually modify their associated
state. In other words, the execution of transactions modifies the current values of the contracts state. The set of all the
state variables of all the contracts is referred to as a state data.

27.1 Contracts in AElf

Conceptually, AElf smart contracts are entities composed of essentially three things: action methods, view methods,
and the contracts state. Actions represent logic that modifies the state of the contract, and views are used to fetch the
current state of the contract without modifying it. Theses two types of methods are executed when a transaction is
being processed by a node, usually when executing a block or producing it.

In practice, an aelf contract is written in C# with some parts that are generated from a protobuf definition. The
protobuf is used to define the contract’s methods and data types. By using a custom plugin, the protobuf compiler
generates the C# code that is later extended by the contract author to implement logic.

387

AElf, Release release/1.0.0-preview3

27.2 Development

Currently, the primary language supported by an AElf node is C#. The provided C# SDK contains all essential
elements for writing smart contracts, including communication with the execution context, access to state and storage
primitives.

Writing a contract boils down to creating a protobuf definition and a C# project (referred to sometimes as a Class
Library in the C# world) and referencing the SDK. Only a small subset of the C# language is needed to develop a
contract.

This series of articles mainly uses AElf Boilerplate as a smart contract development framework. It takes care of the
build process for the contract author and provides some well-defined location to place the contract files. The first
article will show you how to set up this environment. After the setup, the next three articles will walk you through
creating, testing, and deploying a contract. Later articles will focus on exposing more complex functionality.

27.2.1 Setup

AElf Boilerplate is the go-to environment for creating and testing smart contracts. It takes care of including your con-
tract files in the build system and linking the appropriate development SDK. Boilerplate also takes care of generating
the csharp code from the proto definition.

This article will get you started with development on Boilerplate. It contains the following items: - how to clone,
build, and run AElf Boilerplate. - how to run the Hello World contract tests. - a brief presentation of Boilerplate.

Environment

IDE

Strictly speaking, you don’t need an IDE for this tutorial, but it is highly recommended. If you don’t already have one
you can try Visual Studio Code (vscode) with the C# extension: - installation instructions for vscode here. - working
with C# extension here.

You can, of course, use your favorite C# IDE, most of the steps described here and in later articles do not need IDE
support.

Clone the repository

The following command will clone AElf Boilerplate into a aelf-boilerplate folder with Boilerplate’s code inside it,
open a terminal and enter the following command:

git clone https://github.com/AElfProject/aelf-boilerplate

The boilerplate repo contains a framework for easy smart contract development as well as examples (some explained
in this series of articles).

Build and run

Open the project

If not already done, open vscode and open the aelf-boilerplate folder. If asked to add some “required assets” say yes.
There may also be some dependencies to restore: for all of them, choose Restore.

388 Chapter 27. Developing smart contracts

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/languages/csharp
https://github.com/AElfProject/aelf-boilerplate

AElf, Release release/1.0.0-preview3

Open vscode’s Integrated Terminal and build the project with the following command. Note: you can find out more
about vscode’s terminal here.

Install script

As stated earlier, Boilerplate takes care of the C# code generation and thus has a dependency on protobuf. If you don’t
already have it installed, run the following script from withing the aelf-boilerplate folder:

Mac or Linux
sh chain/scripts/install.sh

Windows
open a PowerShell console as administrator
chain/scripts/install.ps1

{% hint style=“info” %} If you prefer or have problems, you can refer to the following guide to manually install
protobuf on your system. {% endhint %}

Build and run

The next step is to build Boilerplate and all the contracts to ensure everything is working correctly. Once everything
is built, we’ll run Boilerplate’s internal node.

enter the Launcher folder and build
cd chain/src/AElf.Boilerplate.Launcher/

build
dotnet build

run the node
dotnet run --no-build bin/Debug/netcoreapp3.1/AElf.Boilerplate.Launcher

{% hint style=“warning” %} When running Boilerplate, you might see some errors related to an incorrect password,
to solve this, you need to backup your data-dir/keys/ folder and start with an empty keys folder. Once you’ve
cleaned the keys, stop and restart the node with the dotnet run command shown above. {% endhint %}

At this point, the smart contracts have been deployed and are ready to be called (Boilerplate has a functioning API).
You should see the node’s logs in the terminal and see the node producing blocks. You can now stop the node by
killing the process (usually control-c or ctrl-c in the terminal).

Run tests

Boilerplate makes it easy to write unit tests for your contracts. Here we’ll take the tests of the Hello World contract
included in Boilerplate as an example. To run the tests, navigate to the AElf.Contracts.HelloWorldContract.Test
folder and run:

27.2. Development 389

https://code.visualstudio.com/docs/editor/integrated-terminal
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md

AElf, Release release/1.0.0-preview3

cd ../../test/AElf.Contracts.HelloWorldContract.Test/
dotnet test

The output should look somewhat like this, meaning that the tests have successfully executed:

Test Run Successful.
Total tests: 1

Passed: 1
Total time: 2.8865 Seconds

At this point, you have successfully downloaded, built, and run Boilerplate. You have also run the HelloWorld con-
tract’s tests that are included in Boilerplate. Later articles will show you how to add a contract and its tests and add it
to the deployment process.

More on Boilerplate

Boilerplate is an environment that is used to develop smart contracts and dApps. After writing and testing your
contract on Boilerplate, you can deploy it to a running AElf chain. Internally Boilerplate will run an AElf node that
will automatically have your contract deployed on it at genesis.

Boilerplate is composed of two root folders: chain and web. This series of tutorial articles focuses on contract
development so we’ll only go into the details of the chain part of Boilerplate. Here is a brief overview of the folders:

.
chain

src
contract

AElf.Contracts.HelloWorldContract
AElf.Contracts.HelloWorldContract.csproj
HelloWorldContract.cs
HelloWorldContractState.cs
...

protobuf
hello_world_contract.proto
...

test
AElf.Contracts.HelloWorldContract.Test

AElf.Contracts.HelloWorldContract.Test.csproj
HelloWorldContractTest.cs

...

The hello world contract and its tests are split between the following folders: - contract: this folder contains the csharp
projects (.csproj) along with the contract implementation (.cs files). - protobuf: contains the .proto definition of the
contract. - test: contains the test project and files (basic xUnit test project).

You can use this layout as a template for your future smart contracts. Before you do, we recommend you follow
through all the articles of this series.

{% hint style=“info” %} You will also notice the src folder. This folder contains Boilerplate’s modules and the
executable for the node. {% endhint %}

Next

You’ve just seen a short introduction on how to run a smart contract that is already included in Boilerplate. The next
article will show you a complete smart contract and extra content on how to organize your code and test files.

390 Chapter 27. Developing smart contracts

AElf, Release release/1.0.0-preview3

{% hint style=“warning” %} All production contracts (contracts destined to be deployed to a live chain) must go
through a complete review process by the contract author and undergo proper testing. It is the author’s responsibility
to check the validity and security of his contract. The author should not simply copy the contracts contained in
Boilerplate; it’s the author’s responsibility to ensure the security and correctness of his contracts. {% endhint %}

27.2.2 Transaction execution context

This article will present some of the functionality available to smart contract developers that can help them implement
common scenarios.

When executing, transactions trigger the logic contained inside smart contracts. The smart contract execution is mostly
sandboxed (it’s an isolated environment), but some elements are accessible to the smart contract author through the
execution context.

Before we get started with the examples, it’s important to know a little about the execution model of transactions; this
will help you understand some concepts explained in this article. As a reminder this is what a transaction in AElf looks
like (simplified):

message Transaction {
Address from; // the address of the signer
Address to; // the address of the target contract
string method_name; // the method to execute
bytes params; // the parameters to pass to the method
bytes signature; // the signature of this transaction (by the Sender)

}

When users create and send a transaction to a node, it will eventually be packaged in a block. When this block is
executed, the transactions it contains are executed one by one.

Each transaction can generate new transactions called inline transactions (more on this in the next article). When this
happens, the generated inline transactions are executed right after the transaction that generated them. For example,
let’s consider the following scenario: a block with two transactions, let’s say tx1 and tx2, where tx1 performs two
inline calls. In this situation, the order of execution will be the following:

‘”

1. execute tx1

2. • Execute first inline

3. • Execute second Inline

4. execute tx2 ‘”

This is important to know because, as we will see next, some of the execution context’s values change based on this
logic.

Origin, Sender and Self

• Origin: the address of the sender (signer) of the transaction being executed. Its type is an AElf address. It
corresponds to the From field of the transaction. This value never changes, even for nested inline calls. This
means that when you access this property in your contract, it’s value will be the entity that created the transaction
(user or smart contract through an inline call)

• Self: the address of the contract currently being executed. This changes for every transaction and inline trans-
action.

27.2. Development 391

AElf, Release release/1.0.0-preview3

• Sender: the address sending the transaction. If the transaction execution does not produce any inline transac-
tions, this will always be the same. But if one contract calls another with an inline transaction, the sender will
be the contract that is calling.

To use these values, you can access them through the Context property.

Context.Origin
Context.Sender
Context.Self

Useful properties

There are other properties that can be accessed through the context:

• transaction ID: this is the id of the transaction that is currently being executed. Note that inline transactions have
their own ID.

• chain ID: the ID of the current chain, this can be useful in the contract that needs to implement cross-chain
scenarios.

• current height: the height of the block that contains the transaction currently executing.

• current block time: the time included in the header of the current block.

• previous block hash: the hash of the block that precedes the current.

Useful methods

Logging and events:

Fire log event - these are logs that can be found in the transaction result after execution.

public override Empty Vote(VoteMinerInput input)
{

// for example the election system contract will fire a 'voted' event
// when a user calls vote.
Context.Fire(new Voted
{

VoteId = input.VoteId,
VotingItemId = votingRecord.VotingItemId,
Voter = votingRecord.Voter
//...

});
}

Application logging - when writing a contract, it is useful to be able to log some elements in the applications log file to
simplify development. Note that these logs are only visible when the node executing the transaction is build in debug
mode.

private Hash AssertValidNewVotingItem(VotingRegisterInput input)
{

// this is a method in the voting contract that will log to the applications log
→˓file

// when a 'voting item' is created.
Context.LogDebug(() => "Voting item created by {0}: {1}", Context.Sender,

→˓votingItemId.ToHex());

(continues on next page)

392 Chapter 27. Developing smart contracts

AElf, Release release/1.0.0-preview3

(continued from previous page)

// ...
}

Get contract address

It’s sometimes useful to get the address of a system contract; this can be done as follows:

public override Empty AddBeneficiary(AddBeneficiaryInput input)
{

// In the profit contract, when adding a 'beneficiary', the method will get
→˓the address of the token holder

// contract from its name, to perform an assert.

Assert(Context.Sender == Context.
→˓GetContractAddressByName(SmartContractConstants.TokenHolderContractSystemName),

"Only manager can add beneficiary.");
}

Recovering the public key

Recovering the public key: this can be used for recovering the public key of the transaction Sender.

public override Empty Vote(VoteMinerInput input)
{

// for example the election system contract will use the public key of the sender
// to keep track of votes.
var recoveredPublicKey = Context.RecoverPublicKey();

}

Next

The execution context also exposes functionality for sending inline transactions; the next article will give you more
details on how to generate inline calls.

27.2.3 Internal contract interactions

There are essentially two reasons for interacting with other contracts:

1. to query their state.

2. to create an inline transaction, that is, a new transaction which will be executed after the original transaction.

Both of the two operations can be done in two ways:

1. using the transaction execution context.

2. adding a Contract Reference State to the contract, then using CSharpSmartContract.State to call methods.

27.2. Development 393

AElf, Release release/1.0.0-preview3

Using the Context

Query state from other contracts

Let’s see how to call the GetCandidates method of the Election Contract and get the return value directly in your
contract code with the Context property that is available in every smart contract.

using AElf.Sdk.CSharp;
using AElf.Contracts.Election;
...
// your contract code needs the candidates
var electionContractAddress =

Context.GetContractAddressByName(SmartContractConstants.
→˓ElectionContractSystemName);

// call the method
var candidates = Context.Call<PubkeyList>(electionContractAddress, "GetCandidates",
→˓new Empty());

// use **candidates** to do other stuff...

There are several things to know before writing such code:

• Because this code references a type (PubkeyList) originally defined in the Election Contract (types are defined
in a proto file, in this case, election_contract.proto), you at least need to reference messages defined in the
.proto file in your contracts project.

Add these lines to your csproj file:

<ItemGroup>
<ContractMessage Include="..\..\protobuf\election_contract.proto">

<Link>Protobuf\Proto\reference\election_contract.proto</Link>
</ContractMessage>

</ItemGroup>

The ContractMessage tag means you just want to reference the messages defined in the specified .proto file.

• The Call method takes the three following parameters:

– address: the address of the contract you’re seeking to interact with.

– methodName: the name of the method you want to call.

– message: the argument for calling that method.

• Since the Election Contract is a system contract which deployed at the very beginning of AElf
blockchain, we can get its address directly from the Context property. If you want to call contracts deployed
by users, you may need to obtain the address in another way (like hard code).

To send an inline transaction

Imagine you want to transfer some tokens from the contract you’re writing, the necessary step is sending an inline
transaction to MultiToken Contract, and the MethodName of this inline transaction needs to be Transfer.

var tokenContractAddress = Context.GetContractAddressByName(SmartContractConstants.
→˓TokenContractSystemName);
Context.SendInline(tokenContractAddress, "Transfer", new TransferInput
{

(continues on next page)

394 Chapter 27. Developing smart contracts

AElf, Release release/1.0.0-preview3

(continued from previous page)

To = toAddress/* The address you wanna transfer to*/,
Symbol = Context.Variables.NativeSymbol,// You will get "ELF" if this contract is

→˓deployed in AElf main chain.
Amount = 100_000_00000000,// 100000 ELF tokens.
Memo = "Gift."// Optional

});

Again, because you have to reference a message defined by the m=Multi-Token contract proto file, you need to add
these lines to the csproj file of your contract project.

<ItemGroup>
<ContractMessage Include="..\..\protobuf\token_contract.proto">

<Link>Protobuf\Proto\reference\token_contract.proto</Link>
</ContractMessage>

</ItemGroup>

This inline transaction will be executed after the execution of the original transaction. Check other documentation for
more details about the inline transactions.

Using Contract Reference State

Using Contract Reference State is more convenient than using Context to do the interaction with another
contract. Follow these three steps of preparation:

1. Add a related proto file(s) of the contract you want to call or send inline transactions to and rebuild the contract
project. (like before, but we need to change the MSBUILD tag name, we’ll see this later.)

2. Add an internal property of XXXContractReferenceState type to the State class of your contract.

3. Set the contract address to the Value of property you just added in step 2.

Let’s see a demo that implements these steps: check the balance of ELF token of the current contract, if the balance is
more significant than 100 000, request a random number from AEDPoS Contract.

First, reference proto files related to MultiToken Contract and acs6.proto (random number generation).

<ItemGroup>
<ContractReference Include="..\..\protobuf\acs6.proto">

<Link>Protobuf\Proto\reference\acs6.proto</Link>
</ContractReference>
<ContractReference Include="..\..\protobuf\token_contract.proto">

<Link>Protobuf\Proto\reference\token_contract.proto</Link>
</ContractReference>

</ItemGroup>

After rebuilding the contract project, we’ll see following files appear in the Protobuf/Generated folder:

• Acs6.c.cs

• Acs6.g.cs

• TokenContract.c.cs

• TokenContract.g.cs

As you may guess, the entities we will use are defined in files above.

Here we will define two Contract Reference States, one for the token contract and one for the random
number provider.

27.2. Development 395

AElf, Release release/1.0.0-preview3

using AElf.Contracts.MultiToken;
using Acs6;

...

// Define these properties in the State file of current contract.
internal TokenContractContainer.TokenContractReferenceState TokenContract { get; set;
→˓}
internal RandomNumberProviderContractContainer.
→˓RandomNumberProviderContractReferenceState ACS6Contract { get; set }

Life becomes very easy if we have these XXXContractReferenceState instances. Check the implementation.

// Set the Contract Reference States address before using it (again here, we already
→˓have the system addresses for the token and ac6 contracts).
if (State.TokenContract.Value == null)
{

State.TokenContract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓TokenContractSystemName);
}
if (State.ACS6Contract.Value == null)
{

// This means we use the random number generation service provided by `AEDPoS
→˓Contract`.

State.ACS6Contract.Value =
Context.GetContractAddressByName(SmartContractConstants.

→˓ConsensusContractSystemName);
}

// Use `Call` method to query states from multi-token contract.
var balance = State.TokenContract.GetBalance.Call(new GetBalanceInput
{

Owner = Context.Self,// The address of current contract.
Symbol = "ELF"// Also, you can use Context.Variables.NativeSymbol if this

→˓contract will deployed in AElf main chain.
});
if (balance.Balance > 100_000)
{

// Use `Send` method to generate an inline transaction.
State.ACS6Contract.RequestRandomNumber.Send(new RequestRandomNumberInput());

}

As you can see, it is convenient to call a method by using state property like this: State.Contract.method.Call(input).

396 Chapter 27. Developing smart contracts

	Welcome to AElf’s official documentation.
	Development Environment
	Dependencies
	Running a node with Docker
	Running multi-nodes with Docker
	QuickStart

	Smart Contract Development
	Greeter Contract
	Smart contract deployment

	AElf Blockchain Boot Sequence
	1. Start initial nodes
	2. Run full node
	3. Be a candidate node
	4. User vote election
	5. Become production node
	6. Add more production nodes

	How to join the testnet
	Setup the database
	Node configuration
	Running a full node with Docker
	Running a full node with the binary release
	Running a full node with the source
	Check the node
	Run side-chains

	Running a side chain
	Requesting the creation of a side chain
	Running a side chain (after its release)

	Running AElf on the cloud
	Getting started with Google cloud

	Smart Contract Developing Demos
	Bingo Game

	Consensus
	Overview
	AEDPoS Process
	Irreversible Block

	Network
	1. Introduction
	2. Architecture
	3. Protocol

	Address
	Overview
	User Address
	Contract Address
	Contract Virtual Address

	Overview
	Smart Contract
	Action & View
	Transaction Instance
	Transaction Execution

	Core
	Application pattern
	Design principles:

	Cross Chain
	introduction
	Overview
	Cross chain verification
	Cross chain verify
	Cross chain transfer

	Smart contract
	Smart contract architecture
	Smart contract service
	Smart contract events
	Smart contract messages
	Development Requirements and Restrictions

	AELF API 1.0
	Chain API
	Net API

	Chain SDK
	aelf-sdk.js - AELF JavaScript API
	aelf-sdk.cs - AELF C# API
	aelf-sdk.go - AELF Go API
	aelf-sdk.java - AELF Java API
	aelf-sdk.php - AELF PHP API
	aelf-sdk.py - AELF Python API

	C# reference
	AElf.Sdk.CSharp
	AElf.CSharp.Core

	Smart Contract APIs
	Association Contract
	Referendum Contract
	Parliament Contract
	Consensus Contract
	Election Contract
	Genesis Contract
	multi-token
	Profit Contract
	Cross Chain Contract
	Treasury Contract
	Vote Contract
	Token Holder Contract
	Economic Contract
	TokenConvert Contract
	Configuration Contract

	Acs Introduction
	ACS1 - Transaction Fee Standard
	ACS2 - Parallel Execution Standard
	ACS3 - Contract Proposal Standard
	ACS4 - Consensus Standard
	ACS5 - Contract Threshold Standard
	todo
	ACS7 - Contract CrossChain Standard
	ACS8 - Transaction Resource Token Fee Standard
	ACS9 - Contract profit dividend standard
	ACS10 - Dividend Pool Standard

	Command line interface
	Introduction to the CLI
	Commands

	Wallet and Block Explorer
	Explorer
	iOS/Android Wallet
	Web Wallet

	aelf-web-extension
	For User
	For Dapp Developers
	Data Format
	For Extension Developers
	Project Information

	DevOps
	Open source development
	Deployment
	Testing
	Monitoring

	QuickStart
	Manual build & run the sources

	todo
	Developing smart contracts
	Contracts in AElf
	Development

