AEIf

Release release/1.2.3

Jul 20, 2023

Contents

Welcome to AEIf’s official documentation.

Development Environment

2.1
2.2

Install e
Node e

Smart Contract Development

3.1
3.2

Greeter CONtract v v v v v v e e e
Smart contract deployment Lo,

AEIf Blockchain Boot Sequence

4.1
4.2
4.3
4.4
4.5
4.6

Startinitialnodes
Runfullnode
Beacandidatenode
Uservoteelection,
Become productionnodeo
Add more productionnodes,

How to join the testnet

5.1
52
53
54
55
5.6
5.7

Setupthedatabase
Node configuration
Running a full node with Docker

Running a full node with the binary release

How to join the mainnet

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Setupthedatabase
Node configuration
Running a full node with Docker

Running a full node with the binary release

Running a side chain

Running a full node with the source
Checkthenode L
Runside-chains

Running a full node with the source
Checkthenode L
Runside-chains

10

11

12

13

14

15

16

17

18

7.1 Requesting the creation of asidechain
7.2 Running a side chain (afteritsrelease) e e

Running AEIf on the cloud
8.1 Getting started with Googlecloud e

Smart Contract Developing Demos
0.1 BingoGame i e e e

Consensus

10,1 OVerview o o e e e
10.2 AEDPOS Process e e e e e e e e e e e e
10.3 Trreversible Block

Network

11.1 Introduction e e e e e e e e
11.2 Architecture i e e e e e e e e e
11.3 Protocol. e e e

Address

12,1 OVEIVIEW . . . v o i o e
12.2 User Address o o o e e e e e e e e e e e e e e e e e e
12.3 Contract Address L e e e e e e e
12.4 Contract Virtual Address e

Overview

13.1 Smart Contract i e e e e e e e e e e e e e e e
132 Action & VIEW L e e e e e e
13.3 Transaction Instance e e e e e
13.4 Transaction Id e e e

Core
14.1 Application pattern o v i e e e e e e e e e e e e e e e e e e e
14.2 Design principles: L e e e e e e e e e e e e e

Cross Chain

15.1 Introduction e e e
152 OVEIVIEW . . . v o v e e e e e e e e e e e e e e e e
15.3 Cross chain verification e e e e e e e e e
154 Crosschain verify o e e e e e e e
15.5 Crosschaintransfer e e

Smart contract

16.1 Smart contract architecture e e e
16.2 Smart coNtract SEIViCe v v i i it e e e e e e e e e e e e e e
16.3 Smart CONtraCt €VENLS v . v v e
16.4 Smart contract MESSAZES .+ « . v ¢ v v v v v e
16.5 Development Requirements and Restrictions

AELF API 1.0
17.1 Chain APL e e e e e
17.2 Net APL. e

Chain SDK
18.1 aelf-sdk.js - AELF JavaScript API
18.2 aelf-sdk.cs - AELF CH# APL e

83
83

87
87

93
93
94
96

105
105
105
106
106

109
109
109
110
111

113
113
114

117
117
118
120
122
123

127
127
129
130
130
131

139
139
151

19

20

21

22

23

24

18.3
18.4
18.5
18.6

aelf-sdk.go - AELF Go APL e e e e
aelf-sdk.java- AELF Java APL e e e
aelf-sdk.php- AELFPHP APL e
aelf-sdk.py - AELF Python API

CH# reference

19.1
19.2

AEIf.SAk.CSharp o e e e e
AEIf.CSharp.Core e e e e e e

Smart Contract APIs

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

AEIf.Contracts.AsSOCIation v i e e e e e e e e e e e e e e e e e e
AElf.Contracts.Referendum e
AEIlf.Contracts.Parliament e e e e e
AEIlf.Contracts.Consensus.AEDPoS
AEIf.Contracts.Election e e e e e e e e e e
AEIf.Contracts.Genesis i i e e e e e e e e e e e e e e e e e e e
AEIlf.Contracts. MultiToken e e
AEIf.Contracts.Profit e e
AEIf.Contracts.CrossChain e e e e e

20.10 AEIf.Contracts. TreasUIY v v v v v i e
20.11 AEIf.Contracts.VOte o o it e e e e e e e e e e e e e e e
20.12 AEIlf.Contracts.TokenHolder e
20.13 AEIlf.Contracts. Economic e e e e e e e e
20.14 AEIlf.Contracts.TokenConverter v i i it it e e e e e
20.15 AEIf.Contracts.Configuration o v i i v vt e e e e e e e e e

Acs Introduction

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

ACSO - Contract Deployment Standard
ACSI - Transaction Fee Standard e e
ACS2 - Parallel Execution Standard
ACS3 - Contract Proposal Standard L
ACS4 - Consensus Standard e e e e e e e e
ACSS - Contract Threshold Standard e
ACS6 - Random Number Provider Standard
ACST7 - Contract CrossChain Standard i
ACSS8 - Transaction Resource Token Fee Standard

21.10 ACS9 - Contract profit dividend standard 0oL L.
21.11 ACS10 - Dividend Pool Standard e
21.12 ACS11 - Cross Chain Consensus Standard i i ittt i

Command line interface

22.1
222

Introductiontothe CLI e e e e
Commands e e e e e e

Wallet and Block Explorer

23.1
232
233

Explorer e e e e
10S/Android Wallet e e e e e e
Web Wallet e e e e e e

aelf-web-extension

24.1
242
243
24.4
24.5

ForUser e
For Dapp Developers o o i e e e e e e e e e e
DataFormat e
For Extension Developers e e
Project Information L. e e

245
245
269

283
283
293
303
313
329
340
350
373
384
400
409
419
426
432
440

447
447
455
461
467
478
485
489
490
500
502
512
522

527
527
531

547
547
547
547

553
553
553
554
561
561

25 DevOps 563

25.1 Opensource development i v v it e e e e e e e e e e e e 563
25.2 Deployment e e e e e e e e e e e e e e e e e e 563
253 TeStiNG e e e e e e e e e e e 564
254 MONItOTING o v v vt e e e e e e e e e e e e e 564
26 QuickStart 565
26.1 Manual build & run the sources L e e e e e e e e e e 565
27 Developing smart contracts 569
27.1 Contractsin AEIf o e e e e 569
27.2 Development e e 570

CHAPTER 1

Welcome to AElf’s official documentation.

This site is where we centralize our guides, documents and api references. Wether you’re a dApp developer looking to
build some awesome apps on top of AEIf or simply just interested in seeing what a running node looks like, this place
is for you!

As of today the documentation is correct but still a work in progress so we invite you to frequently visit and discover
any new content.

AEIf, Release release/1.2.3

2 Chapter 1. Welcome to AEIlf’s official documentation.

CHAPTER 2

Development Environment

2.1 Install

Before you get started with the tutorials, you need to install the following tools and frameworks.

For most of these dependencies, we provide command line instructions for macOS, Linux Ubuntu 18, and Windows.
In case any problems occur or if you have more complex needs, please leave a message on GitHub and we will handle
it ASAP.

2.1.1 macOS

Configure Environment

You can install and set up the development environment on macOS computers with either Intel or Apple M1 processors.
This will take 10-20 minutes.

Before You Start

Before you install and set up the development environment on a macOS device, please make sure that your computer
meets these basic requirements:

» QOperating system version is 10.7 Lion or higher.
» At least a 2Ghz processor, 3Ghz recommended.
¢ Atleast 8 GB RAM, 16 GB recommended.

* No less than 10 GB of available space.

* Broadband internet connection.

Support for Apple M1

AEIf, Release release/1.2.3

If you use a macOS computer with an Apple M1 chip, you need to install Apple Rosetta. Open the Terminal on your

computer and execute this command,Please be patient while the command is executed.

/usr/sbin/softwareupdate —--install-rosetta —-agree-to-license

Install Homebrew

In most cases, you should use Homebrew to install and manage packages on macOS devices. If Homebrew is
installed on your local computer yet, you should download and install it before you continue.

To install Homebrew:
1. Open Terminal.

2. Execute this command to install Homebrew:

not

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
—HEAD/install.sh)"

3. Execute this command to check if Homebrew is installed:

brew —--version

The following output suggests successful installation:

Homebrew 3.3.1
Homebrew/homebrew-core (git revision c6c488fbc0f; last commit 2021-10-30)

Homebrew/homebrew-cask (git revision 66bab33b26; last commit 2021-10-30)

Environment Update

Execute this command to update your environment:

brew update

You will see output like this.

You have xx outdated formula installed.
You can upgrade it with brew upgrade
or list it with brew outdated.

You can execute the following command to upgrade or skip to the installation of Git.

brew upgrade

Install Git

If you want to use our customized smart contract development environment or to run a node, you need to clone aelf’s

repo (download source code). As aelf’s code is hosted on GitHub, you need to install Git first.

1. Execute this command in Terminal:

4 Chapter 2. Development Environment

AEIf, Release release/1.2.3

’brew install git

2. Execute this command to check if Git is installed:

’git --version

The following output suggests successful installation:

’git version xx.XX.xXX

Install .NET SDK

As aelf is mostly developed with .NET Core, you need to download and install .NET Core SDK (Installers - x64
recommended for macOS devices with Intel processors; Installers - Arm64 recommended for macOS devices with M1
chips).

1. Download and install .NET 6.0 which is currently used in aelf’s repo.
2. Please reopen Terminal after the installation is done.

3. Execute this command to check if .NET is installed:

’dotnet —-—version

The following output suggests successful installation:

’6.0.403

Install protoBuf

1. Execute this command to install protoBuf:

’brew install protobuf

If it shows error Permission denied @ apply2files, then there is a permission issue. You can solve
it using the following command and then redo the installation with the above command:

sudo chown —-R $(whoami) $(brew —-prefix)/x

2. Execute this command to check if protoBuf is installed:

’protoc —--version

The following output suggests successful installation:

’libprotoc 3.21.9

Install Redis

1. Execute this command to install Redis:

brew install redis

2.1. Install 5

https://dotnet.microsoft.com/en-us/download/dotnet/6.0

AEIf, Release release/1.2.3

2. Execute this command to start a Redis instance and check if Redis is installed:

redis—-server

The following output suggests Redis is installed and a Redis instance is started:

redis-server
60154:C 31 Oct 16:40:37.991 # 0000000000000 Redis is starting 0000000000000
6@0154:C 31 Oct 16:4@:37.991 # Redis version=4.0.8, bits=64, commit=00000000, modified=0,
pid=60154, just started
60154:C 31 Oct 16:40:37.991 # Warning: no config file specified, using the default config
. In order to specify a config file use redis-server /path/to/redis.conf

Redis 4.0.8 (00000000/@) 64 bit

Running in standalone mode
Port: 6379
PID: 60154

http://redis.io

Install Nodejs

1. Execute this command to install Nodejs:

‘brew install node

2. Execute this command to check if Nodejs is installed:

‘npm —-version

The following output suggests successful installation:

6.14.8

2.1.2 Linux

Configure Environment

You can install and set up the development environment on computers running 64-bit Linux. This will take 10-20
minutes.

6 Chapter 2. Development Environment

AEIf, Release release/1.2.3

Before You Start

Before you install and set up the development environment on a Linux device, please make sure that your computer
meets these basic requirements:

e Ubuntu 18.

¢ Broadband internet connection.

Update Environment

Execute this command to update your environment, Please be patient while the command is executed:

sudo apt-get update

The following output suggests successful update:

Fetched 25.0 MB in 3s (8,574 kB/s)
Reading package lists... Done

Install Git

If you want to use our customized smart contract development environment or to run a node, you need to clone aelf’s
repo (download source code). As aelf’s code is hosted on GitHub, you need to install Git first.

1. Open the terminal.

2. Execute this command to install Git:

sudo apt-get install git -y

3. Execute this command to check if Git is installed:

’git ——-version

The following output suggests successful installation:

’git version 2.17.1

Install .NET SDK

As aelf is mostly developed with .NET Core, you need to download and install .NET Core SDK.
1. Execute the following commands to install .NET 6.0.

1. Execute this command to download .NET packages:

wget https://packages.microsoft.com/config/ubuntu/22.04/packages-microsoft-
—prod.deb -0 packages-microsoft-prod.deb

2. Execute this command to unzip .NET packages:

sudo dpkg -i packages-microsoft-prod.deb

rm packages-microsoft-prod.deb

2.1. Install 7

AEIf, Release release/1.2.3

3. Execute this command to install .NET:

sudo apt-get update && \

sudo apt-get install -y dotnet-sdk-6.0

2. Execute this command to check if .NET 6.0 is installed:

’dotnet —-—version

The following output suggests successful installation:

’6.0.403

Install protoBuf

Before you start the installation, please check the directory you use and execute the following commands to install.
1. Execute the following commands to install protoBuf.

1. Execute this command to download protoBuf packages:

curl -OL https://github.com/google/protobuf/releases/download/v21.9/protoc-21.
—9-1inux-x86_64.zip

2. Execute this command to unzip protoBuf packages:

unzip protoc-21.9-1linux-x86_64.zip -d protoc3

3. Execute these commands to install protoBuf:

sudo mv protoc3/bin/* /usr/local/bin/
sudo mv protoc3/include/* /usr/local/include/
sudo chown ${USER} /usr/local/bin/protoc

sudo chown -R ${USER} /usr/local/include/google

If it shows error Permission denied @ apply2files, then there is a permission issue. You can
solve it using the following command and then redo the installation with the above commands:

’sudo chown —-R $ (whoami) $ (brew ——prefix)/=*

2. Execute this command to check if protoBuf is installed:

’protoc —--version

The following output suggests successful installation:

’libprotoc 3.21.9

Install Redis

1. Execute this command to install Redis:

8 Chapter 2. Development Environment

AEIf, Release release/1.2.3

sudo apt-get install redis -y

2. Execute this command to start a Redis instance and check if Redis is installed:

’redisfserver

The following output suggests Redis is installed and a Redis instance is started:

Server initialized
Ready to accept connections

You can open a new terminal and use redis-cli to start Redis command line. The command below can be used to clear
Redis cache (be careful to use it):

flushall

Install Nodejs

1. Execute these commands to install Nodejs:

curl —-fsSL https://deb.nodesource.com/setup_1l4.x | sudo -E bash -

sudo apt-get install -y nodeijs

2. Execute this command to check if Nodejs is installed:

’npm --version

The following output suggests successful installation:

’6.14.8

2.1.3 Windows
Configure Environment

You can install and set up the development environment on computers running Windows 10 or higher. This will take
10-20 minutes.

Before You Start

Before you install and set up the development environment on a Windows device, please make sure that your computer
meets these basic requirements:

* Operating system version is Windows 10 or higher.

¢ Broadband internet connection.

2.1. Install 9

AEIf, Release release/1.2.3

Install Chocolatey (Recommended)

Chocolatey is an open-source package manager for Windows software that makes installation simpler, like Homebrew

for Linux and macOS. If you don’t want to install it, please use the provided download links for each software to
complete their installation.

1. Open cmd or PowerShell as administrator (Press Win + x).

2. Execute the following commands in order and enter y to install Chocolatey, Please be patient while the command
is executed:

Set-ExecutionPolicy AllSigned
Set-ExecutionPolicy Bypass —Scope Process

Set-ExecutionPolicy Bypass —Scope Process -Force; iex ((New-Object System.Net.
—WebClient) .DownloadString ('https://chocolatey.org/install.psl'))

Set-ExecutionPolicy RemoteSigned

3. Execute this command to check if Chocolatey is installed:

’choco

The following output suggests successful installation:

’Chocolatey VX.X.X

If it showsThe term 'choco' is not recognized as the name of a cmdlet, function,
script file, or operable program, then there is a permission issue with PowerShell. To solve it:

* Right-click the computer icon and select Properties.
* Click Advanced in System Properties and select Environment Variables on the bottom right.

¢ Check if the ChocolateyInstall variable is in System variables, and its default value is the Chocolatey installa-

tion path C: \Program Files\Chocolatey. If you don’t find it, click New System Variable to manually
add it.

Install Git

If you want to use our customized smart contract development environment or to run a node, you need to clone aelf’s
repo (download source code). As aelf’s code is hosted on GitHub, you need to install Git first.

1. You can download Git through this link or execute this command in cmd or PowerShell:

’choco install git -y

2. Execute this command to check if Git is installed:

’git —-version

The following output suggests successful installation:

’git version xx.XX.xXX ‘

If it shows The term 'git' is not recognized as the name of a cmdlet, function,
script file, or operable program, you can:

10 Chapter 2. Development Environment

AEIf, Release release/1.2.3

* Right-click the computer icon and select Properties.
¢ Click Advanced in System Properties and select Environment Variables on the bottom right.

¢ Check if the Git variable is in Path in System variables, and its default value is the Git installation path
C:\Program Files\git. If you don’t find it, click New System Variable to manually add it.

Install .NET SDK

As aelf is mostly developed with .NET Core, you need to download and install .NET Core SDK (Installers - x64
recommended for Windows devices).

1. Download and install .NET 6.0 which is currently used in aelf’s repo.
2. Please reopen cmd or PowerShell after the installation is done.

3. Execute this command to check if .NET is installed:

’dotnet —-—-version

The following output suggests successful installation:

’6.0.403

Install protoBuf

1. You can download protoBuf through this link or execute this command in cmd or PowerShell:

choco install protoc --version=3.11.4 -y

choco install unzip -y

2. Execute this command to check if protoBuf is installed:

’protoc —--version

The following output suggests successful installation:

’libprotoc 3.21.9

Install Redis

1. You can download Redis through MicroSoftArchive-Redis or execute this command in cmd or PowerShell:

’choco install redis—-64 -y

2. Execute this command to start a Redis instance and check if Redis is installed:

’memurai

The following output suggests Redis is installed and a Redis instance is started:

2.1. Install 11

https://dotnet.microsoft.com/en-us/download/dotnet/6.0

AEIf, Release release/1.2.3

redis-server
60154:C 31 Oct 16:40:37.991 # 0000000000000 Redis is starting 0000000000000
60154:C 31 Oct 16:40:37.991 # Redis version=4.0.8, bits=64, commit=00000000, modified=0,
pid=60154, just started
60154:C 31 Oct 16:40:37.991 # Warning: no config file specified, using the default config
. In order to specify a config file use redis-server /path/to/redis.conf

Redis 4.0.8 (00000000/9) 64 bit
Running in standalone mode

Port: 6379
PID: 60154

http://redis.io

Install Nodejs

1. You can download Nodejs through Node.js or execute this command in cmd or PowerShell:

‘choco install nodejs -y

2. Execute this command to check if Nodejs is installed:

‘npm --version

The following output suggests successful installation:

6.14.8

If it shows The term ‘npm’ is not recognized as the name of a cmdlet, function, script file, or operable program, you
can:

* Right-click the computer icon and select Properties.
* Click Advanced in System Properties and select Environment Variables on the bottom right.

* Check if the Nodejs variable is in Path in System variables, and its default value is the Nodejs installation path
C:\Program Files\nodejs. If you don’t find it, click New System Variable to manually add it.

2.1.4 Codespaces

A codespace is an instant development environment that’s hosted in the cloud. It provides users with general-purpose
programming languages and tooling through containers. You can install and set up the development environment in

12 Chapter 2. Development Environment

AEIf, Release release/1.2.3

Codespaces. This will take 10-20 minutes. Please be patient while the command is executed.

Basic Environment Configurations

1. Visit AElfProject / AEIf via a browser.
2. Click the green Code button on the top right.

&« C O @ github.com/AElfProject/AEIf hoAr omAaO0@

O Search or jump to.. Pull requests Issues Codespaces Marketplace Explore

B AEIfProject / AEIf Public @Watch 169 ~ Y Fork 223 ~ Y7 Star 785 ~
<> Code (O Issues 23 11 Pull requests 26 @ Actions [Projects 1 @ Security |~ Insights
P dev ~ ¥ 315branches © 29 tags Go to file Add file = < Code ~ About
A scalable cloud computing blockchain

o+ iason-hoopox Merge pull request #3340 from AElfProject/featurefchange... .. X 46adc5d 4 daysago (O 20,570 commits platform

B github/ISSUE_TEMPLATE Update issue templates 3 years ago & aelf.iof

I .idealidea.AElflideajrunConfigurati.. add run configurations 3 years ago csharp | | blockehain | scalability

. dotnet-core clusters multi-chain
B bench Reformat and cleanup code and rename AEIf.sIn to AEIf.All.sIn 6 months ago

B contract Merge branch 'dev' into featurefchange-voting-option-profits 6 days ago [Readme

3R MIT license
M docker add docker file 4 years ago
v 9 & Code of conduct

I docs-sphinx Update .net core 2.1 to .net 6.0 7 months ago ¥ 785 stars

M docs Update .net core 2.1 to .net 6.0 7 months ago © 159 watching

- . . Y 223 forks

B protobuf Merge branch 'dev' into feature/change-voting-option-profits 6 days ago

I scripts AEIf.sIn -> AEIf.All.sIn 6 months ago

~ Releases 26

| s Merge branch 'dev' into featureftransaction-fee 9 days ago

.) _ € AELFV1.2.1 (Latest)

| test Merge branch 'dev' into feature/change-voting-option-profits & days ago i

3. Select Codespaces and click +.
Then a new tab will be opened that shows the Codespaces interface. After the page is loaded, you will see:
 The left side displays all the content in this repo.
* The upper right side is where you can write code or view text.

» The lower right side is a terminal where you can build and run code (If the terminal doesn’t open by default, you
can click the hamburger menu on the top left and select Terminal -> New Terminal, or press control + shift + ¢
on your keyboard).

Currently, Codespaces have completed the configuration for part of the environments, yet there are some you need
to manually configure.

At the time of writing, Codespaces have done the configuration for git and nodejs. You can type the following
commands to check their versions:

git version 2.25.1

git —--version
8.19.2
npm —--version

Update Environment

Execute this command to update your environment:

2.1. Install 13

https://github.com/AElfProject/AElf

AEIf, Release release/1.2.3

« G (O @ github.com/AEIfProject/AEIf how o= AO0@

Pullrequests Issues Codespaces Marketplace Explore

B AEIfProject / AEIf public @ Watch 159 ~ % Fork 223 - ¢ Star 785 -

<> Code () Issues 23 11 Pullrequests 26 ® Actions [Projects 1 @ Security |~ Insights

¥ dev ~ ¥ 315 branches © 29 tags Goto file Add file ~ About

Local Codespaces A scalable cloud computing blockchain

3 jason-hoopox Merge pull request #3340 from AElfProject/feature/ch: platform
Codespaces
B github/ISSUE_TEMPLATE Update issue templates @ aelfiof
Your workspaces in the cloud
B .ideajidea.AElf/.idea/runConfigurati.. add run configurations Ty csharp - blockchain - scalability
dotnet-core clusters multi-chain
B bench Reformat and cleanup code a No codespaces
B contract Merge branch 'dev' into featu You don't have any cadespaces with this Readme

repository checked out MIT license

B8 docker add docker file

m

i3

@ Code of conduct
B docs-sphinx Update .net core 2.1 to .net 6, 1 785 stars

@

i 4

B docs Update .net core 2.1 1o .net 6, Learn more about codespaces... 159 watching
223 forks
M protobuf Merge branch 'dev' into featurejunianye-voung=vpuun-prons v uays ayu
B scripts AEIf.sIn -> AEH.All.sIn 8 months ago
Releases 26
B src Merge branch 'dev' into featureftransaction-fee 9 days ago
: : : © AELFV1.2.1 (Latest)
B test Merge branch 'dev' into feature/change-voting-option-profits 6 days agoe

on Aug 23

sudo apt—-get update

The following output suggests successful update:

Fetched 25.0 MB in 3s (8,574 kB/s)
Reading package lists... Done

Install .NET SDK

.NET SDK 7.0 is used in this repo. Hence, you need to reinstall v6.0 otherwise there will be building issues.

1. Execute this command to check if v7.0 is used:

7.0.100
dotnet —--version

If there is v7.0, execute this command to delete it:

sudo rm -rf /home/codespace/.dotnet/«

2. Execute this command to reinstall v6.0:

wget https://packages.microsoft.com/config/ubuntu/22.04/packages-microsoft-prod.
—deb -0 packages-microsoft-prod.deb

sudo dpkg -i packages-microsoft-prod.deb
rm packages-microsoft-prod.deb
sudo apt-get update && \

sudo apt-get install -y dotnet-sdk-6.0

14 Chapter 2. Development Environment

AEIf, Release release/1.2.3

3. Restart bash after the installation and execute this command to check if v6.0 is installed:

6.0.403
dotnet —--version

The following output suggests successful installation:

6.0.403

Install protoBuf

1. Execute this command to install protoBuf:

curl -OL https://github.com/google/protobuf/releases/download/v21.9/protoc-21.9-
—~linux-x86_64.zip

unzip protoc-21.9-1linux-x86_64.zip -d protoc3

sudo mv protoc3/bin/+ /usr/local/bin/

sudo mv protoc3/include/* /usr/local/include/

sudo chown ${USER} /usr/local/bin/protoc

sudo chown —-R ${USER} /usr/local/include/google

2. Execute this command to check if protoBuf is installed:

’protoc —-—version ‘

The following output suggests successful installation:

’libprotoc 3.21.9 ‘

Install Redis

1. Execute this command to install Redis:

sudo apt-get install redis -y ‘

2. Execute this command to start a Redis instance and check if Redis is installed:

’redisfserver

The following output suggests Redis is installed and a Redis instance is started:

Server initialized
Ready to accept connections

What’s Next

If you have already installed the tools and frameworks above, you can skip this step. For info about contract deploy-
ment and nodes running, please read the following:

2.1. Install 15

AEIf, Release release/1.2.3

Smart contract development
Smart contract deployment

Node

2.2 Node

If you already know something about aelf blockchain and want to get deeply involved, you can proceed with the
following and run your own node.

If you are a beginner or you want to deploy contracts onto aelf, please click here to learn more.
Why Should I Run a Node

* Full node: A full node stores the complete blockchain data and you can view all the info. It also enables you to
deploy DApps and contracts on aelf or interact with its contracts.

* BP: To run a full node that produces blocks, the node needs to participate in the election. If ranked among the
top 2N+1 (N=8 in the first year and increases by 1 every year. Currently the threshold is 17), it can get involved
in the governance of aelf.

Next, we will show you how to deploy nodes.

2.2.1 Single Node

macOS

Follow this doc to run an aelf single node on a macOS device and this will take around 20 minutes to complete.

Install aelf-command

Execute this command to install aelf-command:

npm i1 aelf-command —g

The following output suggests successful installation:

+ aelf-command@0.1.44
added 314 packages from 208 contributors in 25.958s

Besides, you might see warnings like this due to differences in system configuration. Please ignore it.

W W% npm 1 aelf-command -g
cated debug@4.1.1: Debug versions >=3.2.@ <3.2.7 || >=4 <4.3.1 have a low-severity ReDos regre531on
when used in a Node js environment. It is recommended you upgrade to 3.2.7 or 4.3.1. (https://github.com/visionm
edla/debug/lssues/?Q?)
recated uuid@3.4.8: Please upgrade to version 7 or higher. Older versions may use Math.random() in
certain c rcumstances, which is known to be problematic. See https://v8.dev/blog/math-random for details.

changed 324 packages in 39s

35 packages are looking for funding
run “npm fund® for details

If it shows error Permission denied @ apply2files,then thereis a permissionissue. You can solve it using
the following command and then redo the installation with the above command:

16 Chapter 2. Development Environment

https://docs.aelf.io/en/latest/getting-started/smart-contract-development/index.html
https://docs.aelf.io/en/latest/getting-started/smart-contract-development/index.html
../../getting-started/development-environment/node.html
https://docs.aelf.io/en/latest/getting-started/smart-contract-development/index.html

AEIf, Release release/1.2.3

sudo chmod 755 /usr/local/lib/node_modules

Clone and Build aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

’mkdir ~/Desktop/Code

2. Execute this command to change the directory:

cd ~/Desktop/Code

3. Execute this command to clone aelf’s code:

’git clone https://github.com/AElfProject/AElf.git

4. Execute this command to change to aelf’s directory:

’cd AE1f

5. Execute this command to restore aelf’s files:

’dotnet restore AE1If.All.sln

6. Execute this command to build aelf’s code (this will take several minutes):

’dotnet build AE1f.All.sln

The following output suggests successful building:

xx Warning(s)
0 Error(s)

Time Elapsed 00:15:59.77

If contract_csharp_plugin fails to be called, it may be because you don’t have Rosetta 2 installed. Please execute this

command and then retry:

/usr/sbin/softwareupdate —-install-rosetta —-agree-to-license

Create an aelf Account

Execute this command:

aelf-command create

An aelf account will be automatically created and you will see info like:

AE1f [Info]: Your wallet info is
AElf [Info]: Mnemonic : mirror among battle muffin cattle
—buzz hip mad surround recall

AE1lf [Info]: Private Key H
AnfE25a5feable2laabafcab5eab82b3dfb6140412456086324720056071 3w wsw

plunge tuition,,

(continues on next page)

2.2. Node

17

AEIf, Release release/1.2.3

(continued from previous page)

AE1lf [Info]: Public Key
<»O4f9bb56a9eca921bd4946677307f0279c98f1d26d6bdeaa6dd256878272eabd14e9lec61469d2a320e5e
AEl1f [Info]: Address : 21lgciGwcaowwBttKMjMk86AW6Wa JhcodSHYtY1IvCyZbTpx % %

You will then be asked whether you want the account data stored as a json file. Enter y to confirm and the file will be
stored in /Users/{username}/.local/share/aelf/keys/.

Please make sure you remember the account data or the json file’s location.

You will be required to set a password (referred to as * here):

Enter a password: k%%
Confirm password: sk *x*

For the sake of convenience, you are encouraged to keep this Terminal on the account info interface and open another
Terminal to continue the following.

Run a Single Node

A single node runs aelf blockchain on one node. It is usually used to test the execution of contracts only.

1. Execute this command to start a Redis instance (skip this step if redis-server is already started):

’redisfserver

2. Open another Terminal and execute this command to change to aelf’s directory:

cd ~/Desktop/Code/AELlf

3. Execute this command to change to the AE1f . Launcher directory:

cd src/AElf.Launcher

4. Modify the appsettings. json file: for novices, you can go to desktop -> Code -> AEIf -> src ->
AEFEIf Launcher and open the appsettings. json file in the editor to modify it (or, if you are familiar with
Linux commands, you can run the vim appsettings. json command and modify the file in the command-
line interface).

Find the account data you just created using aelf-command create.

AEl1f [Info]: Your wallet info is

AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
—buzz hip mad surround recall

AE1lf [Info]: Private Key
ﬂ4bf625afea60e21aa5afcab5ea682b3dfb6l4941245698632d72a09ae13*****

AE1lf [Info]: Public Key :
A04f9bb56a9eca921bd494e6773O7f0279c98f1d2ed6bdeaa6dd256878272eabd14e91ec61469d2a32065e
AElf [Info]: Address : 21lgciGwcaowwBttKMJMk86AW6Wa JhcodSHYtY1vCyZb7p* * x % %

Fill in the NodeAccount and NodeAccountPassword under Account using the Address and password
you set in appsettings. json:

"Account": {
"NodeAccount": "",
"NodeAccountPassword": ""

18 Chapter 2. Development Environment

3205930dabdc!

3205930dabdc!

AEIf, Release release/1.2.3

It may look like this when you complete it:

"Account": {
"NodeAccount": "21lgciGwcaowwBttKMjMk86AW6EWa jhcodSHytY1vCyZbTpx*x*x*",
"NodeAccountPassword": "sxxxxkx*"

b

Fill in the InitialMineList under Consensus using Public Key:

"Consensus": {
"InitialMinerList": [],
"MiningInterval": 4000,
"StartTimestamp": O,
"PeriodSeconds": 604800,
"MinerIncreaselnterval": 31536000

It may look like this when you complete it (make sure the key is bracketed):

"Consensus": {

"InitialMinerList": [
—"04f90b56a9%9eca921bd494e677307£0279c98f1d2edbbdeaa6dd256878272eabdl4e91ec61469d2a32cebq
;}"] 14

"MiningInterval": 4000,

"StartTimestamp": O,

"PeriodSeconds": 604800,

"MinerIncreaseInterval": 31536000

If the IP and port for Redis have been changed, you can modify them under ConnectionStrings in
appsettings. json (skip this step if they are not changed):

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:63792db=1",
"StateDb": "redis://localhost:63792db=1"

5. Execute dotnet run:

sudo dotnet run

The following output suggests successful execution:

2022-11-29 16:07:44,554 [.NET ThreadPool Worker] INFO AElf.Kernel.
—SmartContractExecution.Application.BlockExecutionResultProcessingService - Attach,
—blocks to best chain, best chain hash:
—"£396756945d90bb883£81827ab36£cb0533d3c66£7062269700e49074895xx+xx", height: 177

If you want to check the node’s block height and other block info, you can visit this page where you can access the
API docs and interact with this single node.

To shut the node down, please use control + ¢ on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis—-cli flushall

2.2. Node 19

63205930dabd

http://localhost:8000/swagger/index.html

AEIf, Release release/1.2.3

Linux and Codespaces

Follow this doc to run an aelf single node in Linux and Codespaces and this will take around 20 minutes to complete.

Install aelf-command

Execute this command to install aelf-command:

npm i aelf-command -g

The following output suggests successful installation:

+ aelf-command@0.1.44
added 314 packages from 208 contributors in 25.958s

You might see warnings like this due to differences in system configuration. Please ignore it:

—] - 0% npm 1 aelf-command -g
ecated debug@4.1.1: Debug versions >=3.2.@ <3.2.7 || >=4 <4.3.1 have a low-severity ReDos regre551on
when used in a Node js environment. It is recommended you upgrade to 3.2.7 or 4.3.1. (https://github.com/visionm
edla/debug/lssues/?Q?)
eprecated uuid@3.4.8: Please upgrade to version 7 or higher. Older versions may use Math.random() in
certain c1rcumstances, which is known to be problematic. See https://v8.dev/blog/math-random for details.

changed 324 packages in 39s

35 packages are looking for funding
run “npm fund® for details

Clone and Build aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

’mkdir ~/Desktop/Code ‘

2. Execute this command to change the directory:

cd ~/Desktop/Code ‘

3. Execute this command to clone aelf’s code:

’git clone https://github.com/AElfProject/AElf.git ‘

4. Execute this command to change to aelf’s directory:

’cd AELf

5. Execute this command to restore aelf’s files:

’dotnet restore AE1If.All.sln ‘

6. Execute this command to build aelf’s code (this will take several minutes):

’dotnet build AE1f.All.sln ‘

The following output suggests successful building:

20 Chapter 2. Development Environment

AEIf, Release release/1.2.3

xx Warning(s)
0 Error (s)

Time Elapsed 00:15:59.77

Create an aelf Account

Execute this command:

aelf-command create

An aelf account will be automatically created and you will see info like:

AEl1f [Info]: Your wallet info is

AE1lf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
—buzz hip mad surround recall

AElf [Info]: Private Key
q4bf625afea60e21aa5afcab5ea682b3dfb6l4941245698632d72a09ae13*****

AElf [Info]: Public Key
%O4f9bb56a9eca921bd494e677307fO279c98fld2ed6bdeaa6dd256878272eabd14e9lec61469d2a320e5e
AE1f [Info]: Address : 21lgciGwcaowwBttKMjMk86AWOWa jhcodSHYytY1IvCyZbTp* * % x

You will then be asked whether you want the account data stored as a json file. Enter y to confirm and the file will be
stored in /root/.local/share/aelf/keys/.

Please make sure you remember the account data or the json file’s location.

You will be required to set a password (referred to as * here):

Enter a password: k%%

Confirm password: #**x*x*xxx*

For the sake of convenience, you are encouraged to keep this Terminal on the account info interface and open another
Terminal to continue the following.

Run a Single Node

A single node runs aelf blockchain on one node. It is usually used to test the execution of contracts only.

1. Execute this command to start a Redis instance (skip this step if redis-server is already started):

’redisfserver

2. Open another Terminal and execute this command to change to aelf’s directory:

’cd ~/Desktop/Code/AELf

3. Execute this command to change to the AE1f . Launcher directory:

’cd src/AElf.Launcher

4. Modify the appsettings. json file: for novices, you can go to desktop -> Code -> AEIf -> src ->
AElIf.Launcher and open the appsettings. json file in the editor to modify it (or, if you are familiar with
Linux commands, you can run the vim appsettings. json command and modify the file in the command-
line interface).

2.2. Node 21

3205930dabdc

AEIf, Release release/1.2.3

Find the account data you just created using aelf-command create.

AEl1f [Info]l: Your wallet info is

AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition,
—buzz hip mad surround recall

AE1lf [Info]: Private Key
H4bf625afea60e21aa5afcab5ea682b3dfb6l4941245698632d72a09ael3*****

AE1lf [Info]: Public Key :
q04f9bb56a9eca921bd494e677307f0279c98fld2ed6bdeaa6dd256878272eabd14e9lec61469d2a32ce5e
AElf [Info]: Address : 21lgciGwcaowwBttKMjMk86AWOWa jhcodSHYtY1IvCyZbTp* % % *

Fill in the NodeAccount and NodeAccountPassword under Account using the Address and password
you set in appsettings. json:

"Account": {
"NodeAccount": "",
"NodeAccountPassword": ""

It may look like this when you complete it:

"Account": {
"NodeAccount": "21lgciGwcaowwBttKMjMk86AW6EWa jhcodSHytY1vCyZbTpx**x*",
"NodeAccountPassword": "sxsxxxxx*x"

by

Fill in the InitialMineList under Consensus using Public Key:

"Consensus": {
"InitialMinerList": [],
"MiningInterval": 4000,
"StartTimestamp": O,
"PeriodSeconds": 604800,
"MinerIncreaselnterval”: 31536000

It may look like this when you complete it (make sure the key is bracketed):

"Consensus": {

"InitialMinerList": [
—~"04£f90b56a9eca921bd494e677307£0279c98f1d2edbbdeaacdd256878272eabdl4e91ec61469d2a32cebsg
;*"] ’

"MiningInterval": 4000,

"StartTimestamp": O,

"PeriodSeconds": 604800,

"MinerIncreaseInterval": 31536000

If the IP and port for Redis have been changed, you can modify them under ConnectionStrings in
appsettings. json (skip this step if they are not changed):

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:63792db=1",
"StateDb": "redis://localhost:63792db=1"

Save the changes and keep them in the AE1f . Launcher directory.

5. Execute dotnet run:

22 Chapter 2. Development Environment

3205930dabdc

63205930dabd

AEIf, Release release/1.2.3

sudo dotnet run

The following output suggests successful execution:

2022-11-29 16:07:44,554 [.NET ThreadPool Worker] INFO AElf.Kernel.
—SmartContractExecution.Application.BlockExecutionResultProcessingService - Attach,
—blocks to best chain, best chain hash:
—"£396756945d9bb883£81827ab36fcb0533d3c66£7062269700e49b74895xx+++", height: 177

If you want to check the node’s block height and other block info, you can visit this page where you can access the
API docs and interact with this single node.

To shut the node down, please use control + ¢ on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis—-cli flushall

Windows

Follow this doc to run an aelf single node on a Windows device and this will take around 20 minutes to complete.

Install aelf-command

Execute npm command to install aelf-command:

npm i1 aelf-command —g

The following output suggests successful installation:

+ aelf-command@0.1.44
added 314 packages from 208 contributors in 25.958s

You might see warnings like this due to differences in system configuration. Please ignore it:

'f] - 7% npm 1 aelf-command -g

\ precated debug®@4.1.1: Debug versions >=3.2.0 <3.2.7 || >=4 <4.3.1 have a low-severity ReDos regre551on
when used in a Node.js environment. It is recommended you upgrade to 3.2.7 or 4.3.1. (https://github.com/visionm
edia/d bug/lssueS/???)
npm LG deprecated uuid@3.4.8: Please upgrade to version 7 or higher. Older versions may use Math.random() in
certain C1rcumstances which is known to be problematic. See https://v8.dev/blog/math-random for details.

changed 324 packages in 39s

35 packages are looking for funding
run “npm fund® for details

Clone and Build aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command in cmd or PowerShell to create a directory:

mkdir C:/Users/${username}/Desktop/Code

2. Execute this command to change the directory:

2.2. Node 23

http://localhost:8000/swagger/index.html

AEIf, Release release/1.2.3

’cd C:/Users/${username}/Desktop/Code

3. Execute this command to clone aelf’s code:

’git clone https://github.com/AElfProject/AElf.git

4. Execute this command to change to aelf’s directory:

’cd AELf

5. Execute this command to restore aelf’s files:

’dotnet restore AE1If.All.sln

6. Execute this command to build aelf’s code (this will take several minutes):

’dotnet build AE1f.All.sln

The following output suggests successful building:

xx Warning(s)
0 Error(s)

Time Elapsed 00:15:59.77

Create an aelf Account

Execute this command:

aelf-command create

An aelf account will be automatically created and you will see info like:

AEl1f [Info]l: Your wallet info is

AElf [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
—buzz hip mad surround recall

AE1f [Info]: Private Key
44bf625afea60e21aa5afcab5ea682b3dfb6l4941245698632d72a09ae13*****

AE1lf [Info]: Public Key :
q04f9bb56a9eca92lbd494e677307f0279c98fld2ed6bdeaa6dd256878272eabdl4e9lec61469d2a32ce5e
AElf [Info]: Address : 21lgciGwcaowwBttKMjMk86AWOWa jhcodSHYtY1vCyZbTp* % % %

You will then be asked whether you want the account data stored as a json file. Enter y to confirm and the file will be
stored locally.

Please make sure you remember the account data or the json file’s location.

You will be required to set a password (referred to as * here):

Enter a password: #xxxkx*x*

Confirm password: #***x*x*xxx

For the sake of convenience, you are encouraged to keep this cmd or PowerShell on the account info interface and
open another cmd or PowerShell to continue the following.

24 Chapter 2. Development Environment

3205930dabdc

AEIf, Release release/1.2.3

Run a Single Node

A single node runs aelf blockchain on one node. It is usually used to test the execution of contracts only.

1. Execute this command to start a Redis instance (skip this step if redis-server is already started):

’redisfserver

2. Open another cmd or PowerShell and execute this command to change to aelf’s directory:

’cd C:/Users/${username}/Desktop/Code

3. Execute this command to change to the AE1f . Launcher directory:

’cd src/AEl1f.Launcher

4. Modify the appsettings. json file: for novices, you can go to desktop -> Code -> AEIf -> src ->
AElIf.Launcher and open the appsettings. json file in the editor to modify it (or you can run the start
appsettings. json command and open the appsettings.json file in the editor).

Find the account data you just created using aelf-command create.

AElf [Info]: Your wallet info is

AE1f [Info]: Mnemonic : mirror among battle muffin cattle plunge tuition
—buzz hip mad surround recall

AElf [Info]: Private Key .
—4pbf625afeab0e2laabafcab5ea682b3dfb614941245698632d72a09%ael3xxx**

AElf [Info]: Public Key e
—~04£f9bb56a9%eca%921bd494e677307£0279c98f1ld2edbbdeaa6dd256878272eabdl4e91lec61469d2a32cebe
AE1f [Info]: Address : 21lgciGwcaowwBttKMjMk86AW6Wa JhcodSHYtY1IvCyZbTp* * % x

Fill in the NodeAccount and NodeAccountPassword under Account using the Address and password
you set in appsettings. json:

"Account": {
"NodeAccount": "",
"NodeAccountPassword": ""

It may look like this when you complete it:

"Account": {
"NodeAccount": "21lgciGwcaowwBttKMjMk86AW6EWa jhcodSHytY1vCyZbTpx**x*",
"NodeAccountPassword": "sxxxkxxx"

by

Fill in the InitialMineList under Consensus using Public Key:

"Consensus": {
"InitialMinerList": T[],
"MiningInterval": 4000,
"StartTimestamp": O,
"PeriodSeconds": 604800,
"MinerIncreaselInterval”: 31536000

It may look like this when you complete it (make sure the key is bracketed):

2.2. Node 25

3205930dabdc!

AEIf, Release release/1.2.3

"Consensus": {

"InitialMinerList": [
—"04f9bb56a9%ca921bd494e677307£0279c98fld2edbbdeaa6dd256878272eabdl4e9lec61l469d2a32cebq
(_)"J 14

"MiningInterval": 4000,

"StartTimestamp": O,

"PeriodSeconds": 604800,

"MinerIncreaselnterval": 31536000

If the IP and port for Redis have been changed, you can modify them under ConnectionStrings in
appsettings. json (skip this step if they are not changed):

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:63792db=1",
"StateDb": "redis://localhost:63792db=1"

Save the changes and keep them in the AE1f . Launcher directory.

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:63792db=1"

5. Execute dotnet run:

sudo dotnet run

The following output suggests successful execution:

2022-11-29 16:07:44,554 [.NET ThreadPool Worker] INFO AElf.Kernel.
—SmartContractExecution.Application.BlockExecutionResultProcessingService - Attach,
—blocks to best chain, best chain hash:
—"£396756945d9bb883£81827ab36£cb0533d3c66£7062269700e49074895x*x%x", height: 177

If you want to check the node’s block height and other block info, you can visit this page where you can access the
API docs and interact with this single node.

To shut the node down, please use control + ¢ on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis—-cli flushall

2.2.2 Multi Nodes

macOS

Follow this doc to run aelf multi-nodes on a macOS device and this will take around 20 minutes to complete.

Run Multi-Nodes

This tutorial will guide you through how to run three nodes.

26 Chapter 2. Development Environment

63205930dabdcs

http://localhost:8000/swagger/index.html

AEIf, Release release/1.2.3

Publish aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

’mkdir ~/Desktop/Out

2. Execute this command to change the directory:

’cd ~/Desktop/Code/AELf

3. Execute this command to publish aelf’s code (this will take several minutes):

sudo dotnet publish AEl1f.All.sln /p:NoBuild=false --configuration Debug -o ~/Desktop/
—0ut

Configure Three Nodes

1. Execute this command three times to create three accounts: A, B, and C.

aelf-command create

Please make sure you remember their Public Keys and Addresses.
Create a directory for node configuration. This tutorial uses a directory on the desktop for reference.

2. Execute this command to create a directory:

’mkdir ~/Desktop/Config

3. Execute this command to change the directory:

cd ~/Desktop/Config

4. Execute this command to create three new directories: bp1l, bp2, and bp3 in the “Config” directory and create
their respective “keys” directories.

mkdir -p ~/Desktop/Config/bpl/keys

mkdir -p ~/Desktop/Config/bp2/keys

mkdir -p ~/Desktop/Config/bp3/keys

5. Copy account A, B, and C from /Users/{username}/.local/share/aelf/keys/ to bpl/keys,
bp2/keys, and bp3/keys respectively (If you can’t find . 1ocal, you can use cmd + shift + g in Finder to
designate the directories).

6. Execute this command to create appsettings. json files and appsettings.MainChain.MainNet.
json files in directories bp1, bp2, and bp3:

cd ~/Desktop/Config/bpl;touch appsettings.json;touch appsettings.MainChain.MainNet.
—Jjson

cd ~/Desktop/Config/bp2;touch appsettings.json;touch appsettings.MainChain.MainNet.
—Jjson

(continues on next page)

2.2. Node 27

AEIf, Release release/1.2.3

(continued from previous page)

cd ~/Desktop/Config/bp3;touch appsettings. json;touch appsettings
—Jjson

.MainChain.MainNet.

For appsettings. json:

{
"Logging": {
"LogLevel": {
"Default": "Debug"
}
}I
"AllowedHosts":

"CorsOrigins":

"*",

man,

"ConnectionStrings": {

"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:63792db=1"

}I

"ChainId": "AELEF",

"IsMainChain" true,

"NetType": "MainNet",

"Account": {
"NodeAccount":
"NodeAccountPassword":

}I

"Network": {
"BootNodes": [],
"ListeningPort":
"NetAllowed": "",
"NetWhitelist": []

}I

"Kestrel": {
"EndPoints": {

"Http": {
"Url":

Taxxxxhkhhn"

7001,

"http://*:8001/"

}
by
"Runner": {
"BlackList":
"WhiteList":
}I
"DeployServiceUrl":
"Consensus": {
"InitialMinerList" : [

L1,
[]

nn
I4

"21gciGwcaowwBttKMjMk86AW6Wa jhcodSHYtY1vCyZbTp*x*x*",

—"04884d9563b3b67a589e2b9%047794fcfb3e15£a494053088dd0dc8a909dd72b£fd24c43b0e2303d6316834

"
",

—"045670526219d7315484701e9367be%af293601793c9£7e34a96336650c9cll04ad4aac%9aaeec960af00e7]

"
",

—"046a5913eae5fee3da%9ee33604119£025a0ad45575dfedl257ef£5da2¢c24e629845blelall31c5da87519]
SN "
] 4
"MiningInterval" : 4000,
"StartTimestamp": O,
(continues on next page)
28 Chapter 2. Development Environment

caed34acf875!

5dcd88048698¢

1d545¢cc5c038

AEIf, Release release/1.2.3

(continued from previous page)

"PeriodSeconds": 120
b
"BackgroundJobWorker" : {

"JobPollPeriod": 1

For appsettings.MainChain.MainNet. json:

{

"ChainId": "AELF",

"TokenInitial™: {
"Symbol": "ELF",
"Name": "elf token",
"TotalSupply": 1000000000,
"Decimals": 2,
"IsBurnable": true,
"DividendPoolRatio": 0.2

}I

"ElectionInitial": {
"LockForElection": 100000,
"TimeEachTerm": 2,
"BaseTimeUnit": 2,
"MinimumLockTime": 1,
"MaximumLockTime": 2000

7. Modify the appsettings. json files in directory bp1l, bp2, and bp3 as instructed:
1. Change the numbers following db=in BlockchainDb and StateDb under ConnectionStrings:
1. bp1l: redis://localhost:6379?7db=1
2. bp2: redis://localhost:6379?db=2
3. bp3: redis://localhost:6379?db=3

2. Replace NodeAccount and NodeAccountPassword under Account with Address and
password in account A, B, and C.

3. Fill in all three InitialMineList under Consensus using account A, B, and C’s Public Key,
keys separated with, :

"Consensus": {
"InitialMinerList" : [

—"04884d9563b3b67a589e2b9%b47794£fcfb3e15£a494053088dd0dc8a909dd72bfd24c43b0e230

n
",

—"045670526219d73154847b1e9367be%9af293601793c9f7e34a96336650c9cll04adaac9aaece9

n
",

—"046a5913ecaebfee3da%ee33604119f025a0ad45575dfedl257eff5daz2c24e629845blelall3lqg

"
—

1,

4. In bpl, BootNodes is blank and ListeningPort is 7001. In bp2, BootNodes is 127.0.0.
1:7001 (make sure to bracket it), and ListeningPort is 7002. In bp3, BootNodes are 127.

2.2. Node 29

3d631683acaec

60af00e775dcc

5da8751971d54

AEIf, Release release/1.2.3

0.0.1:7001 and 127.0.0.1:7002 (make sure to bracket them and separate them with ,) and
ListeningPort is 7003.

5. Change the port numbers in Kestrel-EndPoints-Http-Url to 8001, 8002, and 8003 respectively
(to ensure there is no conflict of ports).

8. Execute this command to start a Redis instance:

redis—-server

Run Three Nodes

In this tutorial, code is published in ~/Desktop/Out and the three nodes are configured in ~/Desktop/Config.
Use redis—server to start a Redis instance.
We recommend you open three new Terminals to monitor the nodes’ operation.

Execute this command to launch node 1:

’cd ~/Desktop/Config/bpl;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 2:

’cd ~/Desktop/Config/bp2;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 3:

’cd ~/Desktop/Config/bp3;dotnet ~/Desktop/Out/AElf.Launcher.dll

The three nodes run successfully if all Terminals show the following output:

2022-11-30 20:51:04,163 [.NET ThreadPool Worker] INFO AElf.Kernel.Miner.Application.
—MiningService - Generated block: { id:
—"12£f519e1601dd9£755a186b1370£d12696a8c080ecal4465dadc***xxxx*xx2463", height: 25 1},
—previous: 5308de83c3585dbb4a097a9187a3b2f908584db4889d428484ca3e4df09e2860,
—executed transactions: 2, not executed transactions 0

To shut the nodes down, please use control + ¢ on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis—-cli flushall

Linux and Codespaces

Follow this doc to run aelf multi-nodes in Linux and Codespaces and this will take around 20 minutes to complete.

Run Multi-Nodes

This tutorial will guide you through how to run three nodes.

30 Chapter 2. Development Environment

AEIf, Release release/1.2.3

Publish aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

’mkdir ~/Desktop/Code

2. Execute this command to change the directory:

’cd ~/Desktop/Code/AELf

3. Execute this command to publish aelf’s code (this will take several minutes):

sudo dotnet publish AEl1f.All.sln /p:NoBuild=false --configuration Debug -o ~/Desktop/
—0ut

Configure Three Nodes

1. Execute this command three times to create three accounts: A, B, and C.

aelf-command create

Please make sure you remember their Public Keys and Addresses.
Create a directory for node configuration. This tutorial uses a directory on the desktop for reference.

2. Execute this command to create a directory:

’mkdir ~/Desktop/Config

3. Execute this command to change the directory:

cd ~/Desktop/Config

4. Execute this command to create three new directories: bp1l, bp2, and bp3 in the “Config” directory and create
their respective “keys” directories.

mkdir -p ~/Desktop/Config/bpl/keys

mkdir -p ~/Desktop/Config/bp2/keys

mkdir -p ~/Desktop/Config/bp3/keys

5. Copy account A, B, and C from /root/.local/share/aelf/keys/ to bpl/keys, bp2/keys, and
bp3/keys respectively (If you can’t find . local, you can use cmd + shift + g in Finder to designate the
directories).

6. Execute this command to create appsettings. json files and appsettings.MainChain.MainNet.
json files in directories bp1, bp2, and bp3:

cd ~/Desktop/Config/bpl;touch appsettings.json;touch appsettings.MainChain.MainNet.
—Jjson

cd ~/Desktop/Config/bp2;touch appsettings.json;touch appsettings.MainChain.MainNet.
—Jjson

(continues on next page)

2.2. Node 31

AEIf, Release release/1.2.3

(continued from previous page)

cd ~/Desktop/Config/bp3;touch appsettings. json;touch appsettings.MainChain.MainNet.
—Jjson

Copy the following templates to each file:

For appsettings. json:

{
"Logging": {
"LogLevel": {
"Default": "Debug"
}
}I
"AllowedHosts": "x",
"CorsOrigins": "x",
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:63792db=1"
}I
"ChainId": "AELF",
"IsMainChain" : true,
"NetType": "MainNet",
"Account": {
"NodeAccount": "2lgciGwcaowwBttKMJjMk86AW6WajhcodSHytY1vCyZbT7p**x**x",
"NodeAccountPassword": "sxxkxxx*"
}I
"Network": {
"BootNodes": [],
"ListeningPort": 7001,
"NetAllowed": "",
"NetWhitelist": []
}I
"Kestrel": {
"EndPoints": {
"Http": {
"Url": "http://*:8001/"

}
by
"Runner": {
"BlackList": [],
"WhiteList": []
}I
"DeployServiceUrl": "",
"Consensus": {
"InitialMinerList" : [

—"04884d9563b3b67a589e2b9%047794fcfb3e15£fa494053088dd0dc8a909dd72bfd24c43b0e2303d6316834

"
",

—"045670526219d73154847b1e9367be9%9af293601793c9f7e34a96336650c9cll104ad4aac9aaece960af00e77]

"
",

—"046a5913ecaebfee3da%ee33604119f025a0ad45575dfedl1257eff5daz2c24e629845blelal31c5da875197

n
—

1y

(continues on next page)

32 Chapter 2. Development Environment

caed34acf875:

5dcd88048698¢

1d545cc5c038

AEIf, Release release/1.2.3

(continued from previous page)

"MiningInterval" : 4000,
"StartTimestamp": O,
"PeriodSeconds": 120

}y

"BackgroundJobWorker": {
"JobPollPeriod": 1

For appsettings.MainChain.MainNet. json:

{

"ChainId": "AELF",
"TokenInitial": {

by

"Symbol": "ELF",

"Name": "elf token",
"TotalSupply": 1000000000,
"Decimals": 2,
"IsBurnable": true,
"DividendPoolRatio": 0.2

"FElectionInitial": {

"LockForElection": 100000,
"TimeEachTerm": 2,

"BaseTimeUnit": 2,
"MinimumLockTime": 1,
"MaximumLockTime": 2000

7. Modify the appsettings. json files in directory bpl, bp2, and bp3 as instructed:

1. Change the numbers following db=in BlockchainDb and StateDb under ConnectionStrings:
1. bp1l: redis://localhost:6379?7db=1
2. bp2: redis://localhost:6379?db=2
3. bp3: redis://localhost:6379?7db=3

2. Replace NodeAccount and NodeAccountPassword under Account with Address and
password in account A, B, and C.

3. Fill in all three ITnitialMineList under Consensus using account A, B, and C’s Public Key,
keys separated with, :

"Consensus": {
"InitialMinerList" : [

—"04884d9563b3b67a589e2b9047794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e230

n
",

—"045670526219d7315484701e9367be9%9af293601793c9f7e34a96336650c9cl104ad4aac9aaece9

n
",

—"046a5913eae5fee3da9ee33604119f025a0ad45575dfedl1257eff5da2c24e629845blelal3lqg

"
—

1y

2.2. Node 33

3d631683acaec

60af00e775dcc

5da8751971d54

AEIf, Release release/1.2.3

4. In bpl, BootNodes is blank and ListeningPort is 7001. In bp2, BootNodes is 127.0.0.
1:7001 (make sure to bracket it), and ListeningPort is 7002. In bp3, BootNodes are 127.
0.0.1:7001 and 127.0.0.1:7002 (make sure to bracket them and separate them with ,) and
ListeningPort is 7003.

5. Change the port numbers in Kestrel-EndPoints—-Http-Url to 8001, 8002, and 8003 respectively
(to ensure there is no conflict of ports).

8. Execute this command to start a Redis instance:

redis-server

Run Three Nodes

In this tutorial, code is published in ~/Desktop/Out and the three nodes are configured in ~/Desktop/Config.
Use redis—server to start a Redis instance.
We recommend you open three new Terminals to monitor the nodes’ operation.

Execute this command to launch node 1:

cd ~/Desktop/Config/bpl;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 2:

cd ~/Desktop/Config/bp2;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 3:

’cd ~/Desktop/Config/bp3;dotnet ~/Desktop/Out/AElf.Launcher.dll

The three nodes run successfully if all Terminals show the following output:

2022-11-30 20:51:04,163 [.NET ThreadPool Worker] INFO AElf.Kernel.Miner.Application.
—MiningService - Generated block: { id:
—"12f519e1601dd9f755a1860b1370fd12696a8c080ecald4465dadc***xxx+x*x*2463", height: 25 1},
—previous: 5308de83c3585dbb4a097a9187a3b2f908584db4889d428484ca3e4df09e2860,
—executed transactions: 2, not executed transactions 0

To shut the nodes down, please use control + ¢ on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis—-cli flushall

Windows

Follow this doc to run aelf multi-nodes on a Windows device and this will take around 20 minutes to complete.

Run Multi-Nodes

This tutorial will guide you through how to run three nodes.

34 Chapter 2. Development Environment

AEIf, Release release/1.2.3

Publish aelf’s Code

Create a directory. This tutorial uses a directory on the desktop for reference.

1. Execute this command to create a directory:

’ mkdir C:/Users/${username}/Desktop/Out

2. Execute this command to change the directory:

’cd C:/Users/${username}/Desktop/Code/AELlf

3. Execute this command to publish aelf’s code (this will take several minutes):

Note: Be sure to replace $ {username} here with your user name.

sudo dotnet publish AEl1f.All.sln /p:NoBuild=false --configuration Debug -o C:/Users/$
—»{username}/Desktop/Out

Configure Three Nodes

1. Execute this command three times to create three accounts: A, B, and C.

aelf-command create

Please make sure you remember their Public Keys and Addresses.
Create a directory for node configuration. This tutorial uses a directory on the desktop for reference.

2. Execute this command to create a directory:

’mkdir C:/Users/${username}/Desktop/Config

3. Execute this command to change the directory:

’cd C:/Users/S${username}/Desktop/Config

4. Execute this command to create three new directories: bpl, bp2, and bp3 in the “Config” directory and create
their respective “keys” directories.

mkdir -p C:/Users/${username}/Desktop/Config/bpl/keys
mkdir -p C:/Users/${username}/Desktop/Config/bp2/keys

mkdir -p C:/Users/S${username}/Desktop/Config/bp3/keys

5. Copy account A, B, and C from their json files to bpl/keys, bp2/keys, and bp3/keys respectively.

6. Execute this command to create appsettings. json files and appsettings.MainChain.MainNet.
json files in directories bp1, bp2, and bp3:

cd C:/Users/${username}/Desktop/Config/bpl;touch appsettings.json;touch appsettings.
—MainChain.MainNet. json

cd C:/Users/${username}/Desktop/Config/bp2;touch appsettings.json;touch appsettings.
—MainChain.MainNet. json

(continues on next page)

2.2. Node 35

AEIf, Release release/1.2.3

(continued from previous page)

cd C:/Users/${username}/Desktop/Config/bp3;touch appsettings. json;touch appsettings.
—MainChain.MainNet. json

Copy the following templates to each file:

For appsettings. json:

{
"Logging": {
"LogLevel": {
"Default": "Debug"
}
}I
"AllowedHosts": "x",
"CorsOrigins": "x",
"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=1",
"StateDb": "redis://localhost:63792db=1"
}I
"ChainId": "AELF",
"IsMainChain" : true,
"NetType": "MainNet",
"Account": {
"NodeAccount": "2lgciGwcaowwBttKMJjMk86AW6WajhcodSHytY1vCyZbT7p**x**x",
"NodeAccountPassword": "sxxkxxx*"
}I
"Network": {
"BootNodes": [],
"ListeningPort": 7001,
"NetAllowed": "",
"NetWhitelist": []
}I
"Kestrel": {
"EndPoints": {
"Http": {
"Url": "http://*:8001/"

}
by
"Runner": {
"BlackList": [],
"WhiteList": []
}I
"DeployServiceUrl": "",
"Consensus": {
"InitialMinerList" : [

—"04884d9563b3b67a589e2b9%047794fcfb3e15£fa494053088dd0dc8a909dd72bfd24c43b0e2303d6316834

"
",

—"045670526219d73154847b1e9367be9%9af293601793c9f7e34a96336650c9cll104ad4aac9aaece960af00e77]

"
",

—"046a5913ecaebfee3da%ee33604119f025a0ad45575dfedl1257eff5daz2c24e629845blelal31c5da875197

n
—

1y

(continues on next page)

36 Chapter 2. Development Environment

caed34acf875:

5dcd88048698¢

1d545cc5c038

AEIf, Release release/1.2.3

(continued from previous page)

"MiningInterval" : 4000,
"StartTimestamp": O,
"PeriodSeconds": 120

}I

"BackgroundJobWorker": {
"JobPollPeriod": 1

For appsettings.MainChain.MainNet. json:

{

"ChainId": "AELF",

"TokenInitial": {
"Symbol": "ELF",
"Name": "elf token",
"TotalSupply": 1000000000,
"Decimals": 2,
"IsBurnable": true,
"DividendPoolRatio": 0.2

}o

"FElectionInitial": {
"LockForElection": 100000,
"TimeEachTerm": 2,

"BaseTimeUnit": 2,
"MinimumLockTime": 1,
"MaximumLockTime": 2000

7. Modify the appsettings. json files in directory bpl, bp2, and bp3 as instructed:
1. Change the numbers following db=in BlockchainDb and StateDb under ConnectionStrings:
1. bp1l: redis://localhost:6379?7db=1
2. bp2: redis://localhost:6379?db=2
3. bp3: redis://localhost:6379?7db=3

2. Replace NodeAccount and NodeAccountPassword under Account with Address and
password in account A, B, and C.

3. Fill in all three ITnitialMineList under Consensus using account A, B, and C’s Public Key,
keys separated with, :

"Consensus": {
"InitialMinerList" : [

—"04884d9563b3b67a589e2b9%047794fcfb3e15fa494053088dd0dc8a909dd72bfd24c43b0e2303d631683acaec

n
",

—"045670526219d7315484701e9367be9%9af293601793c9f7e34a96336650c9cll104ad4aac9aaeceP60af00e775dcc

n
",

—"046a5913eae5fee3da9ee33604119f025a0ad45575dfedl1257eff5da2c24e629845b1el1al31d5da8751971d54

"
—

1,

2.2. Node 37

AEIf, Release release/1.2.3

4. In bpl, BootNodes is blank and ListeningPort is 7001. In bp2, BootNodes is 127.0.0.
1:7001 (make sure to bracket it), and ListeningPort is 7002. In bp3, BootNodes are 127.
0.0.1:7001 and 127.0.0.1:7002 (make sure to bracket them and separate them with ,) and
ListeningPort is 7003.

5. Change the port numbers in Kestrel-EndPoints—-Http-Url to 8001, 8002, and 8003 respectively
(to ensure there is no conflict of ports).

8. Execute this command to start a Redis instance:

redis-server

Run Three Nodes

In this tutorial, code is published in C: /Users/${username}/Desktop/Out and the three nodes are configured
inC:/Users/${username}/Desktop/Config.

Use redis—server to start a Redis instance.
We recommend you open three new terminals to monitor the nodes’ operation.

Execute this command to launch node 1:

’cd ~/Desktop/Config/bpl;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 2:

’cd ~/Desktop/Config/bp2;dotnet ~/Desktop/Out/AElf.Launcher.dll

Execute this command to launch node 3:

’cd ~/Desktop/Config/bp3;dotnet ~/Desktop/Out/AElf.Launcher.dll

The three nodes run successfully if all Terminals show the following output:

2022-11-30 20:51:04,163 [.NET ThreadPool Worker] INFO AElf.Kernel.Miner.Application.
—MiningService - Generated block: { id:
—"12£519e1601dd9£755a186b1370£d12696a8c080eal4465dadc ***xxxx*xx2463", height: 25 1}, |
—previous: 5308de83c3585dbb4a097a9187a3b2f9b8584db4889d428484ca3e4df09e2860,
—executed transactions: 2, not executed transactions 0

To shut the nodes down, please use control + ¢ on your keyboard.

If you don’t want to save the data, you can execute this command to delete all:

redis—-cli flushall

38 Chapter 2. Development Environment

CHAPTER 3

Smart Contract Development

3.1 Greeter Contract

3.1.1 Smart contract implementation

This article will guide you through how to use AEIf Boilerplate to implement a smart contract. It takes an example
on the Greeter contract that’s already included in Boilerplate. Based on the concepts this article presents, you’ll be
able to create your own basic contract.

Greeter contract
The following content will walk you through the basics of writing a smart contract; this process contains essentially
four steps:

* create the project: generate the contract template using AEIf Boilerplate’s code generator.

¢ define the contract and its types: the methods and types needed in your contract should be defined in a protobuf
file, following typical protobuf syntax.

 generate the code: build the project to generate the base contract code from the proto definition.
 extend the generated code: implement the logic of the contract methods.

The Greeter contract is a very simple contract that exposes a Greet method that simply logs to the console and
returns a “Hello World” message and a more sophisticated Greet To method that records every greeting it receives
and returns the greeting message as well as the time of the greeting.

This tutorial shows you how to develop a smart contract with the C# contract SDK; you can find you more here.
Boilerplate will automatically add the reference to the SDK.

Create the project

With AEIf Boilerplate’s code generator, you can easily and quickly set up a contract project. See here for details.

39

https://aelf-boilerplate-docs.readthedocs.io/en/latest/usage/index.html

AEIf, Release release/1.2.3

Defining the contract

After creating the contract project, you can define the methods and types of your contract. AEIf defines smart contracts
as services that are implemented using gRPC and Protobuf. The definition contains no logic; at build time the proto
file is used to generate C# classes that will be used to implement the logic and state of the contract.

We recommend putting the contract’s definition in Boilerplate’s protobuf folder so that it can easily be in-
cluded in the build/generation process and also that you name the contract with the following syntax con-
tract_name_contract.proto:

L Boilerplate

L— chain
L protobuf
— aelf
t:: options.proto // contract options
core.proto // core blockchain types

— greeter_contract.proto

— another_contract.proto

— token_contract.proto // system contracts
— acsO.proto // AElf contract standard

The “protobuf” folder already contains a certain amount of contract definitions, including tutorial examples, system
contracts. You’ll also notice it contains AEIf Contract Standard definitions that are also defined the same way as
contracts. Lastly, it also contains options.proto and core.proto that contain fundamental types for developing smart
contracts, more on this later.

Best practices:
* place your contract definition in Boilerplate’s protobuf folder.
* name your contract with contractname_contract.proto, all lower case.

Now let’s take a look a the Greeter contract’s definition:

// protobuf/greeter_contract.proto
syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) {
option (aelf.is_view) = true;

(continues on next page)

40 Chapter 3. Smart Contract Development

AEIf, Release release/1.2.3

(continued from previous page)

message GreetToOutput ({
string name = 1;
google.protobuf.Timestamp greet_time = 2;

message GreetedList ({
repeated string value = 1;

Above is the full definition of the contract; it is mainly composed of three parts:
» imports: the dependencies of your contract.
* the service definition: the methods of your contract.
* types: some custom defined types used by the contract.

Let’s have a deeper look at the three different parts.

Syntax, imports and hamespace

syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";

import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

The first line specifies the syntax that this protobuf file uses, we recommend you always use proto3 for your contracts.
Next, you’ll notice that this contract specifies some imports, let’s analyze them briefly:

« aelf/options.proto : contracts can use AEIf specific options; this file contains the definitions. One example is
the is_view options that we will use later.

* empty.proto, timestamp.proto and wrappers.proto : these are proto files imported directly from protobuf’s
library. They are useful for defining things like an empty return value, time, and wrappers around some common
types such as string.

The last line specifies an option that determines the target namespace of the generated code. Here the generated code
will be in the AE1f.Contracts.Greeter namespace.

The service definition

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

(continues on next page)

3.1. Greeter Contract 41

AEIf, Release release/1.2.3

(continued from previous page)

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) ({
option (aelf.is_view) = true;

}

The first line here uses the aelf.csharp_state option to specify the name (full name) of the state class. This
means that the state of the contract should be defined in the GreeterContractState class under the AE1f.
Contracts.Greeter namespace.

Next, two action methods are defined: Greet and GreetTo. A contract method is defined by three things: the
method name, the input argument(s) type(s) and the output type. For example, Greet requires that the input
type is google.protobuf . Empty that is used to specify that this method takes no arguments and the output type
will be a google.protobuf.StringValue is a traditional string. As you can see with the Greet To method, you can use
custom types as input and output of contract methods.

The service also defines a view method, that is, a method used only to query the contracts state, and that has no side
effect on the state. For example, the definition of GetGreetedList uses the aelf.is_view option to make it a view
method.

Best practice:

¢ use google.protobuf.Empty to specify that a method takes no arguments (import google/protobuf/
empty.proto).

* use google.protobuf.StringValue to use a string (import google/protobuf/wrappers.proto).
* use the aelf.is_view option to create a view method (import aelf/options.proto).

« use the aelf.csharp_state to specify the namespace of your contracts state (import ae1f/options.proto).

Custom types

message GreetToOutput ({
string name = 1;
google.protobuf.Timestamp greet_time = 2;

message GreetedList ({
repeated string value = 1;

}

The protobuf file also includes the definition of two custom types. The GreetToOutput is the type returned by the
GreetTo method and GreetedList is the return type of the GetGreetedList view method. You’ll notice the
repeated keyword the GreetedList message. This is protobuf syntax to represent a collection.

Best practice:

* use google.protobuf.Timestamp to represent a point in time (import google/protobuf/timestamp.
proto).

* use repeated to represent a collection of items of the same type.
Extend the generated code

After defining and generating the code from the definition, the contract author extends the generated code to implement
the logic of his contract. Two files are presented here:

42 Chapter 3. Smart Contract Development

AEIf, Release release/1.2.3

* GreeterContract: the actual implementation of the logic, it inherits from the contract base generated by proto-
buf.

¢ GreeterContractState: the state class that contains properties for reading and writing the state. This class
inherits the Contract State class from the C# SDK.

// contract/AElf.Contracts.GreeterContract/GreeterContract.cs
using Google.Protobuf.WellKnownTypes;

namespace AElf.Contracts.Greeter
{
public class GreeterContract : GreeterContractContainer.GreeterContractBase
{
public override StringValue Greet (Empty input)
{
Context.LogDebug (() => "Hello World!");
return new StringValue {Value = "Hello World!"};

public override GreetToOutput GreetTo (StringValue input)
{
// Should not greet to empty string or white space.
Assert (!string.IsNullOrWhiteSpace (input.Value), "Invalid name.");

// State.GreetedList.Value is null if not initialized.
var greetList = State.GreetedList.Value ?? new GreetedList ();

// Add input.Value to State.GreetedList.Value if it's new to this list.
if (!greetlist.Value.Contains (input.Value))
{

greetlList.Value.Add (input.Value);

// Update State.GreetedList.Value by setting it's value directly.
State.GreetedList.Value = greetlist;

Context.LogDebug (() => "Hello {0}!", input.Value);

return new GreetToOutput

{
GreetTime = Context.CurrentBlockTime,
Name = input.Value.Trim()

}i

public override GreetedList GetGreetedList (Empty input)
{

return State.GreetedList.Value ?? new GreetedList ();

// contract/AElf.Contracts.GreeterContract/GreeterContractState.cs
using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter

(continues on next page)

3.1. Greeter Contract 43

AEIf, Release release/1.2.3

(continued from previous page)

public class GreeterContractState : ContractState
{
public SingletonState<GreetedList> GreetedList { get; set; }

Let’s briefly explain what is happening in the Greet To method:

Asserting

Assert (!string.IsNullOrWhiteSpace (input.Value), "Invalid name.");

When writing a smart contract, it is often useful (and recommended) to validate the input. AEIf smart contracts can
use the Assert method defined in the base smart contract class to implement this pattern. For example, here, the
method validates that the input string is null or composed only of white spaces. If the condition is false, this line will
abort the execution of the transaction.

Accessing and saving state

var greetlist = State.GreetedList.Value ?? new GreetedList();

State.GreetedList.Value = greetlist;

From within the contract methods, you can easily access the contracts state through the State property of the con-
tract. Here the state property refers to the GreeterContractState class in which is defined the GreetedList
collection. The second effectively updates the state (this is needed; otherwise, the method would have no effect on the
state).

Note that because the GreetedList type is wrapped ina SingletonState you have to use the Value property
to access the data (more on this later).

Logging

Context.LogDebug (() => "Hello {0}!", input.Value);

It is also possible to log from smart contract methods. The above example will log “Hello” and the value of the input.
It also prints useful information like the ID of the transaction. It will print in the console log if you launch the node
with DEBUG mode. This is only for debug use and has no impacts on state at all.

More on state

As a reminder, here is the state definition in the contract (we specified the name of the class and a type) as well as the
custom type GreetedList:

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

(continues on next page)

44 Chapter 3. Smart Contract Development

AEIf, Release release/1.2.3

(continued from previous page)

VYR

message GreetedList ({
repeated string value = 1;

}

The aelf.csharp_state option allows the contract author to specify in which namespace and class name the
state will be. To implement a state class, you need to inherit from the Cont ract State class that is contained in the
C# SDK (notice the using statement here below).

Below is the state class that we saw previously:

using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter

{

public class GreeterContractState : ContractState

{
public SingletonState<GreetedList> GreetedList { get; set; }

The state uses the custom GreetedList type, which was generated from the Protobuf definition at build time and
contained exactly one property: a singleton state of type GreetedList.

The SingletonState is part of the C# SDK and is used to represent exactly one value. The value can be of any
type, including collection types. Here we only wanted our contract to store one list (here a list of strings).

Note that you have to wrap your state types in a type like SingletonState (others are also available like
MappedState) because behind the scene, they implement the state read and write operations.

3.1.2 Unit testing a contract

The previous article exposed how to add the proto definition and implement the logic of your contract. This article
expands on the previous and will show you how to test your contract.

AEIf Contract TestKit is a testing framework specifically used to test AEIf smart contracts. With this framework, you
can simulate the execution of a transaction by constructing a stub of a smart contract and using the methods provided
by the Stub instance (corresponding to the contract’s Action methods) and query (corresponding to the View methods
of the contract), and then get the transaction execution results in the test case.

Test project
AEIf Boilerplate’s code generator has automatically generated test project for you, you just need to add your test
cases.

As you can see, tests are placed in the test folder. Each test folder usually contains a project file (.csproj) and at least
four .cs files. The project file is a basic C# xUnit test project file, to which we’ve added some references.

L— chain
contract
protobuf
src

(continues on next page)

3.1. Greeter Contract 45

AEIf, Release release/1.2.3

(continued from previous page)

L— test
AElf.Contracts.GreeterContract.Tests
AElf.Contracts.GreeterContract.Tests.csproj // xUnit test project
GreeterContractTestBase.cs
GreeterContractTestModule.cs
GreeterContractTests.cs
L— GreeterContractInitializationProvider.cs

Test your contract

Now for the easy part, the test class only needs to inherit from the test base. After this you can go ahead and create the
test cases you need.

GreeterContractTest.cs

public class GreeterContractTests : GreeterContractTestBase
{

// declare the method as a xUnit test method

[Fact]

public async Task GreetTest ()

{

// Use the contracts stub to call the 'Greet' method and get a reference to

// the transaction result.
var txResult = await GetGreeterContractStub (_defaultKeyPair) .Greet.

—SendAsync (new Empty());

// check that the transaction was mined
txResult.TransactionResult.Status.ShouldBe (TransactionResultStatus.Mined) ;

// parse the result (return from the contract)

var text = new StringValue();
text.MergeFrom(txResult.TransactionResult.ReturnValue);
// check that the value 1is correct

text.Value.ShouldBe ("Hello World!");

/7

From the previous code snippet you can note several things:
* the test case is a classic xUnit test class.
* you can use the contracts stub to call the contract and check returns.

Feel free to have a look at the full test class in the Boilerplate source code.

3.1.3 Run the node

Next you can run Boilerplate (and it’s an internal node). This will automatically deploy the Greeter contract. Open a
terminal in the root Boilerplate directory and navigate to the launcher project:

46 Chapter 3. Smart Contract Development

AEIf, Release release/1.2.3

’cd chain/src/AElf.Boilerplate.GreeterContract.Launcher

Next, run the node:

’dotnet run AElf.Boilerplate.GreeterContract.Launcher.csproj

From here, you should see the build and eventually the nodes logs.

Boilerplate will deploy your contract when the node starts. You can call the Boilerplate node API:

aelf-command get-chain-status
? Enter the the URI of an AELlf node: http://127.0.0.1:1235

v Succeed

{
"ChainId": "AELF",
"Branches": {

"6032b553ec9a5c81713cf8410f426dfclcalf43e64d56£527£c7a9¢c60b90e694": 3073

}l

"NotLinkedBlocks": {},

"LongestChainHeight": 3073,

"LongestChainHash":
—"6032b553ec9a5¢c81713c£8410f426dfclcalf43e64d56£527£fc7a9c60b90e694",

"GenesisBlockHash":
—"c3bddcal909ebf37b95be7£260990e07916790913e0£48dala831b3c777d59ff",

"GenesisContractAddress": "2gaQhd4uxgbtzyH1ADLODxVHA14FMpzEiMgsQ6sDG5iHT8cmjp8",

"LastIrreversibleBlockHash":
—"85fee024d156de3be665¢c296c567423026e0e3369%9ad7dcbee8ldbb2alsbdfe2f2",

"LastIrreversibleBlockHeight": 3042,

"BestChainHash": "6032b553ec9%9a5c81713cf8410f426dfclcalf43e64d56£527£fc7a9c60b90e694",

"BestChainHeight": 3073

This enables further testing of the contract, including testing it from a dApp.

3.1.4 Front end

This tutorial will show you how to develop a front-end app (JavaScript in our case) that will demonstrate how to
interact with a contract that was developed with Boilerplate.

At the top-level Boilerplate contains two folders:
* chain : used for developing the contracts.
* web : used for developing the front-end.

The web folder already contains some projects that can serve as examples. This tutorial presents a front-end for the
Greeter contract shown in the previous tutorials.

Run the front-end

After you run Boilerplate, open another terminal at the repo’s root and navigate to the greeter project:

cd web/greeter

From here, you can install and run the Greeter’s front end:

3.1. Greeter Contract 47

AEIf, Release release/1.2.3

npm i
npm start

And a page will be opened by webpack in your default browser.

Front-end code

The code is straightforward, it uses aelf-sdk + webpack. You can check out more here.
Warning: be careful, this code is in no way production-ready and is for demonstration purposes only.
It demonstrates the following capabilities of the js sdk:

* getting the chain status.

* getting a contract object.

* calling a contract method.

e calling a view method.

Getting the chain status

The following code snippet shows how to call the nodes API to get the chains status:

aelf.chain.getChainStatus ()
.then (res => {
if (!'res) {
throw new Error ('Error occurred when getting chain status');
}
// use the chain status
})
.catch(err => {
console.log(err);
1)

For more information about the chain status AP1 : GET /api/blockChain/chainStatus.

As we will see next, the chain status is very useful for retrieving the genesis contract.

getting a contract object

The following code snippet shows how to get a contract object with the js-sdk:

async function getContract (name, walletInstance) {

// 1if not loaded, load the genesis
if (!genesisContract) {
const chainStatus =

if (!chainStatus) {
throw new Error

await aelf.chain.getChainStatus () ;

('"Error occurred when getting chain status');
}
genesisContract = await aelf.chain.contractAt (chainStatus.
—GenesisContractAddress, walletInstance);

}

(continues on next page)

48 Chapter 3. Smart Contract Development

https://github.com/AElfProject/aelf-sdk.js

AEIf, Release release/1.2.3

(continued from previous page)

// 1f the contract is not already loaded, get it by name.

if (!contract[name]) {
const address = await genesisContract.GetContractAddressByName.
—call (sha256 (name)) ;
contract = {

..contract,
[name] : await aelf.chain.contractAt (address, walletInstance)
}i
}

return contract [name];

As seen above, the following steps will enable you to build a contract object:
* use getChainStatus to get the genesis contract’s address.
* use contractAt to build an instance of the genesis contract.

* use the genesis contract to get the address of the greeter contract with the GetContractAddressByName
method.

» with the address use contractAt again to build a greeter contract object.

Once you have a reference to the greeter contract, you can use it to call the methods.

calling a contract method

The following snippet shows how to send a transaction to the contract:

greetToButton.onclick = () => {

getContract ('AE1lf.ContractNames.Greeter', wallet)

.then (greeterContract => greeterContract.GreetTo ({
value: "SomeName"

1))

.then(tx => pollMining(tx.TransactionId))

.then (ret => {
greetToResponse.innerHTML = ret.ReadableReturnValue;

})

.catch(err => {
console.log(err);

}) i

}i

Here the getContract retrieves the greeter contract instance. On the instance it calls GreetTo that will send a trans-
action to the node. The pollMining method is a helper method that will wait for the transaction to be mined. After
mined the transaction results, ReadableReturnValue will be used to see the result.

calling a view method

The following snippet shows how to call a view method on the contract:

getGreeted.onclick = () => {

getContract ('AE1lf.ContractNames.Greeter', wallet)

(continues on next page)

3.1. Greeter Contract 49

AEIf, Release release/1.2.3

(continued from previous page)

.then (greeterContract => greeterContract.GetGreetedList.call())
.then (ret => {
greeted.innerHTML = JSON.stringify(ret, null, 2);
1)
.catch(err => {
console.log(err);
}) i
}i

Here the getContract retrieves the greeter contract instance. On the instance, it calls GetGreetedList with “.call”
appended to it, which will indicate a read-only execution (no broadcasted transaction).

3.2 Smart contract deployment

After the contract has been compiled, the user must register this contract with the blockchain. Generally, to deploy a
contract, there must be transactions sent to Smart contract zero, which is one of AEIf’s genesis contracts. The node
will then broadcast these transactions, and it will eventually get included in a block when the block gets executed the
smart contract will be deployed.

For contract deployment, what matters is the ContractDeploymentAuthorityRequired option in the
ContractOptions for this network. It is determined since the launch of the chain.

e if ContractDeploymentAuthorityRequired is false, anyone can directly deploy contract with trans-
action

e Only account with specific authority is permitted to deploy contract if
ContractDeploymentAuthorityRequired is true

This part will introduce contract deployment pipeline for different chain type on AEIf mainnet/testnet/customnet net-
work.

3.2.1 Authority check

ContractDeploymentAuthorityRequired is false

Anyone can directly deploy contract with transaction if ContractDeploymentAuthorityRequired is false.
It is usually set as false especially when it is for contract unit test or custom network.

rpc DeploySmartContract (ContractDeploymentInput) returns (aelf.Address) {
}

message ContractDeploymentInput ({
sint32 category = 1;
bytes code = 2;

The return value of this transaction indicates the address of the deployed contract. Note that you should specific 0 as
category for c# contract and provide your contract dll bytes.

ContractDeploymentAuthorityRequired is true

ContractDeploymentAuthorityRequired is always true when it comes to public net-
works(Mainnet/Testnet). And contract pipelines are distinguished for different chain types. But for sure, no

50 Chapter 3. Smart Contract Development

AEIf, Release release/1.2.3

one can directly deploy.

For public network, no matter it is mainnet or testnet, things are going more complex. No one can directly deploy on
the chain but few authorities have the permission to propose.

¢ Main Chain: only current miners have the permission to propose contract
* Exclusive Side Chain: only side chain creator are allowed to propose contract
* Shared Side Chain: anyone can propose contract

And contract proposing steps are provided as below

rpc ProposeNewContract (ContractDeploymentInput) returns (aelf.Hash) {
}
message ContractDeploymentInput {

sint32 category = 1;

bytes code 2;

message ContractProposed

{
option (aelf.is_event) = true;
aelf.Hash proposed_contract_input_hash

1;

Event ContractProposed will be fired containing proposed_contract_input_hash and this will also
trigger the first proposal for one parliament organization, which is specified as contract deployment controller since
the beginning of the chain. This proposal would be expired in 24 hours. Once the proposal can be released (refer to
Parliament contract for detail), proposer should send transaction to

rpc ReleaseApprovedContract (ReleaseContractInput) returns (google.protobuf.
—Empty) {
}
message ReleaseContractInput ({
aelf.Hash proposal id = 1;

aelf.Hash proposed_contract_input_hash = 2;

This will trigger the second proposal for one parliament organization, which is specified as contract code-check con-
troller since the beginning of the chain. This proposal would be expired in 10 min. Once the proposal can be released,
proposer should send transaction to

rpc ReleaseCodeCheckedContract (ReleaseContractInput) returns (google.protobuf.
—Empty) {
}
message ReleaseContractInput ({
aelf.Hash proposal_id = 1;
aelf.Hash proposed_contract_input_hash = 2;

message ContractDeployed

{
option (aelf.is_event) = true;
aelf.Address author = 1 [(aelf.is_indexed) = true];
aelf.Hash code_ hash 2 [(aelf.is_indexed) = true];
aelf.Address address = 3;
int32 version = 4;
aelf.Hash Name = 5;

3.2. Smart contract deployment 51

AEIf, Release release/1.2.3

Finally, the contract would be deployed. Event Cont ractDeployed containing new contract address will be fired
and it is available in TransactionResult.Logs.

3.2.2 Use aelf-command send or aelf-command proposal to deploy

If youset ContractDeploymentAuthorityRequired: true in appsetting.json, please use aelf-command
proposal.

$ aelf-command send <GenesisContractAddress> DeploySmartContract # aelf-command send
$ aelf-command send <GenesisContractAddress> ProposeNewContract # aelf-command,,
—proposal

Follow the instructions

* You must input contract method parameters in the prompting way, note that you can input a relative or absolute
path of contract file to pass a file to aelf-command, aelf-command will read the file content and encode it as a
base64 string.

e After call ProposeNewContract, you need to wait for the organization members to approve your
proposal and you can release your proposal by calling ReleaseApprovedContract and
ReleaseCodeCheckedContract in this order.

The deploy command(This command has been deprecated)

The deploy command on the cli will help you deploy the contract:

aelf-command deploy <category> <code>

The deploy command will create and send the transaction to the nodes RPC. Here the code is the path to the compiled
code. This will be embedded in the transaction as a parameter to the DeploySmartContract method on smart contract
zero. The command will return the ID of the transaction that was sent by the command. You will see in the next
section how to use it.

verify the result

When the deployment transaction gets included in a block, the contract should be deployed. To check this, you can use
the transaction ID returned by the deploy command. When the status of the transaction becomes mined: "Status" :
"Mined", then the contract is ready to be called.

The ReadableReturnValue field indicates the address of the deployed contract. You can use this address to call the
contract methods.

52 Chapter 3. Smart Contract Development

CHAPTER 4

AEIf Blockchain Boot Sequence

This section mainly explains how the AEIf Blockchain starts from the initial nodes, and gradually replaces the initial
nodes with true production nodes through elections, thus completing the complete process of AElf Blockchain startup.

4.1 Start initial nodes

‘We need to start at least one or more initial nodes to start the AEIf Blockchain, and 1-5 initial nodes are recommended.

In the Getting Started section, we described the steps to start multiple nodes, you can follow the Running multi-nodes
with Docker to complete the initial nodes startup (this section also takes the example of starting three initial nodes).

Since the default period of election time is 604800 seconds(7 days), if you want to see the result of the election
more quickly, modify the configuration file appsettings.json before starting the boot nodes to set the PeriodSeconds to
smaller:

{

"Consensus": {
"PeriodSeconds": 604800
by

4.2 Run full node

4.2.1 Create an account for the full node:

aelf-command create

AEl1f [Info]: Your wallet info is :
AElf [Info]: Mnemonic : major clap hurdle hammer push slogan ranch quantum
—reunion hope enroll repeat

(continues on next page)

53

AEIf, Release release/1.2.3

(continued from previous page)

AE1lf [Info]: Private Key
q2229945cf294431183fd1d8101e27bl7a1a590d3a1f7f2b9299850b24262ed8a

AElf [Info]: Public Key
q04eed00eb009ccd283798e386278lcebd25ed6a464le0e1b7d0e3b6b59025040679fc4dc0edc9del66bd6’
AElf [Info]: Address : Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPARC

4.2.2 Start full node:

The startup steps for the full node are similar to the initial node startup, but the configuration file section notes that the
InitialMinerList needs to be consistent with the initial node:

"InitialMinerList" : [

—"0499d3bb14337961c4d338b9729f46b20de8ad49ed38e260a5c19a18dab569462b44b820e206d£8e848185¢

"
",

—"048397d£d9%e1035£dd7260329d9492d88824£42917c156aef93fd7c2e3ab73b636£482b8ceb5cb435c55

"
",

—"041cc962ab5le7bbdd829a8855eca8al03£fda708£df31969251321cb3ledadd564bf3cbe7ab31b4clf49£f0f

1,

4.2.3 Full node started successfully:

By checking the current node state, it can be seen that the full node is synchronizing, and the BestChainHeight and
the LastlrreversibleBlockHeight are growing up. After catching up with the height of the initial node, the subsequent
steps can be carried out.

aelf-command get-chain-status

"ChainId": "AELF",
"Branches": {
"fb749177c2£43db8c7d73ea0502400b9£870c40584£044b13e7ecld6cd60b0eff": 2449

}I

"NotLinkedBlocks": {},

"LongestChainHeight": 2449,

"LongestChainHash":
—"fb749177c2£43db8c7d73ea050240b9£870c40584f044b13e7ecld6cd60b0eft™,

"GenesisBlockHash":
—"ea9c0b026bd638ceb38323eb71174814c95333e39¢c62936a38c4e01a8f18062e",

"GenesisContractAddress": "pykr77ft9UUKJZLVgl5wCH8PinBSjVRQ12sD1Ayg92mKFsJ1i",

"LastIrreversibleBlockHash":
—"66638£538038bd56357£3c£205424e7393c5966830ef0d16a75d4al117847e0bc",

"LastIrreversibleBlockHeight": 2446,

"BestChainHash": "fb749177c2f43db8c7d73ea050240b9£870c40584f044bl13e7ecld6cd460bleff”,

"BestChainHeight": 2449

54 Chapter 4. AEIf Blockchain Boot Sequence

0c7255188a9%az¢

ac6cl39£05309:

bfal067445a86¢

206be81dbe68:

AEIf, Release release/1.2.3

4.3 Be a candidate node

Full nodes need to call Election contract to become candidate nodes. The nodes need to mortgage 10W ELF to
participate in the election, please make sure that the account of the nodes has enough tokens.

To facilitate the quick demonstration, we directly transfer the token from the first initial node account to the full node
account:

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELE", "to":
< "Q3t34SAEsxAQrSQidTRzDoNWNTPpSTgH8bqu8pQUGCSWRPARC", "amount": "20000000000000"}"'

By checking the balance of the full node account, we can see that the full node account has enough tokens, 20W ELF:

aelf-command call AElf.ContractNames.Token GetBalance '{"symbol": "ELEF", "owner":
—"Q3t34SAEsxAQrSQidTRzDoNWNTPpSTgH8bqu8pQUGCSWRPARC" } '

Result:

{
"symbol": "ELF",
"owner": "Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPJRC",
"balance": "20000000000000"

Full node announces election with admin specified in params:

aelf-command send AElf.ContractNames.Election AnnounceElection '{"value":
—"Q3t34SAEsxAQrSQidTRzDonWNTPpSTgH8bqu8pQUGCSWRPARC"} ' —a
5Q3t 34SAESXAQrSQidTRzDonWNTPPSTgH8bqu8pQUGCSWRPARC

[

By inquiring candidate information, we can see the full node is already candidates:

aelf-command call AElf.ContractNames.Election GetCandidateInformation '{"value":
—"04eed00eb009ccd283798e3862781cebd25ed6ad641e0elb7d0e3b6b59025040679fc4dcOedc9del 66bd

(*}"} 1

Result:
{

"terms": [],

"pubkey":
—"04eed00eb009ccd283798e3862781cebd25ed6ad4641e0elb7d0e3b6b59025040679fc4dclOedc9delbbbd

n
",

"producedBlocks": "0O",

"missedTimeSlots": "O",

"continualAppointmentCount": "0",

"announcementTransactionId":
—"8cc8eb5de35e390e4£7964bbdc7edc433498b041647761361903¢c616509£8659",

"isCurrentCandidate": true

4.4 User vote election

For the simulated user voting scenario, we create a user account:

aelf-command create

(continues on next page)

4.3. Be a candidate node 55

30c7255188a9:

30c7255188a9:

AEIf, Release release/1.2.3

(continued from previous page)

AE1f [Info]: Your wallet info is

AElf [Info]: Mnemonic : walnut market museum play grunt chuckle hybrid
—accuse relief misery share meadow

AE1lf [Info]: Private Key
q919a220fac2d80e674a256f2367ac840845f344269f4dcdd56d37460de17f947

AElf [Info]: Public Key
HO4794948de40ffda2a6c884d7e6a99bb8e42b8b96b9ee5cc4545da3a1d5f7725eec93de62ddbfb598ef6f(
AElf [Info]: Address : ZBBPUT7DMVQ72YBQNmaKTDPKaAkHNzzA3naH5B6kE7cBm8glei

After the user account is created successfully, we will first trsnfer some tokens to the account for voting.

aelf-command send AElf.ContractNames.Token Transfer '{"symbol": "ELE", "to":
—"ZBBPU7DMVQ72YBONmaKTDPKaAkHNzzA3naH5B6kE7cBm8glei™, "amount": "200000000000"}"

Confirm the tokens has been received:

aelf-command call AElf.ContractNames.Token GetBalance '{"symbol": "ELF", "owner":
—"ZBBPU7DMVQ72YBONmaKTDPKaAkHNzzA3naH5B6kE7cBm8glei™}'

Result:
{
"symbol": "ELF",
"owner": "ZBBPU7DMVQ72YBONmaKTDPKaAkHNzzA3naH5B6kE7cBm8glei™,

"balance": "200000000000"

Users vote on candidate nodes through the election contract.

aelf-command send AElf.ContractNames.Election Vote '{'"candidatePubkey":
—"04eed00eb009ccd283798e3862781cebd25ed6ad641e0elb7d0e3b6b59025040679fc4dclOedc9delb66bd
—","amount":2000000000, "endTimestamp": {"seconds":1600271999, "nanos":999000}}"' -a_
—ZBBPUTDMVQ72YBONmaKTDPKaAkHNzzA3naH5B6kE7cBm8glei

By inquiring the votes of candidates, we can see that the full node has successfully obtained 20 votes.

4fe52aa3l0ac

30c7255188a9:

aelf-command call AElf.ContractNames.Election GetCandidateVote '{"value":
—"04eed00eb009ccd283798e3862781cebd25ed6ad4641e0elb7d0e3b6b59025040679fc4dcOedc9delbbbd

H"}l

Result:

{
"obtainedActiveVotingRecordIds": [

"172375e9cee303ce60361aa73d7326920706553e80£4485£97ffefdb904486£1"
1,

"obtainedWithdrawnVotingRecordIds": [],
"obtainedActiveVotingRecords": [],
"obtainedWithdrawnVotesRecords": [],
"obtainedActiveVotedVotesAmount": "2000000000",
"allObtainedVotedVotesAmount™: "2000000000",
"pubkey":

—"BO7QDrAJzNKDeY44Yngc69JelgRkHg4bfQ47alkCUEBnn8TcDtyd4Wa9YwxyVRiKmurfyDL9rggoJw93xu8mg

"

30c7255188a9:

bOU=

56 Chapter 4. AEIf Blockchain Boot Sequence

AEIf, Release release/1.2.3

4.5 Become production node

At the next election, the candidate nodes with votes in the first 17 are automatically elected as production nodes, and
the current production node list can be viewed through consensus contracts.

Quantity 17 is the default maximum production node quantity, which can be modified by proposal. Please refer to the
Consensus and Proposal Contract API for details.

aelf-command call AElf.ContractNames.Consensus GetCurrentMinerPubkeyList '/{}'

Result:

{
"pubkeys": [

—"0499d3bb14337961c4d338b9729f46b20de8ad49ed38e260a5c19a18dab569462b44b820e206d£8e848185¢

o
— ",

—"048397d£d9%e1035£dd7260329d9492d88824£42917c156aef93fd7c2e3ab73b636£482b8ceb5cb435c55

o
— ",

—"041cc962a5le7bbdd829a8855eca8al03£fda708£df31969251321cb3ledadd564bf3cbe7ab31b4clf49£01]

o
— ",

—"04eed00eb009ccd283798e3862781lcebd25ed6ad4641e0elb7d0e3b6b59025040679fc4dcOedc9delbobbd

n

]

—

ac6cl39£0539:

bfal067445a86¢

r206be81ldbe68:

30c7255188a9:

4.6 Add more production nodes

Repeat steps 2-4 to add more production nodes. When the number of initial nodes plus the number of candidate nodes
exceeds the maximum number of production node, the replacement will replace the initial nodes step by step, and
the replaced initial nodes are not allowed to run for election again. At this time, the initial node has completed its
responsibility of starting AEIf Blockchain.

4.5. Become production node 57

AEIf, Release release/1.2.3

58 Chapter 4. AEIf Blockchain Boot Sequence

CHAPTER B

How to join the testnet

There’s two ways to run a AEIf node: you can either use Docker (recommended method) or run the binaries available
on Github. Before you jump into the guides and tutorials you’ll need to install the following tools and frameworks.
For most of these dependencies we provide ready-to-use command line instructions. In case of problems or if you
have more complex needs, we provide more information in the Environment setup section.

Summary of the steps to set up a node:
1. Execute the snapshot download script and load the snapshot into the database.
2. Download our template setting files and docker run script.
3. Modify the appsettings according to your needs.
4. Run and check the node.

Hardware suggestion: for the AFEIf testnet we use the following Amazon configuration: c5.large instance with 2
vCPUs, 4GiB RAM and a 200GiB hard drive for each node we run. We recommend using something similar per node
that you want to run (one for the mainchain node and one per side chain node).

Note: any server you use to run a node should be time synced via NTP. Failing to do this will prevent your node from
syncing.

5.1 Setup the database

We currently support two key-value databases to store our nodes data: Redis and SSDB, but for the testnet we only
provide snapshots for SSDB. We will configure two SSDB instances, one for chain database and one for the state
database (run these on different machines for better performances).

5.1.1 Import the snhapshot data

After you’ve finished setting up the database, download the latest snapshots. The following gives you the template for
the download URL,but you have to specify the snapshot date. We recommend you get the latest.

Restore the chain database from snapshot:

59

AEIf, Release release/1.2.3

>> mkdir snapshot
>> cd snapshot

fetch the snapshot download script
>> curl -O -s https://aelf-node.s3-ap-southeast-1.amazonaws.com/snapshot/testnet/
—download-mainchain-db.sh

execute the script, you can optionally specify a date by appending “yyyymmdd” as
—parameter
>> sh download-mainchain-db.sh

chain database: decompress and load the chain database snapshot

>> tar xvzf aelf-testnet-mainchain-chaindb-x.tar.gz

>> stop your chain database instance (ssdb server)

>> cp -r aelf-testnet-mainchain-chaindb-x/% /path/to/install/chaindb/ssdb/var/

>> start your chain database instance

>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has,,
—been imported)

state database : decompress and load the state database

>> tar xvzf aelf-testnet-mainchain-statedb-x.tar.gz

>> stop your state database instance (ssdb server)

>> cp -r aelf-testnet-mainchain-statedb-x/% /path/to/install/statedb/ssdb/var/

>> start your state database instance

>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has_
—been imported)

5.2 Node configuration

5.2.1 Generating the nodes account

This section explains how to generate an account for the node. First you need to install the aelf-command npm package.
Open a terminal and enter the following command to install aelf-command:

>> npm 1 -g aelf-command ‘

After installing the package, you can use the following command to create an account/key-pair:

>> agelf-command create ‘

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

AEl1f [Info]: Your wallet info is

AE1lf [Info]: Mnemonic : term jar tourist monitor melody tourist catch sad
—ankle disagree great adult

AElf [Info]: Private Key :
%34l92c729751bd6ac0a5f18926d74255112464b471aec499064d5dle5b8ff3ce

AE1lf [Info]: Public Key
ﬂ049O4e51a944ab13b031cb4fead8caa6c027b09661dc5550ee258ef5c5e78d949b1082636dc8e27f20bc44
AE1lf [Info]: Address : 29KM437eJRRuTfvhsB8QAsyVvi8mmyNOWggame6TsThrgXbeWd

? Save account info into a file? Yes

? Enter a password: xxkkkk*k%

(continues on next page)

60 Chapter 5. How to join the testnet

Tb25b9%9%alcad:

AEIf, Release release/1.2.3

(continued from previous page)

? Confirm password: *xx**x*%%
v Account info has been saved to "/usr/local/share/aelf/keys/
—29KM437eJRRUTf£vhsB8QAsyVvi8mmyNO9Wggame 6TsJhrgXbeWd. json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf directory is the
data directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

5.2.2 Prepare node configuration

download the settings template and docker script

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rcl/
—aelf-testnet-mainchain.zip

>> unzip aelf-testnet-mainchain.zip

>> mv aelf-testnet-mainchain /opt/aelf-node

Update the appsetting.json file with your account. This will require the information printed during the creation of the
account. Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

{

"Account": {
"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMOBYarYUR50Ginlsys6H",
"NodeAccountPassword": "xxxxxxxx"

You also have to configure the database connection strings (port/db number):

{

"ConnectionStrings": {
"BlockchainDb": "redis://your chain database server ip address:port",
"StateDb": "redis://your state database server ip address:port"

by

If you use docker to run the node and it is on the same server as the database, please do not use 127.0.0.1 as the
database monitoring ip.

Next add the testnet mainchain nodes as peer (bootnode peers):

{
"Network": ({
"BootNodes": [
"XXX.XXXX.XXX.XXx:6800",
1,
"ListeningPort": 6800

Note: if your infrastructure is behind a firewall you need to open the P2P listening port of the node. You also need

5.2. Node configuration 61

AEIf, Release release/1.2.3

to configure your listening ip and port for the side chain connections in appsettings.MainChain.TestNet.
Jjson:

{
"CrossChain": {
"Grpe": {
"LocalServerPort": 5000,
}
by

5.3 Running a full node with Docker

To run the node with Docker, enter the following commands:

pull AElf’s image and navigate to the template folder to execute the start script
>> docker pull aelf/node:testnet-v1.0.0

>> cd /opt/aelf-node

>> sh aelf-node.sh start aelf/node:testnet-v1.0.0

to stop the node you can run:

’>> sh aelf-node.sh stop

5.4 Running a full node with the binary release

Most of AEIf is developed with dotnet core, so to run the binaries you will need to download and install the .NET Core
SDK before you start: Download .NET Core 6.0. For now AEIf depends on version 6.0 of the SDK, on the provided
link find the download for your platform, and install it.

Get the latest release with the following commands:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rcl/
—aelf.zip

>> unzip aelf.zip

>> mv aelf /opt/aelf-node/

Enter the configuration folder and run the node:

>> cd /opt/aelf-node
>> dotnet aelf/AElf.Launcher.dll

5.5 Running a full node with the source

The most convenient way is to directly use docker or the binary packages, but if you want you can compile from
source code. First make sure the code version is consistent (current is release AELF v1.0.0), and secondly make sure
to compile on a Ubuntu Linux machine (we recommend Ubuntu 18.04.2 LTS) and have dotnet core SDK version 6.0
installed. This is because different platforms or compilers will cause the dlI hashes to be inconsistent with the current
chain.

62 Chapter 5. How to join the testnet

https://dotnet.microsoft.com/download/dotnet-core/6.0

AEIf, Release release/1.2.3

5.6 Check the node

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

’aelf—command get-blk-height —-e http://your node ip address:port

5.7 Run side-chains

This section explains how to set up a side-chain node, you will have to repeat these steps for all side chains (currently
only one is running):

1. Fetch the appsettings and the docker run script.

2. Download and restore the snapshot data with the URLs provided below (steps are the same as in A - Setup the
database).

3. Run the side-chain node.

Running a side chain is very much like running a mainchain node, only configuration will change. Here you can find
the instructions for sidechainl:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rcl/
—~aelf-testnet-sidechainl.zip

>> unzip aelf-testnet-sidechainl.zip

>> mv aelf-testnet-sidechainl /opt/aelf-node

In order for a sidechain to connect to a mainchain node you need to modify the appsettings.SideChain.
TestNet . json with your node information.

{

"CrossChain": {
"Grpe": {
"ParentChainServerPort": 5000,
"ParentChainServerIp": "your mainchain ip address",

"ListeningPort": 5001,

br
"ParentChainId": "AELEF"

Here you can find the snapshot data for the only current side-chain running, optionally you can specify the date, but
we recommend you get the latest:

>> curl -O -s https://aelf-node.s3-ap-southeast-1.amazonaws.com/snapshot/testnet/
—download-sidechainl-db.sh

Here you can find the list of templates folders (appsettings and docker run script) for the side-chain:

wget https://github.com/AElfProject/AElf/releases/download/v1.0.0-rcl/aelf-testnet—
—sidechainl.zip

Each side chain has its own P2P network, add the testnet sidechain nodes as peer:

bootnode — ["XXX.XXXX.XXX.XXx:6800", "..."]

5.6. Check the node 63

AEIf, Release release/1.2.3

"Network": {
"BootNodes": [
"Add the right boot node according sidechain"
} 4
"ListeningPort": 6800

64 Chapter 5. How to join the testnet

CHAPTER O

How to join the mainnet

There’s two ways to run a AEIf node: you can either use Docker (recommended method) or run the binaries available
on Github. Before you jump into the guides and tutorials you’ll need to install the following tools and frameworks.
For most of these dependencies we provide ready-to-use command line instructions. In case of problems or if you
have more complex needs, we provide more information in the Environment setup section.

Summary of the steps to set up a node:
1. Execute the snapshot download script and load the snapshot into the database.
2. Download our template setting files and docker run script.
3. Modify the appsettings according to your needs.
4. Run and check the node.

Hardware suggestion: for the AEIf mainnet we use the following Amazon configuration: c5.xlarge instance with 4
vCPUs, 8GiB RAM and a 500GiB hard drive for each node we run. We recommend using something similar per node
that you want to run (one for the mainchain node and one per side chain node).

Note: any server you use to run a node should be time synced via NTP. Failing to do this will prevent your node from
syncing.

6.1 Setup the database

We currently support two key-value databases to store our nodes data: Redis and SSDB, but for the mainnet we only
provide snapshots for SSDB. We will configure two SSDB instances, one for chain database and one for the state
database (run these on different machines for better performances).

6.1.1 Import the shapshot data

After you’ve finished setting up the database, download the latest snapshots. The following gives you the template for
the download URL,but you have to specify the snapshot date. We recommend you get the latest.

Restore the chain database from snapshot:

65

AEIf, Release release/1.2.3

>> mkdir snapshot
>> cd snapshot

fetch the snapshot download script
>> curl -O -s https://aelf-backup.s3.ap-northeast-2.amazonaws.com/snapshot/mainnet/
—download-mainchain-db.sh

execute the script, you can optionally specify a date by appending “yyyymmdd” as
—parameter
>> sh download-mainchain-db.sh

chain database: decompress and load the chain database snapshot

>> tar xvzf aelf-mainnet-mainchain-chaindb-*.tar.gz

>> stop your chain database instance (ssdb server)

>> cp -r aelf-mainnet-mainchain-chaindb-*/+ /path/to/install/chaindb/ssdb/var/

>> start your chain database instance

>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has,,
—been imported)

state database : decompress and load the state database

>> tar xvzf aelf-mainnet-mainchain-statedb-x.tar.gz

>> stop your state database instance (ssdb server)

>> cp -r aelf-mainnet-mainchain-statedb-x/% /path/to/install/statedb/ssdb/var/

>> start your state database instance

>> enter ssdb console (ssdb-cli) use the "info" command to confirm that the data has_
—been imported)

6.2 Node configuration

6.2.1 Generating the nodes account

This section explains how to generate an account for the node. First you need to install the aelf-command npm package.
Open a terminal and enter the following command to install aelf-command:

>> npm 1 -g aelf-command ‘

After installing the package, you can use the following command to create an account/key-pair:

>> agelf-command create ‘

The command prompts for a password, enter it and don’t forget it. The output of the command should look something
like this:

AEl1f [Info]: Your wallet info is

AE1lf [Info]: Mnemonic : term jar tourist monitor melody tourist catch sad
—ankle disagree great adult

AElf [Info]: Private Key :
%34l92c729751bd6ac0a5f18926d74255112464b471aec499064d5dle5b8ff3ce

AE1lf [Info]: Public Key
ﬂ049O4e51a944ab13b031cb4fead8caa6c027b09661dc5550ee258ef5c5e78d949b1082636dc8e27f20bc44
AE1lf [Info]: Address : 29KM437eJRRuTfvhsB8QAsyVvi8mmyNOWggame6TsThrgXbeWd

? Save account info into a file? Yes

? Enter a password: xxkkkk*k%

(continues on next page)

66 Chapter 6. How to join the mainnet

Tb25b9%9%alcad:

AEIf, Release release/1.2.3

(continued from previous page)

? Confirm password: *xx**x*%%
v Account info has been saved to "/usr/local/share/aelf/keys/
—29KM437eJRRUTf£vhsB8QAsyVvi8mmyNO9Wggame 6TsJhrgXbeWd. json"

In the next steps of the tutorial you will need the Public Key and the Address for the account you just created. You’ll
notice the last line of the commands output will show you the path to the newly created key. The aelf directory is the
data directory (datadir) and this is where the node will read the keys from.

Note that a more detailed section about the cli can be found command line interface.

6.2.2 Prepare node configuration

download the settings template and docker script

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf-
—mainnet-mainchain.zip

>> unzip aelf-mainnet-mainchain.zip

>> mv aelf-mainnet-mainchain /opt/aelf-node

Update the appsetting.json file with your account. This will require the information printed during the creation of the
account. Open the appsettings.json file and edit the following sections.

The account/key-pair associated with the node we are going to run:

{

"Account": {
"NodeAccount": "2Ue31YTuB5Szy7cnr3SCEGU2gtGi5uMOBYarYUR50Ginlsys6H",
"NodeAccountPassword": "xxxxxxxx"

You also have to configure the database connection strings (port/db number):

{

"ConnectionStrings": {
"BlockchainDb": "redis://your chain database server ip address:port",
"StateDb": "redis://your state database server ip address:port"

by

If you use docker to run the node and it is on the same server as the database, please do not use 127.0.0.1 as the
database monitoring ip.

Next add the mainnet mainchain nodes as peer (bootnode peers):

{
"Network": ({
"BootNodes": [
"XXX.XXXX.XXX.XXx:6800",
1,
"ListeningPort": 6800

Note: if your infrastructure is behind a firewall you need to open the P2P listening port of the node. You also need

6.2. Node configuration 67

AEIf, Release release/1.2.3

to configure your listening ip and port for the side chain connections in appsettings.MainChain.MainNet.
Jjson:

{
"CrossChain": {
"Grpe": {
"LocalServerPort": 5000,
}
by

6.3 Running a full node with Docker

To run the node with Docker, enter the following commands:

pull AElf’s image and navigate to the template folder to execute the start script
>> docker pull aelf/node:mainnet-v1.0.0

>> cd /opt/aelf-node

>> sh aelf-node.sh start aelf/node:mainnet-v1.0.0

to stop the node you can run:

’>> sh aelf-node.sh stop

6.4 Running a full node with the binary release

Most of AEIf is developed with dotnet core, so to run the binaries you will need to download and install the .NET Core
SDK before you start: Download .NET Core 6.0. For now AEIf depends on version 6.0 of the SDK, on the provided
link find the download for your platform, and install it.

Get the latest release with the following commands:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf.
—zip

>> unzip aelf.zip

>> mv aelf /opt/aelf-node/

Enter the configuration folder and run the node:

>> cd /opt/aelf-node
>> dotnet aelf/AElf.Launcher.dll

6.5 Running a full node with the source

The most convenient way is to directly use docker or the binary packages, but if you want you can compile from
source code. First make sure the code version is consistent (current is release AELF v1.0.0), and secondly make sure
to compile on a Ubuntu Linux machine (we recommend Ubuntu 18.04.2 LTS) and have dotnet core SDK version 6.0
installed. This is because different platforms or compilers will cause the dlI hashes to be inconsistent with the current
chain.

68 Chapter 6. How to join the mainnet

https://dotnet.microsoft.com/download/dotnet-core/6.0

AEIf, Release release/1.2.3

6.6 Check the node

You now should have a node that’s running, to check this run the following command that will query the node for its
current block height:

’aelf—command get-blk-height —-e http://your node ip address:port

6.7 Run side-chains

This section explains how to set up a side-chain node, you will have to repeat these steps for all side chains (currently
only one is running):

1. Fetch the appsettings and the docker run script.

2. Download and restore the snapshot data with the URLSs provided below (steps are the same as in Setup the
database).

3. Run the side-chain node.

Running a side chain is very much like running a mainchain node, only configuration will change. Here you can find
the instructions for sidechainl:

>> cd /tmp/ && wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf-
—mainnet-sidechainl.zip

>> unzip aelf-mainnet-sidechainl.zip

>> mv aelf-mainnet-sidechainl /opt/aelf-node

In order for a sidechain to connect to a mainchain node you need to modify the appsettings.SideChain.
MainNet . json with your node information.

{
"CrossChain": {

"Grpc" . {
"ParentChainServerPort": 5001,
"ParentChainServerIp": "your mainchain ip address",

"ListeningPort": 5011,
s

"ParentChainId": "AELF",

"Economic": {
"SymbolListToPayTxFee" : "WRITE, READ, STORAGE, TRAFFIC",
"SymbolListToPayRental": "CPU,RAM,DISK,NET"

Here you can find the snapshot data for the only current side-chain running, optionally you can specify the date, but
we recommend you get the latest:

>> curl -O -s https://aelf-backup.s3.ap-northeast-2.amazonaws.com/snapshot/mainnet/
—download-sidechain-db.sh

Here you can find the list of templates folders (appsettings and docker run script) for the side-chain:

wget https://github.com/AElfProject/AElf/releases/download/v1.0.0/aelf-mainnet-
—sidechainl.zip

6.6. Check the node 69

AEIf, Release release/1.2.3

Each side chain has its own P2P network, add the mainnet sidechain nodes as peer:

bootnode — ["XXX.XXXX.XXX.XxxX:6800", "..."]

"Network": {
"BootNodes": [
"Add the right boot node according sidechain"

1y
"ListeningPort": 6800

70 Chapter 6. How to join the mainnet

CHAPTER /

Running a side chain

7.1 Requesting the creation of a side chain

Side chains can be created in the AELF ecosystem to enable scalability. This part is going to introduce these periods
in detail.

7.1.1 Side chain creation api

Anyone can request the side chain creation in the AELF ecosystem. The proposer/creator of a new side chain will
need to request the creation of the side chain through the cross-chain contract on the main-chain. The request contains
different fields that will determine the type of side chain that will be created.

This section show the API to use in order to propose the creation of a side chain. The fields that are in the
SideChainCreationRequest will determine the type of side chain that is created. For more api details, you
can follow the RequestSideChainCreation in Crosschain contract.

A new proposal about the side chain creation would be created and the event ProposalCreated containing pro-
posal id would be fired. A parliament organization which is specified since the chain launched is going to approve this
proposal in 24 hours(refer to Parliament contract for detail). Proposer is able to release the side chain creation request
with proposal id once the proposal can be released. Refer ReleaseSideChainCreation in Crosschain contract.

New side chain would be created and the event SideChainCreatedEvent containing chain id would be fired.

Side chain node can be launched since it is already created on main chain. Side chain id from the creation result should
be configured correctly before launching the side chain node. Please make sure cross chain communication context
is correctly set, because side chain node is going to request main chain node for chain initialization data. For more
details, check side chain node running tutorial.

7.1.2 Side chain types

Two types of side-chain’s currently exist: exclusive or shared. An exclusive side-chain is a type of dedicated side-
chain (as opposed to shared) that allows developers to choose the transaction fee model and set the transaction fee

71

AEIf, Release release/1.2.3

price. The creator has exclusive use of this side-chain. For example, only creator of this exclusive side-chain can
propose to deploy a new contract.

7.1.3 Pay for Side chain

Indexing fee

Indexing fee, literally, is paid for the side chain indexing. You can specify the indexing fee price and prepayments
amount when you request side chain creation. Cross chain contract is going to charge your prepayments once the side
chain created and pay the miner who indexes the side chain block every time.

Resource fee

Developers of an exclusive side-chain pay the producers for running it by paying CPU, RAM, DISK, NET resource
tokens: this model is called charge-by-time. The amount side chain creator must share with the producers is set after
creation of the chain. The exclusive side-chain is priced according to the time used. The unit price of the fee is
determined through negotiation between the production node and the developer.

See Economic whitepaper - 4.3 Sidechain Developer Charging Model for more information.

7.1.4 Simple demo for side chain creation request

When a user (usually a developer) feels the need to create a new side chain on AEIf he must call the cross-chain
contract and request a side chain creation. After requested, parliament organization members will either approve this
creation or reject it. If the request is approved, the developer must then release the proposal.

Throughout this tutorial we’ll give step-by-step code snippets that use the aelf-js-sdk to create a new side chain, the
full script will be given at the end of the tutorial.

This creation of a side chain (logical, on-chain creation) is done in four steps:
* the developer must allow/approve some tokens to the cross-chain contract of the main chain.
* the developer calls the cross-chain contract of the main chain, to request the creation.
* the parliament organization members must approve this request.
* finally the developer must release the request to finalize the creation.

Keep in mind that this is just the logical on-chain creation of the side chain. After the side chain is released there’s
extra steps needed for it to be a fully functional blockchain, including the producers running the side chain’s nodes.

Set-up

If you want to test the creation process you will need a producer node running and the following:

* you need a key-pair (account) created, this will be your Producer (in this tutorial we also use the producer to
create the creation request).

¢ the node needs to be configured with an API endpoint, account and miner list that correspond to what is in the
script.

The following snippet shows constants and initialization code used in the script:

72 Chapter 7. Running a side chain

https://aelf.com/gridcn/aelf_Economic_and_Governance_Whitepaper_v1.2_en.pdf
https://github.com/AElfProject/aelf-sdk.js/tree/master

AEIf, Release release/1.2.3

const AElf = require('aelf-sdk');
const Wallet = AElf.wallet;

const { sha256 } = AElf.utils;

// set the private key of the block producer.

// REPLACE

const defaultPrivateKey =
—'e119487feal658badc42f089fbaa56de23d8c0e8d999c5f76acl2adB8ae897d76"';

const defaultPrivateKeyAddress = 'HEtBOStfqub53cHVC3PxJU61iGP3RGxINULQGVAPTJEfrF3ZWH3U";

// load the wallet associated with your block producers account.
const wallet = Wallet.getWalletByPrivateKey (defaultPrivateKey);

// API link to the node
// REPLACE
const aelf = new AElf (new AElf.providers.HttpProvider ('http://127.0.0.1:1234"));

// names of the contracts that will be used.

const tokenContractName = 'AElf.ContractNames.Token';
const parliamentContractName = 'AElf.ContractNames.Parliament';
const crossChainContractName = 'AElf.ContractNames.CrossChain';

const createSideChain = async () => {
// check the chain status to make sure the node is running
const chainStatus = await aelf.chain.getChainStatus ({sync: true});
const genesisContract = await aelf.chain.contractAt (chainStatus.
—GenesisContractAddress, wallet)
.catch((err) => {
console.log(err);
1) i

// get the addresses of the contracts that we'll need to call

const tokenContractAddress = await genesisContract.GetContractAddressByName.
—call (sha256 (tokenContractName)) ;

const parliamentContractAddress = await genesisContract.GetContractAddressByName.
—call (sha256 (parliamentContractName)) ;

const crossChainContractAddress = await genesisContract.GetContractAddressByName.
—call (sha256 (crossChainContractName)) ;

// build the aelf-sdk contract instance objects
const parliamentContract = await aelf.chain.contractAt (parliamentContractAddress,

—wallet);
const tokenContract = await aelf.chain.contractAt (tokenContractAddress, wallet);

const crossChainContract = await aelf.chain.contractAt (crossChainContractAddress,

—wallet);

When running the script, the createSideChain will be executed and automatically will run through the full process of
creating the side chain.

Creation of the side chain

7.1. Requesting the creation of a side chain 73

AEIf, Release release/1.2.3

Set the Allowance.

First the developer must approve some ELF tokens for use by the cross-chain contract.

var setAllowance = async function (tokenContract, crossChainContractAddress)
{
// set some allowance to the cross-chain contract
const approvalResult = await tokenContract.Approve ({
symbol: "ELEF'",
spender: crossChainContractAddress,
amount: 20000
1) i

let approveTransactionResult = await pollMining(approvalResult.TransactionId);

Creation request

In order to request a side chain creation the developer must call RequestSideChainCreation on the cross-chain
contract, this will create a proposal with the Parliament contract. After calling this method, a ProposalCreated log
will be created in which the Proposalld be found. This ID will enable the producers to approve it.

rpc RequestSideChainCreation (SideChainCreationRequest) returns (google.protobuf.Empty)
—{}

message SideChainCreationRequest ({
// The cross chain indexing price.

int64 indexing_price = 1;
// Initial locked balance for a new side chain.
int64 locked_token_amount = 2;

// Creator privilege boolean flag: True if chain creator privilege preserved,
—otherwise false.

bool is_privilege_preserved = 3;

// Side chain token information.

SideChainTokenCreationRequest side_chain_token_creation_request = 4;

// A list of accounts and amounts that will be issued when the chain starts.
repeated SideChainTokenInitialIssue side_chain_token_initial_issue_list = 5;
// The initial rent resources.

map<string, int32> initial_resource_amount = 6;

message SideChainTokenCreationRequest {
// Token symbol of the side chain to be created

string side_chain_token_symbol = 1;
// Token name of the side chain to be created
string side_chain_token_name = 2;

// Token total supply of the side chain to be created
int64 side_chain_token_total_supply = 3;

// Token decimals of the side chain to be created
int32 side_chain_token_decimals = 4;

message SideChainTokenInitialIssue({
// The account that will be issued.
aelf.Address address = 1;

(continues on next page)

74 Chapter 7. Running a side chain

AEIf, Release release/1.2.3

(continued from previous page)

// The amount that will be issued.
int64 amount = 2;

In order for the creation request to succeed, some assertions must pass:
* the Sender can only have one pending request at any time.
¢ the locked_token_amount cannot be lower than the indexing price.

« if is_privilege_preserved is true, which means it requests exclusive side chain, the token initial issue list cannot
be empty and all with an amount greater than 0.

« if is_privilege_preserved is true, which means it requests exclusive side chain, the initial_resource_amount
must contain all resource tokens of the chain and the value must be greater than 0.

* the allowance approved to cross chain contract from the proposer (Sender of the transaction) cannot be lower
than the locked_token_amount.

¢ no need to provide data about side chain token if is_privilege_preserved is false, and side chain token won’t be
created even you provide token info.

const sideChainCreationRequestTx = await crossChainContract.RequestSideChainCreation (
—{
indexingPrice: 1,
lockedTokenAmount: '20000",
isPrivilegePreserved: true,
sideChainTokenCreationRequest: {
sideChainTokenDecimals: 8,
sideChainTokenName: 'SCATokenName',
sideChainTokenSymbol: 'SCA',
sideChainTokenTotalSupply: '100000000000000000",
by
sideChainTokenInitialIssuelList: [
{
address: '28Y8JAli2cN6oHvdv7EraXJr9algY6D1PpJXwIQt RMRwWKcBQOMK',
amount: '1000000000000000"

]l
initialResourceAmount: { CPU: 2, RAM: 4, DISK: 512, NET: 1024 },

)i

let sideChainCreationRequestTxResult = await pollMining(sideChainCreationRequestTx.
—TransactionId);

// deserialize the log to get the proposal's ID.
let deserializedLogs = parliamentContract.
—deserializelog(sideChainCreationRequestTxResult.Logs, 'ProposalCreated');

The last line will print the proposal ID and this is what will be used for approving by the producers.

Approval from producers

This is where the parliament organization members approve the proposal:

7.1. Requesting the creation of a side chain 75

AEIf, Release release/1.2.3

var proposalApproveTx = await parliamentContract.Approve (deserializedLogs[0].
—proposalld);
await pollMining (proposalApproveTx.TransactionId);

Note: when calling Approve it will be the Sender of the transaction that approves. Here the script is set to use the key
of one parliament organization member, see full script at the end.

Release

This part of the script releases the proposal:

var releaseResult = await crossChainContract.ReleaseSideChainCreation ({
proposalld: deserializedLogs[0] .proposalld
}) i

let releaseTxResult = await pollMining(releaseResult.TransactionId);
// Parse the logs to get the chain id.

let sideChainCreationEvent = crossChainContract.deserializelLog(releaseTxResult.Logs,
—'SideChainCreatedEvent');

This is the last step involved in creating a side chain, after this the chain id of the new side chain is accessible in the
SideChainCreatedEvent event log.

Full script

This section presents the full script. Remember that in order to run successfully, a node must be running, configured
with one producer. The configured producer must match the defaultPrivateKey and defaultPrivateKeyAddress of
the script.

Also, notice that this script by default tries to connect to the node’s API at the following address http://127.0.0.1:1234,
if your node is listening on a different address you have to modify the address.

If you haven’t already installed it, you need the aelf-sdk:

’npm install aelf-sdk

You can simply run the script from anywhere:

’node sideChainProposal. js

sideChainProposal.js:

const AElf = require('aelf-sdk');
const Wallet = AElf.wallet;

const { sha256 } = AElf.utils;

// set the private key of the block producer

const defaultPrivateKey =
—'el19487fea0658badc42£f089fbaa56de23d8c0e8d999c5f76acl2ad8ae897d76";

const defaultPrivateKeyAddress = 'HEtBQStfqub53cHVC3PxJU6iGP3RGxiNULQGVAPTJfrF3ZWH3U"';

const wallet = Wallet.getWalletByPrivateKey (defaultPrivateKey);

(continues on next page)

76 Chapter 7. Running a side chain

http://127.0.0.1:1234

AEIf, Release release/1.2.3

(continued from previous page)

// link to the node
const aelf = new AELlf (new AElf.providers.HttpProvider ('http://127.0.0.1:8000"));

if (laelf.isConnected()) {
console.log('Could not connect to the node.');

const tokenContractName = 'AElf.ContractNames.Token';
const parliamentContractName = 'AElf.ContractNames.Parliament';
const crossChainContractName = 'AElf.ContractNames.CrossChain';

var pollMining = async function(transactionId) {
console.log (" >> Waiting for ${transactionId} the transaction to be mined.);

for (i = 0; 1 < 10; 1i++) {
const currentResult = await aelf.chain.getTxResult (transactionId);
// console.log('transaction status: ' + currentResult.Status);

if (currentResult.Status === 'MINED')
return currentResult;

await new Promise (resolve => setTimeout (resolve, 2000))
.catch (function () {
console.log ("Promise Rejected");

P)ii

var setAllowance = async function (tokenContract, crossChainContractAddress)
console.log('\n>>>> Setting allowance for the cross-chain contract.');

// set some allowance to the cross-chain contract
const approvalResult = await tokenContract.Approve ({
symbol:'ELF',
spender: crossChainContractAddress,
amount: 20000
1)

await pollMining (approvalResult.TransactionId);

var checkAllowance = async function (tokenContract, owner, spender)
console.log('\n>>>> Checking the cross—-chain contract\'s allowance');

const checkAllowanceTx = await tokenContract.GetAllowance.call ({
symbol: 'ELF',
owner: owner,
spender: spender

)i

console.log (" >> allowance to the cross-chain contract: ${checkAllowanceTx.
—allowance} ${checkAllowanceTx.symbol}");

}

const createSideChain = async () => {

(continues on next page)

7.1. Requesting the creation of a side chain 77

AEIf, Release release/1.2.3

(continued from previous page)

// get the status of the chain in order to get the genesis contract address
console.log('Starting side chain creation script\n');

const chainStatus = await aelf.chain.getChainStatus ({sync: true});
const genesisContract = await aelf.chain.contractAt (chainStatus.
—GenesisContractAddress, wallet)
.catch ((err) => {
console.log(err);

1)

// get the addresses of the contracts that we'll need to call

const tokenContractAddress = await genesisContract.GetContractAddressByName.
—call (sha256 (tokenContractName)) ;
const parliamentContractAddress = await genesisContract.GetContractAddressByName.

—call (sha256 (parliamentContractName)) ;
const crossChainContractAddress = await genesisContract.GetContractAddressByName.
—call (sha256 (crossChainContractName)) ;

// build the aelf-sdk contract object

const parliamentContract = await aelf.chain.contractAt (parliamentContractAddress,
—wallet);

const tokenContract = await aelf.chain.contractAt (tokenContractAddress, wallet);

const crossChainContract = await aelf.chain.contractAt (crossChainContractAddress,

—wallet);

// 1. set and check the allowance, spender is the cross—-chain contract

awailt setAllowance (tokenContract, crossChainContractAddress);

await checkAllowance (tokenContract, defaultPrivateKeyAddress,
—crossChainContractAddress) ;

// 2. request the creation of the side chain with the cross=chain contract
console.log ('\n>>>> Requesting the side chain creation.');
const sideChainCreationRequestTx = await crossChainContract.
—RequestSideChainCreation ({
indexingPrice: 1,
lockedTokenAmount: '20000',
isPrivilegePreserved: true,
sideChainTokenCreationRequest: {
sideChainTokenDecimals: 8,
sideChainTokenName: 'SCATokenName',
sideChainTokenSymbol: 'SCA',
sideChainTokenTotalSupply: '100000000000000000",
}I
sideChainTokenInitialIssuelList: [
{
address: '28Y8JAli2cN60oHvVAv7EraXJr9algY6D1PpJIXwIQtRMRWKCBQOMK',
amount: '1000000000000000"

1,
initialResourceAmount: { CPU: 2, RAM: 4, DISK: 512, NET: 1024 },

)i

let sideChainCreationRequestTxResult = await,
—pollMining(sideChainCreationRequestTx.TransactionId);

(continues on next page)

78 Chapter 7. Running a side chain

AEIf, Release release/1.2.3

(continued from previous page)

// deserialize the log to get the proposal's ID.

let deserializedLogs = parliamentContract.
—deserializelog(sideChainCreationRequestTxResult.Logs, 'ProposalCreated');

console.log (" >> side chain creation request proposal id ${JSON.
—stringify (deserializedLogs[0] .proposalld) }’);

// 3. Approve the proposal
console.log('\n>>>> Approving the proposal.');

var proposalApproveTx = await parliamentContract.Approve (deserializedLogs[0].
—proposalld);

await pollMining (proposalApproveTx.TransactionId);

// 3. Release the side chain
console.log('\n>>>> Release the side chain.');

var releaseResult = await crossChainContract.ReleaseSideChainCreation ({
proposalld: deserializedLogs[0].proposalld
1)

let releaseTxResult = await pollMining(releaseResult.TransactionId);

// Parse the logs to get the chain id.

let sideChainCreationEvent = crossChainContract.deserializelog(releaseTxResult.
—Logs, 'SideChainCreatedEvent');
console.log('Chain chain created : '");

console.log(sideChainCreationEvent) ;

}i

createSideChain () .then(() => {console.log('Done.')});

7.2 Running a side chain (after its release)

This tutorial will explain how to run a side chain node after it has been approved by the producers and released by the
creator. After the creation of the side chain, the producers need to run a side chain node.

A side chain node is usually very similar to a main-chain node because both are based on AEIf software and have
common modules. The main difference is the configuration which varies depending on if the node is a side chain or
not.

Note: this tutorial assumes the following:
* you already have a main-chain node running.
* the creation of the side chain has already been approved and released.

It’s also important to know that the key-pair (account) used for mining on the side chain must be the same as the one
you use for on the main-chain node. Said in another way both production nodes need to be launched with the same
key-pair.

Note: for more information about the side chain creation, refer to the document in the request-side-chain section.

7.2. Running a side chain (after its release) 79

AEIf, Release release/1.2.3

7.2.1 Side chain configuration
Two configuration files must be placed in the configuration folder of the side chain, this is also the folder from which
you will launch the node:

* appsettings.json

* appsettings.SideChain.MainNet.json

After the release of the side chain creation request, the Chainld of the new side chain will be accessible in the
SideChainCreatedEvent logged by the transaction that released.

In this example, we will set up the side chain node with tDVV (1866392 converted to base58) as it’s chain id, con-
necting to Redis’ db2. The web API port is 1235. Don’t forget to change the account, password and initial miner.

If at the time of launching the side chain the P2P addresses of the other peers is known, they should be added to the
bootnodes in the configuration of the side chain.

In appsettings.json change the following configuration sections:

{
"ChainId":"tDVV",
"ChainType":"SideChain",

"NetType": "MainNet",

"ConnectionStrings": {
"BlockchainDb": "redis://localhost:6379?db=2",
"StateDb": "redis://localhost:63792db=2"

}I

"Account": {
"NodeAccount": "YOUR PRODUCER ACCOUNT",
"NodeAccountPassword": "YOUR PRODUCER PASSWORD"

}I
"Kestrel": {
"EndPoints": {
"Http": {
"Url": "http://*:1235/"
}
}
}I
"Consensus": {
"MiningInterval": 4000,
"StartTimestamp": 0
}I

In appsettings.SideChain.MainNet.json change the following configuration sections:

{
"CrossChain": {

"Grpc": {
"ParentChainServerPort": 5010,
"ListeningPort": 5000,
"ParentChainServerIp": "127.0.0.1"

}I

"ParentChainId": "AELF",

Change ParentChainServerIp and ParentChainServerPort depending on the listening address of your mainchain
node.

80 Chapter 7. Running a side chain

AEIf, Release release/1.2.3

7.2.2 Launch the side chain node

Open a terminal and navigate to the folder where you created the configuration for the side chain.

’dotnet ../AE1f.Launcher.dll

You can try out a few commands from another terminal to check if everything is fine, for example:

’aelf—command get-blk-height -e http://127.0.0.1:1235

7.2. Running a side chain (after its release) 81

AEIf, Release release/1.2.3

82 Chapter 7. Running a side chain

CHAPTER 8

Running AEIf on the cloud

This section provides resources for AEIf on the cloud.

8.1 Getting started with Google cloud

This guide will run you through the steps required to run an AEIf node on Google cloud (click the images for a more
detailed view).

First go to the Google Cloud Market Place and search for “aelf blockchain for enterprise”, find the image and select
it, this will direct you to the image’s page.

Google Cloud Platform & AEIf Public v

aelf Blockchain for Enterprise
AELF PTE. LTD
Estimated costs: $50.24/month

celf.
Versatile Business Blockchain powered by Cloud Computing
LAUNCH ON COMPUTE ENGINE
Runs on Overview
Google Compute Engine aelf Enterprise is a one-stop blockchain solution that includes a fully developed in system,
Type kits, and documentation along with supporting infrastructure and services. We believe that this brings us one step
Single VM closer to helping ises and pers build powerful ications on aelf with ease.
Last updated Learn more (7

10/28/19, 2:52 PM
About AELF PTE. LTD

Category

Databases aelf is a versatile business blockchain platform powered by cloud computing. By laying the fundamental

Developer stacks blockchain infrastructure, aelf enables your business to focus on building your own DAPPS on your own chains
B with minimum effort.

Version

Click on the “LAUNCH ON COMPUTE ENGINE”. This should bring you to the following deployment page:

83

https://console.cloud.google.com/marketplace

AEIf, Release release/1.2.3

Google Cloud Platform ublic v

< New aelf Blockchain for Enterprise deployment © EXIT PREVIEW

aelf Blockchain for Enterprise overview

‘Your current project may have limited quota. If your deployment fails, celf.
change the ‘project’ query parameter in this page's URL to a project with a Solution provided by AELF PTE. LTD
higher quota
$50.24 per month estimated
Deployment name Effective hourly rate $0.068 (730 hours per month)
aelf-enterprise-1
Details
Zone
us-westl-a - Software
Machine type Operating System Ubuntu (18.04)
2WCPUs - 7.5 GB memory Gustomize Terms of Service
Upgrade your account to create instances with up to 96 cores The software of service you are about 1o use is not a Google product. By deplaying
the software or accessing the service you are agreeing to comply with the AELF
PTE. LTD terms of service [, GCP Marketplace terms of service and the terms of
any third party software licenses related to the software or service. Please review
B these licenses carefully for details about any obligations you may have related to
Boot Disk the software or service. To the limited extent an open source software license
Boot disk type related to the software or service expressly supersedes the GCP Marketplace
- Terms of Service, that open source software license governs your use of that
SSD Persistent Disk - sofWare of service.
Boot disk size in GB By using this product, you understand that certain account and usage information
may be shared with AELF PTE. LTD for the purposes of sales attribution,
10 performance analysis, and support
Google is providing this software or service "as-is" and any support for this
Networking software or service will be provided by AELF PTE. LTD under their terms of service.

Network interfaces

default default (10.138.0.0/20) v
) You have reached the maximum number of one network interface

More

| accept the GCP Marketplace Terms of Service.

You can keep the default settings, they are sufficient to get started. If you're satisfied with the settings, just click
“DEPLOY” (bottom left of the page).

This will bring you to the deployment page (wait a short moment for the instance to load), when finished you should
see deployment information about the instance:

84 Chapter 8. Running AEIf on the cloud

AEIf, Release release/1.2.3

= Google Cloud Platform & AElf Public w

& aelf-enterprise-1 W DELETE X aelf-enterprise © EXIT PREVIEW

(&

aelf Blockchain for Enterprise

aelf-enterprise-1 has been deployed
ploye
Solution provided by AELF PTE. LTD.

B Overview -aelfenterprise-1 Instance aelt-enterprise-1-vm
v = aelfenterprise aclf-enterprise jinja Instance zone us-westl-a
~ B celfenterprisevmmpl vm_instance.py Instance machine type nl-standard-2

B aelf-enterprise-1-vm vm instance
More about the software

Get started with aelf Blockchain for Enterprise

SSH -

Suggested next steps

Assign a static external IP address to your VM instance

An ephemeral external IP address has been assigned to the VM instance. If you
require a static external IP address, you may promote the address to static. Learn
more (7

Documentation

Build your own aelf Blockchain on GCP [

Support

Usage Instructions
1. Launch an vm instance using this image.
2. Login launched vm instance via SSH.
3. sudo bash
4. Two way o start the aelf-chain

- run in the foreground

- root@test:/# cd fopt/aelf-node &4 docker-compose up
- run in the background
- root@test/# cd fopt/aelf-node && docker-compose up -d

It will start redis & aelf-chain,
5. try command: curl X GET "hitp://127.0.0.1:8000/api/blockChain/chainStatus” -H
“accept: text/plain; v=1.0"

For further details please visit hitps://docs.aelf io Go to AELF PTE. LTD support [7
Show Support ID

Template properties

Mare

Next, login to the launched VM instance via SSH. To start the easiest way is to login to the instance directly from this
deployment page. To do this click the SSH drop down and select “Open in browser window””:

Get started with aelf Blockchain for Enterprise

SSH B

Sugges Open in browser window
A Openin browser window on custom port
A Open in browser window using provided private S5H key 1instance. If you

re 255 to static. Learn
i View geloud command

Use another S5H client
Docur .- ..

Build your own aelf Blockchain on GCP [

After loading the session, you’ll get a shell to the deployed instance where you can run the chain itself.

First you’ll need to execute sudo bash to elevate your privileges. Next, start the chain with one of the following
commands (for this tutorial we’ll use the second method): - either run it in the foreground: -bash root@test:/#
cd /opt/aelf-node && docker—-compose up

e or run it in the background: -bash rootQ@test:/# cd /opt/aelf-node && docker-compose
up —-d

These commands will start redis and an AEIf node (the command prints ‘done’ when finished).

8.1. Getting started with Google cloud 85

AEIf, Release release/1.2.3

ubuntu@test: $ sudo docker-compose up -d

sudo: unable to resolve host test
Creating aelf-node_redis_1_1c73bb@fe27b ..

. done
Creating aelf-node_aelf-node_1_b673d69e0560 ..

. done

Finally to verify that the node is correctly working, enter the following command that will send an http request to the
node in order to get the current status of the chain:

— v=1.0"

curl -X GET "http://127.0.0.1:8001/api/blockChain/chainStatus" -H "accept: text/plain;

ubuntu@test:

$ curl -X GET "http://127.0.0.1:8001/api/blockChain/chainStatus” -H "accept: text/plain; v=1.0"
{"ChainId":"AELF","Branches" :{"3f41068dea72676a4de567b0098aelbf5708d63e0d32e2745210b366a6dc0265" :6727}, "NotLinkedBlocks":{},"Lo
ngestChainHeight":6727,"LongestChainHash" : "3f41068dea72676a4de567b0@98ae1bf5708d63e0d32e2745210b366a6dc@265" , "GenesisBlockHash™

:"32472fa4f6a04131f6d1c6303e7d69c496dad16900559d4873a0e4c731c9f9bf", "GenesisContractAddress" : "2gaQh4uxgbtzyH1ADLoDxvHA14FMpzEiM
qsQ6sDG51HT8cmjp8" , "LastIrreversibleBlockHash" : "f89761efcf8f9f8f8c369ead32fd97ff9115bc2db5cbfaab@@e?bcbc2cefazba", "LastIrrevers
ibleBlockHeight":67@3, "BestChainHash" : "3f41068dea72676a4de567b0098aelbf5708d63e@d32e2745210b366a6dc@265" , "BestChainHeight" :6727

If everything is working normally you should be able to see the chain increase by repeating the last command.

Chapter 8. Running AEIf on the cloud

CHAPTER 9

Smart Contract Developing Demos

9.1 Bingo Game

9.1.1 Requirement Analysis
Basic Requirement
Only one ruleUsers can bet a certain amount of ELF on Bingo contract, and then users will gain more ELF or to lose
all ELF bet before in the expected time.
For users, operation steps are as follows:
1. Send an Approve transaction by Token Contract to grant Bingo Contract amount of ELF.

2. Bet by Bingo Contract, and the outcome will be unveiled in the expected time.

3. After a certain time, or after the block height is reached, the user can use the Bingo contract to query the results,
and at the same time, the Bingo contract will transfer a certain amount of ELF to the user (If the amount at this
time is greater than the bet amount, it means that the user won; vice versa).

9.1.2 API List

In summary, two basic APIs are needed:
1. Play, corresponding to step 2;
2. Bingo, corresponding to step 3.
In order to make the Bingo contract a more complete DApp contract, two additional Action methods are added:

1. Register, which creates a file for users, can save the registration time and user’s eigenvalues (these eigenvalues
participate in the calculation of the random number used in the Bingo game);

2. Quit, which deletes users’ file.

In addition, there are some View methods for querying information only:

87

AEIf, Release release/1.2.3

1. GetAward, which allows users to query the award information of a bet;

2. GetPlayerInformation, used to query player’s information.

Method Parameters Return function
Register Empty Empty register player infor-
mation
Quit Empty Empty delete player informa-
tion
Play Int64Value Int64Value debt
anount you debt the resulting
block height
Bingo Hash Empty query the game’s re-
the transaction True indicates sult
id of Play win
GetAward Hash Int64 Value query the amount of
the transaction award award
id of Play
GetPlayerInformat ioAddress Player- query player’s infor-
player’s address Information mation

9.1.3 Write Contract

Use the code generator to generate contracts and test projects

Open the AEl1f.Boilerplate.CodeGenerator project in the AEIf Boilerplate<hittps://aelf-boilerplate-
docs.readthedocs.io/en/latest/usage/setup.html#try-code-generator>, and modify the Contents node in appsetting.json
under this project:

{

"Contents": [
{
"Origin": "AElf.Contracts.HelloWorldContract",
"New": "AElf.Contracts.BingoContract"
by
{
"Origin": "HelloWorld",
"New": "Binqoll
by
{
"Origin": "hello_world",
"Newll: llbingoﬂ

Then run the AE1f.Boilerplate.CodeGenerator project. After running successfully, you will see a
AElf.Contracts.BingoContract.sln in the same directory as the AEIf.Boilerplate.sin is in. After opening the sln, you
will see that the contract project and test case project of the Bingo contract have been generated and are included in
the new solution.

Define Proto

Based on the API list in the requirements analysis, the bingo_contract.proto file is as follows:

88 Chapter 9. Smart Contract Developing Demos

AEIf, Release release/1.2.3

syntax = "proto3";
import "aelf/core.proto";
import "aelf/options.proto";
import "google/protobuf/empty.proto";
import "google/protobuf/wrappers.proto";
import "google/protobuf/timestamp.proto";
option csharp_namespace = "AElf.Contracts.BingoContract";
service BingoContract {
option (aelf.csharp_state) = "AElf.Contracts.BingoContract.BingoContractState";

// Actions

rpc Register (google.protobuf.Empty) returns (google.protobuf.Empty) {

ipc Play (google.protobuf.Int64Value) returns (google.protobuf.Int64Value) {
ipc Bingo (aelf.Hash) returns (google.protobuf.BoolValue) {

ipc Quit (google.protobuf.Empty) returns (google.protobuf.Empty) {

}

// Views
rpc GetAward (aelf.Hash) returns (google.protobuf.Int64Value) {
option (aelf.is_view) = true;

}
rpc GetPlayerInformation (aelf.Address) returns (PlayerInformation) {
option (aelf.is_view) = true;

}
message PlayerInformation {
aelf.Hash seed = 1;
repeated BoutInformation bouts = 2;
google.protobuf.Timestamp register_time = 3;
}
message BoutInformation {
int64 play_block_height = 1;

int64 amount = 2;
int64 award = 3;
bool is_complete = 4;

aelf.Hash play_id = 5;
int64 bingo_block_height = 6;

Contract Implementation

Here only talk about the general idea of the Action method, specifically need to turn the code:

https://github.com/AEIfProject/aelf-boilerplate/blob/dev/chain/contract/ AEIf.Contracts.BingoGameContract/
BingoGameContract.cs

Register & Quit

Register

* Determine the Seed of the user, Seed is a hash value, participating in the calculation of the random number, each
user is different, so as to ensure that different users get different results on the same height;

9.1. Bingo Game 89

https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs
https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs

AEIf, Release release/1.2.3

* Record the user’s registration time.

QuitJust delete the user’s information.

Play & Bingo

Play
¢ Use TransferFrom to deduct the user’s bet amount;

* At the same time add a round (Bount) for the user, when the Bount is initialized, record three messages 1.Playld,
the transaction Id of this transaction, is used to uniquely identify the Bout (see BoutInformation for its data
structure in the Proto definition);

* AmountRecord the amount of the bet 3.Record the height of the block in which the Play transaction is packaged.
Bingo

¢ Find the corresponding Bout according to Playld, if the current block height is greater than PlayBlock-
Height + number of nodes * 8, you can get the result that you win or lose;

¢ Use the current height and the user’s Seed to calculate a random number, and then treat the hash value as a
bit Array, each of which is added to get a number ranging from 0 to 256.

* Whether the number is divisible by 2 determines the user wins or loses;

* The range of this number determines the amount of win/loss for the user, see the note of GetKind method
for details.

9.1.4 Write Test

Because the token transfer is involved in this test, in addition to constructing the stub of the bingo contract, the stub of
the token contract is also required, so the code referenced in csproj for the proto file is:

<ItemGroup>
<ContractStub Include="..\..\protobuf\bingo_contract.proto">
<Link>Protobuf\Proto\bingo_contract.proto</Link>
</ContractStub>
<ContractStub Include="..\..\protobuf\token_ contract.proto">
<Link>Protobuf\Proto\token_contract.proto</Link>
</ContractStub>
</ItemGroup>

Then you can write test code directly in the Test method of BingoContractTest. Prepare the two stubs mentioned
above:

// Get a stub for testing.
var keyPair = SampleECKeyPairs.KeyPairs[0];
var stub = GetBingoContractStub (keyPair);
var tokenStub =
GetTester<TokenContractContainer.TokenContractStub> (
GetAddress (TokenSmartContractAddressNameProvider.StringName), keyPair);

The stub is the stub of the bingo contract, and the tokenStub is the stub of the token contract.

In the unit test, the keyPair account is given a large amount of ELF by default, and the bingo contract needs a certain
bonus pool to run, so first let the account transfer ELF to the bingo contract:

90 Chapter 9. Smart Contract Developing Demos

AEIf, Release release/1.2.3

// Prepare awards.
await tokenStub.Transfer.SendAsync(new TransferInput
{
To = DAppContractAddress,
Symbol = "ELF",
Amount = 100_00000000
}) i

Then you can start using the Bingo contract. Register

await stub.Register.SendAsync (new Empty());

After registration, take a look at PlayInformation:

// Now I have player information.

var address = Address.FromPublicKey (keyPair.PublicKey);

{
var playerInformation = await stub.GetPlayerInformation.CallAsync (address);
playerInformation.Seed.Value.ShouldNotBeEmpty () ;
playerInformation.RegisterTime.ShouldNotBeNull () ;

Bet, but before you can bet, you need to Approve the bingo contract:

// Play.
await tokenStub.Approve.SendAsync (new Approvelnput
{
Spender = DAppContractAddress,
Symbol = "ELEF",
Amount = 10000
}) i
await stub.Play.SendAsync (new Int64Value {Value = 10000});

See if Bout is generated after betting.

Hash playId;

{
var playerInformation = await stub.GetPlayerInformation.CallAsync (address);
playerInformation.Bouts.ShouldNotBeEmpty () ;
playId = playerInformation.Bouts.First () .PlayId;

Since the outcome requires eight blocks, you need send seven invalid transactions (these transactions will fail, but the
block height will increase) :

// Mine 7 more blocks.
for (var i = 0; 1 < 7; i++)
{
await stub.Bingo.SendWithExceptionAsync (playId);

Last check the award, and that the award amount is greater than 0 indicates you win.

await stub.Bingo.SendAsync (playId);
var award = await stub.GetAward.CallAsync (playId);
award.Value.ShouldNotBe (0) ;

9.1. Bingo Game 91

AEIf, Release release/1.2.3

92 Chapter 9. Smart Contract Developing Demos

cHAaPTER 10

Consensus

10.1 Overview

The process of reaching consensus is an essential part of every blockchain, since its what determines which transactions
get included in the block and in what order. A stable and efficient Block formation mechanism is the foundation of the
AEIf system. The operation and maintenance of AEIf is more complicated than Bitcoin and Ethereum, because AEIf
Block formation requires the Main Chain to record information from Side Chains, and AEIf is designed to provide
cloud-based enterprise services in a more complex structure. In addition, miners need to update information from
multiple parallel Chains. The Main Chain will adopt AEDPoS consensus to ensure high frequency and predictability
of Block formation, which will improve user experience.

In an AEIf blockchain, consensus protocol is split into two parts: election and scheduling. Election is the process that
determines who gets to produce and scheduling decides on the when.

10.1.1 Core Data Center

Core Data Centers aka Miners or Block Producers, act as members of parliament in the world of AFEIf blockchain.

The AEIf blockchain delegates 2N+1 Core Data Centers. N starts with 8 and increases by 1 every year.

wE e ST

N starts at 8 and increases by 1 each year

These nodes in the AEIf system enforce all of consensus rules of AEIf. The purpose of these delegated mining nodes
is to enable transaction relay, transaction confirmation, packaging blocks and data transfer. As AEIf adopts multi-Side

93

AEIf, Release release/1.2.3

Chain architecture, Core Data Centers have to work as miners for some Side Chains. 2N+1 nodes will go through a
randomized order calculation each week.

All the Core Data Centers are elected by the ELF token hodlers. Electors can lock their ELF tokens to vote to one
Validate Data Center, thus enhance the competitiveness of certain Validate Data Center in the election process.

10.1.2 Validate Data Center

In the AEIf blockchain, everyone can lock an amount of ELF tokens to announce himself joining the election. Among
all the nodes who announced joining election, top (2N+1)*5 nodes will become Validate Data Center. N starts with 8
and increases by 1 every year.

10.2 AEDPoOS Process

10.2.1 Round

The AEIf blockchain is running along the timeline within processing units we call a “round”.

Round ¢ Pre-verification for
aun Round t + 1

EREEEE CEEEL TS

Node Node

BREREE ﬁ T a i
[T S] Tttt
Other nodes to verily
haszh r-"t.“.d-.-lr } == Ol Ui]

Roundt + 1

EEEETE

Ol adingre 1)
ﬁ Sl ninieer) = BOSA(IR gy +allp)

------------ EEEEEE

A+l

ally = Z Sl nodaili)

=1

L 4

Rounds running in the timeline
In a round, one node (Core Data Center) will produce one block each time, while one node will have one extra
transaction at the end of the round.
Each mining node has three main properties in a specific round t:

¢ Private key, in_node(t), which is a value inputted from the mining node and kept privately by the mining node
itself in round t. It will become public after all block generations in round t are completed;

* Public key, out_node(t), which is the hash value of in_node(t). Every node in the aelf network can look up this
value at any time;

* Signature, sig_node(t), which is a value generated by the mining node itself in the first round. After the first
round, it can only be calculated once the previous round is completed. It is used as the signature of this mining
node in this round and it is also opened to public at all times like the out_node(t).

10.2.2 Main Processes

Pre-Verification

Before a node starts its block generation in round (t+1), it has to have its status verified in round t. In round (t+1),
in_node(t) is already published as public, and out_node(t) can be queried at any time. So to verify the status of in

94 Chapter 10. Consensus

AEIf, Release release/1.2.3

round , other nodes can check hash(in_node(t)) = out_node(t).

Order Calculation

In each round N, Core Data Centers have (N+1) block generation time slots, each time slot have 1 to 8 blocks genera-
tion based on current running status in the AEIf blockchain.

In the first round, the ordering of block generations as well as the signature (sig) for each node are totally arbitrary.

Indtialize first twe rounds

Hmm:wm
I 1
Round 1 Round 2 Round 3
[A = “:.‘::T::I':"J_ <
sigay sigez = hashiing +ally) | | 2 “,A":' sigey = hash(ing + ally)
ﬁg c B meo (28 {1 B
; EE. @sisc: sigg: = hash(ing, +ally) | |72 | (@ siggs = hash(ing + ally)
il §s > L Y D e
i =3 @sien sigoz = hash(ing; +ally) | | '|*ﬁg-isum-mu{mn+ﬂm
g i D A u;..‘::: l':;}r, A
| | [@sien sigaz = hash(ing +ally) | || | [siga = hashling + aily)
e
e — E
nel mEl

ally = zsfgwd\rllli ally = Z’”Hm—xjrl:lz

=] =1

Rounds running in the timeline >

In the second round, the block generations are again arbitrarily ordered. However, from the second round, the sig-
i+l

H”‘. = E 5 'l.[fm.ld'rlllh'l

=l
nature will be calculated by sig_node(t+1) = hash(in_node(t) + all_t) where here
node[i][t], means the node is processing the i-th transaction in round t.

From round 3, the ordering within a round is generated from the ordering and the node signature from the previous
round.

In round (t+1), we traverse the signature of nodes at round t in order. The ordering of a node in (t+1) is calculated by

i

0, first place
1. second place
Si8podeqnmod(N) = {2, third place

| n—1, n'" place

For cases of conflict, i.e. results pointed to places which are not empty, we point the node to the next available place.
If the node conflict is at the n-th place, we will find the available place from the first place.

10.2. AEDPoS Process 95

AEIf, Release release/1.2.3

The node that processes the one extra transaction is calculated from the signature of the node in first place of the
previous round.

5 Knode|ONr I ad(N) =

sig_node[0][t] is decided by:
« all the signatures from previous round (t-1);
e the in value of itself in round (t-1);
* which node generate the extra block.

So it can only be calculated after the previous round (t-1) completed. Moreover, as it needs all the signatures from the
previous round and the in value is input by each node independently, there is no way to control the ordering. The extra
block generation is used to increase the randomness. In general, we create a random system that relies on extra inputs
from outside. Based on the assumption that no node can know all other nodes’ inputs in a specific round, no one node
could control the ordering.

If one node cannot generate a block in round t, it also cannot input in its for this round. In such a case, the previous in
will be used. Since all mining nodes are voted to be reliable nodes, such a situation should not happen often. Even if
this situation does happen, the above-mentioned strategy is more than sufficient at dealing with it.

Every node only has a certain time T seconds to process transactions. Under the present network condition, T=4 is
a reasonable time consideration, meaning that every node only has 4 seconds to process transactions and submit the
result to the network. Any delegate who fails to submit within 4 seconds is considered to be abandoning the block. If
a delegate failed two times consecutively, there will be a window period calculated as W hours (W=2"N, N stands for
the number of failure) for that node.

In the systematic design, aelf defines that only one node generates blocks within a certain period. Therefore, it is
unlikely for a fork to happen in an environment where mining nodes are working under good connectivity. If multiple
orphan node groups occur due to network problems, the system will adopt the longest chain since that is 19 the chain
that most likely comes from the orphan node group with largest number of mining nodes. If a vicious node mines in
two forked Blockchains simultaneously to attack the network, that node would be voted out of the entire network.

AEDPoS mining nodes are elected in a way that resembles representative democracy. The elected nodes decide how
to hand out bonuses to the other mining nodes and stakeholders.

10.3 Irreversible Block

Which means there’re always some block links (a block height to its hash value) can never be reversible.

The block link currently is double confirmed by the AEDPoS mechanism during the Round changes.

96 Chapter 10. Consensus

cHAPTER 11

Network

11.1 Introduction

The role that the network layer plays in AEIf is very important, it maintains active and healthy connections to other
peers of the network and is of course the medium through which nodes communicate and follow the chain protocol.
The network layer also implements interfaces for higher-level logic like the synchronization code and also exposes
some functionality for the node operator to administer and monitor network operations.

The design goals when designing AEIf’s network layer was to avoid “reinventing the wheel” and keep things as
simply possible, we ended up choosing gRPC to implement the connections in AEIf. Also, it was important to isolate
the actual implementation (the framework used) from the contract (the interfaces exposed to the higher-level layers)
to make it possible to switch implementation in the future without breaking anything.

11.2 Architecture

This section will present a summary of the different layers that are involved in network interactions.
The network is split into 3 different layers/projects, namely:
* AEIf.0S
— Defines event handles related to the network.
— Defines background workers related to the network.
* AEIf.0S.Core.Network
— Defines service layer exposed to higher levels.
— Contains the definitions of the infrastructure layer.
— Defines the component, types.
* AEIf.OS.Network.Grpc

— The implementation of the infrastructure layer.

97

AEIf, Release release/1.2.3

— Launches events defined in the core

— Low-level functionality: serialization, buffering, retrying. ..

11.2.1 AEIf.0S

At the AEIf.OS layer, the network monitors events of interest to the network through event handlers, such as kernel
layer transaction verification, block packaging, block execution success, and discovery of new libs. The handler will
call NetworkService to broadcast this information to its connected peer. And it will run background workers to process
network tasks regularly.

Currently, the AEIf.OS layer handles those events related to the network:
 Transaction Accepted Eventthe event that the transaction pool receives the transaction and passes verification
* Block Mined Eventwhen the current node is BP, the event that the block packaging is completed.
* Block Accepted Eventthe event that the node successfully executes the block.
* New Irreversible Block Found Eventthe event that the chain found the new irreversible block.
Currently, the AEIf.OS layer will periodically process the following tasks.

* Peer health check: regularly check whether the connected peer is healthy and remove the abnormally connected
peer.

¢ Peer retry connection: peer with abnormal connection will try to reconnect.

* Network node discovery: regularly discover more available nodes through the network.

11.2.2 AEIf.0S.Core.Network

AEIf.OS.Core.Network is the core module of the networkcontains services(service layer exposed to higher levels (OS))
and definitions (abstraction of the Infrastructure layer).

* Application layer implementation:

— NetworkService: this service exposes and implements functionality that is used by higher layers like the
sync and RPC modules. It takes care of the following:

* sending/receiving: it implements the functionality to request a block(s) or broadcast items to peers
by using an [PeerPool to select peers. This pool contains references to all the peers that are currently
connected.

+ handling network exceptions: the lower-level library that implements the Network layer is expected
to throw a NetworkException when something went wrong during a request.

¢ Infrastructure layer implementation and definition:
— IPeerPool/PeerPool: manages active connections to peers.

— IPeer: an active connection to a peer. The interface defines the obvious request/response methods, it
exposes a method for the NetworkService to try and wait for recovery after some network failure. It
contains a method for getting metrics associated with the peer. You can also access information about the
peer itself (ready for requesting, IP, etc.).

— IAEIfNetworkServer: manages the lifecycle of the network layer, implements listening for connections,
it is the component that accepts connections. For now, it is expected that this component launches Net-
workInitializationFinishedEvent when the connection to the boot nodes is finished.

¢ Definitions of types (network_types.proto and partial).

98 Chapter 11. Network

AEIf, Release release/1.2.3

* Defines the event that should be launched from the infrastructure layer’s implementation.

11.2.3 AEIf.0OS.Network.Grpc

The AEIf.OS.Network.Grpc layer is the network infrastructure layer that we implement using the gRPC framework.
* GrpcPeerimplemented the interface IPeer defined by the AEIf.OS.Core.Network layer

* GrpcNetworkServer: implemented the interface IAEIfNetworkServer defined by the AEIf.0S.Core.Network
layer

* GrpcServerService: implemented network service interfaces, including interfaces between nodes and data ex-
change.

 Extra functionality:
— Serializing requests/deserializing responses (protobuf).
— Some form of request/response mechanism for peers (optionally with the timeout, retry, etc).
— Authentification.

In fact, gRPC is not the only option. Someone could if they wanted to replace the gRPC stack with a low-level
socket API (like the one provided by the dotnet framework) and re-implement the needed functionality. As long as the
contract (the interface) is respected, any suitable framework can be used if needed.

11.3 Protocol

Each node implements the network interface protocol defined by AFEIf to ensure normal operation and data synchro-
nization between nodes.

11.3.1 Connection

DoHandshake

When a node wants to connect with the current node, the current node receives the handshake information of the target
node through the interface DoHandshake. After the current node verifies the handshake information, it returns the
verification result and the handshake information of the current node to the target node.

The handshake information, in addition to being used in the verification of the connection process, will also record the
status of the other party’s chain after the connection is successful, such as the current height, Lib height, etc.

rpc DoHandshake (HandshakeRequest) returns (HandshakeReply) {}

* Handshake Message

message Handshake ({
HandshakeData handshake_data = 1;
bytes signature = 2;
bytes session_id = 3;

— handshake_data: the data of handshake.
— signature: the signatrue of handshake data.

— session_id: randomly generated ids when nodes connect.

11.3. Protocol 99

AEIf, Release release/1.2.3

* HandshakeData Message

message HandshakeData {
int32 chain_id = 1;
int32 version = 2;
int32 listening_port = 3;
bytes pubkey = 4;
aelf.Hash best_chain_hash = 5;
int64 best_chain_height = 6;
aelf.Hash last_irreversible_block_hash = 7;
int64 last_irreversible_block_height = 8;
google.protobuf.Timestamp time = 9;

chain_id: the id of current chain.

version: current version of the network.

listening_port: the port number at which the current node network is listening.

pubkey: the public key of the current node used by the receiver to verify the data signature.

best_chain_hash: the lastest block hash of the best branch.

best_chain_height: the lastest block height of the best branch.

last_irreversible_block_hash: the hash of the last irreversible block.

last_irreversible_block_height: the height of the last irreversible block.

time: the time of handshake.

* HandshakeRequest Message

message HandshakeRequest {
Handshake handshake = 1;

— handshake: complete handshake information, including handshake data and signature.

* HandshakeReply Message

message HandshakeReply {
Handshake handshake = 1;
HandshakeError error = 2;

— handshake: complete handshake information, including handshake data and signature.
— error: handshake error enum.

¢ HandshakeError Enum

enum HandshakeError ({
HANDSHAKE_OK = 0;
CHAIN_MISMATCH = 1;
PROTOCOL_MISMATCH =
WRONG_SIGNATURE = 3;
REPEATED_CONNECTION = 4;
CONNECTION_REFUSED = 5;
INVALID_CONNECTION 6
SIGNATURE_TIMEOUT = 7;

2;

’

100 Chapter 11. Network

AEIf, Release release/1.2.3

— HANDSHAKE_OK: indicate no error actually; the default value.

— CHAIN_MISMATCH: the chain ID does not match.

— PROTOCOL_MISMATCH: the network version does not match.

— WRONG_SIGNATURE: the signature cannot be verified.

— REPEATED_CONNECTION: multiple connection requests were sent by the same peer.

— CONNECTION_REFUSED: peer actively rejects the connection, either because the other party’s connec-
tion pool is slow or because you have been added to the other party’s blacklist.

— INVALID_CONNECTION: connection error, possibly due to network instability, causing the request to
fail during the connection.

— SIGNATURE_TIMEOUT: the signature data has timed out.

3.1.2 ConfirmHandshake

When the target node verifies that it has passed the current node’s handshake message, it sends the handshake confir-
mation message again.

rpc ConfirmHandshake (ConfirmHandshakeRequest) returns (VoidReply) {}

message ConfirmHandshakeRequest {
}

11.3.2 Broadcasting

BlockBroadcastStream

The interface BlockCastStream is used to receive information about the block and its complete transaction after the
BP node has packaged the block.

rpc BlockBroadcastStream (stream BlockWithTransactions) returns (VoidReply) {}

message BlockWithTransactions {
aelf.BlockHeader header = 1;
repeated aelf.Transaction transactions = 2;

¢ header:

e transactions:

TransactionBroadcastStream

TransactionBroadcastStream used to receive other nodes forward transaction information.

rpc TransactionBroadcastStream (stream aelf.Transaction) returns (VoidReply) {}

11.3. Protocol 101

AEIf, Release release/1.2.3

AnnouncementBroadcastStream

Interface AnnouncementBroadcastStream used to receive other nodes perform block after block information broadcast.

rpc AnnouncementBroadcastStream (stream BlockAnnouncement) returns (VoidReply) {}

message BlockAnnouncement
aelf.Hash block_hash

{
= 1;
int64 block_height = 2;

¢ block_hash: the announced block hash.

* block_height: the announced block height.

LibAnnouncementBroadcastStream

Interface LibAnnouncementBroadcastStream used to receive other nodes Lib changed Lib latest information broad-
cast.

rpc LibAnnouncementBroadcastStream (stream LibAnnouncement) returns (VoidReply) {}

message LibAnnouncement {
aelf.Hash 1lib_hash

= 1;
int64 1lib_height = 2;

e lib_hash: the announced last irreversible block hash.

* lib_height: the announced last irreversible block height.

11.3.3 Block Request

RequestBlock

The interface RequestBlock requests a single block in response to other nodes. Normally, the node receives block
information packaged and broadcast by BP. However, if the block is not received for some other reason. The node
may also receive BlockAnnouncement messages that are broadcast after the block has been executed by other nodes,
so that the complete block information can be obtained by calling the RequestBlock interface of other peers.

rpc RequestBlock (BlockRequest) returns (BlockReply) {}

* BlockRequest Message

message BlockRequest {
aelf.Hash hash = 1;

}

— hash: the block hash that you want to request.

* BlockReply Message

102 Chapter 11. Network

AEIf, Release release/1.2.3

message BlockReply {
1;
BlockWithTransactions block =

string error =

2;

— €ITor: error message.

— block: the requested block, including complete block and transactions information.

RequestBlocks

The interface RequestBlock requests blocks in bulk in response to other nodes. When a node forks or falls behind, the
node synchronizes blocks by bulk fetching a specified number of blocks to the RequestBlocks interface through which

the target node is called.

rpc RequestBlocks (BlocksRequest) returns

(BlockList)

{}

* BlocksRequest Message

message BlocksRequest {

aelf.Hash previous_block_hash =
int32 count = 2;

1;

— previous_block_hash: the previous block hash of the request blocks, and the result does not contain this

block.

— count: the number of blocks you want to request.

* BlockList Message

message BlockList {

repeated BlockWithTransactions blocks
}

1;

— blocks: the requested blocks, including complete blocks and transactions information.

11.3.4 Peer Management

Ping

Interface Ping is used between nodes to verify that each other’s network is available.

rpc Ping (PingRequest) returns (PongReply) {}

message PingRequest {

}

message PongReply {
}

11.3. Protocol

103

AEIf, Release release/1.2.3

CheckHealth

The interface CheckHealth is invoked for other nodes’ health checks, and each node periodically traverses the available

peers in its own Peer Pool to send health check requests and retries or disconnects if an exception in the Peer state is
found.

rpc CheckHealth (HealthCheckRequest) returns (HealthCheckReply) {}

message HealthCheckRequest {
}

message HealthCheckReply {
}

104 Chapter 11. Network

cHAPTER 12

Address

12.1 Overview

The changes of the state of an AEIf blockchain are driven by the execution of transactions. An Address can identify
one of the participants of a transaction, that is, either transaction sender or destination. The sender is marked as From
in a transaction, and the destination is marked as To.

Actually, From can be a User Address, a Contract Address, or a Virtual Address, but To can only be a Contract
Address, which means the transaction sender wants to construct a transaction to execute a certain method in that Smart
Contract.

Here are some further explanations of all kinds of Address in an AEIf blockchain.

12.2 User Address

User Address is generated from one key pair instance. One key pair is possessed by a real user of this AEIf blockchain.

This is the defination of interface IAE1 fAsymmetricCipherKeyPair.

public interface IAElfAsymmetricCipherKeyPair
{

byte[] PrivateKey { get; }

byte[] PublicKey { get; }

Currently, in AEIf blockchain, we use ECKeyPair to implement this interface, just like most of other blockchain
systems. Users can use aelf-command tool to generate themselves a valid ECKeyPair, thus generate a unique User
Address.

User can easily create a key pair with command line tool with the create command.

aelf-command create

105

AEIf, Release release/1.2.3

Creation will be successful after you provide a valid password. When creating the key-pair (that we sometimes refer
to as the “account”) it will generate a file with the “.json” extension. This file will contain the public and private key
and will be encrypted with the password you provided before.

If you are writing a dApp you can also use the following method in the js-sdk*, it is based on bip39 for generating a
deterministic key pair with a “mnemonic sentence” :

import Aelf from 'aelf-sdk';
Aelf.wallet.createNewWallet ();

This will return an object containing the mnemonic used, the key-pair and the address. In AEIf we usually encode the
address in base58. This address is derived from the public, we calculate it as the first 30 bytes of the double sha256
hash. The AEIf js-sdk provides the following, that returns the address:

import Aelf from 'aelf-sdk';
const address = aelf.wallet.getAddressFromPubKey (pubKey) ;

Finally here is the Protobuf message we use for representing an address, it is often used by other types to represent
addresses:

option csharp_namespace = "AElf.Types";
message Address
{
bytes value = 1;
}

Also, the structure of Hash is very similar to Address.

12.3 Contract Address

Contract Address can identify a Smart Contract in an AEIf blockchain. The Contract Address is calculated with chain
id and a serial number during the deployment of related Smart Contract.

private static Address BuildContractAddress (Hash chainId, long serialNumber)
{

var hash = HashHelper.ConcatAndCompute (chainId, HashHelper.
—ComputeFrom (serialNumber)) ;

return Address.FromBytes (hash.ToByteArray());
}
public static Address BuildContractAddress (int chainId, long serialNumber)
{

return BuildContractAddress (HashHelper.ComputeFrom (chainId), serialNumber) ;

12.4 Contract Virtual Address

As an extended function, every contract can be added with a Hash value based on its Address, then it can obtain
unlimited virtual Addresses, this newly created address is called Virtual Address.

For example, the account transfer in AEif blockchain is to send the Transfer transaction to the MultiToken contract
along with the parameters of the recipient, transfer currency and amount, etc. One account transfer involves the sender
and recipient, and both parties are identified by the Address. In this situation, the Virtual Address, which is created
by Address and Hash algorithm, can be either party of the account transfer like the normal Address for the user or

106 Chapter 12. Address

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

AEIf, Release release/1.2.3

contract. What’s more, Virtual Address can only be controlled by the primary contract, this enables the contract to
custody transactions or fundings independently for every user.

In essence, the characteristic of Virtual Address is a unique identification. As a result, the Virtual Address, which is
generated by a business action on this contract, is reliable to be used for token transferring.

12.4. Contract Virtual Address 107

AEIf, Release release/1.2.3

108 Chapter 12. Address

cHAPTER 13

Overview

Transactions ultimately are what will change the state of the blockchain by calling methods on smart contracts. A
transaction is either sent to the node via RPC or received from the network. When broadcasting a transaction and if
valid it will be eventually included in a block. When this block is received and executed by the node, it will potential
change the state of contracts.

13.1 Smart Contract

In AEIf blockchain, smart contracts contains a set of state definitions and a set of methods which aiming at modifing
these states.

13.2 Action & View

In AEIf blockchain, there are two types of smart contract methods, actions and views. Action methods will actually
modify the state of one contract if a related transaction has included in a block and executed successfully. View
methods cannot modify the state of this contract in any case.

Developers can claim a action method in proto file like this:

rpc Vote (VoteInput) returns (google.protobuf.Empty) {
}

And claim a view method like this:

rpc GetVotingResult (GetVotingResultInput) returns (VotingResult) {
option (aelf.is_view) = true;

}

109

AEIf, Release release/1.2.3

13.3 Transaction Instance

Here’s the defination of the Transaction.

option csharp_namespace = "AElf.Types";

message Transaction {
Address from = 1;
Address to = 2;
int64 ref_block_number = 3;
bytes ref block prefix = 4;
string method_name = 5;
bytes params = 6;
bytes signature = 10000;

In the js sdk, there are multiple methods to work with transactions. One important method is the getTransaction
method that will build a transaction object for you:

import Aelf from 'aelf-sdk';
var rawTxn = proto.getTransaction ('65dDNxzcd35JES1idFXN5JV8Z7pCwaFnepuYQToNefSggk9!
— '65dDNxzcd35JES1idFXNSJV8Z7pCwaFnepuYQToNefSggk9', 'SomeMethod', encodedParams);

This will build the transaction to the contract at address “65dDNxzcd35jESiidFXN5JV8Z7pCwaFnepuY QToNefSgqk9”
that will call SomeMethod with encoded params.

13.3.1 From

The address of the sender of a transaction.

Note that the From is not currently useful because we derive it from the signature.

13.3.2 To

The address of the contract when calling a contract.

13.3.3 MethodName

The name of a method in the smart contract at the To address.

13.3.4 Params

The parameters to pass to the aforementioned method.

13.3.5 Signature

When signing a transaction it’s actually a subset of the fields: from/to and the target method as well as the parameter
that were given. It also contains the reference block number and prefix.

You can use the js-sdk to sign the transaction with the following method:

110 Chapter 13. Overview

AEIf, Release release/1.2.3

import Aelf from 'aelf-sdk';
var txn = Aelf.wallet.signTransaction (rawTxn, wallet.keyPair);

13.3.6 RefBlockNumber & RefBlockPrefix

These two fields measure whether this transaction has expired. The transaction will be discarded if it is too old.

13.4 Transaction Id

The unique identity of a transaction. Transaction Id consists of a cryptographic hash of the instance basic fields,
excluding signature.

Note that the Transaction Id of transactions will be the same if the sender broadcasted several transactions with the
same origin data, and then these transactions will be regarded as one transaction even though broadcasting several
times.

13.4.1 Verify

One transaction now is verified by the node before forwarding this transaction to other nodes. If the transaction
execution is failed, the node won’t forward this transaction nor package this transaction to the producing block.

We have several transaction validationi providers such as:
 BasicTransactionValidationProvider. To verify the transaction signature and size.

 TransactionExecutionValidationProvider. To pre-execute this transaction before forwarding this transaction or
really packaging this transaction to new block.

* TransactionMethodValidationProvider. To prevent transaction which call view-only contract method from pack-
aging to new block.

13.4.2 Execution

In AEIf, the transaction is executed via .net reflection mechanism.

Besides, we have some transaction execution plugins in AEIf main net. The execution plugins contain pre-execution
plugins and post-execution plugins.

» FeeChargePreExecutionPlugin. This plugin is for charging method fees from transaction sender.

* MethodCallingThresholdPreExecutionPlugin. This plugin is for checking the calling threshold of a specific
contract or contract method.

¢ ResourceConsumptionPostExecutionPlugin. This plugin is for charging resource tokens from called contract
after transaction execution (thus we can know how much resource tokens are cost during the execution.)

13.4.3 TransactionResult

Data structure of TransactionResult:

13.4. Transaction Id 111

AEIf, Release release/1.2.3

message TransactionResourceInfo ({
repeated aelf.ScopedStatePath write_paths = 1;
repeated aelf.ScopedStatePath read_paths = 2;
ParallelType parallel type = 3;
aelf.Hash transaction_id = 4;
aelf.Hash contract_hash = 5;
bool is_nonparallel_ contract_code = 6;

112 Chapter 13. Overview

cHAPTER 14

Core

14.1 Application pattern

We follow generally accepted good practices when it comes to programming, especially those practices that make
sense to our project. Some practices are related to C# and others are more general to OOP principles (like SOLID,
DRY...).

Even though it’s unusual for blockchain projects, we follow a domain driven design (DDD) approach to our devel-
opment style. Part of the reason for this is that one of our main frameworks follows this approach and since the
framework is a good fit for our needs, it’s natural that we take the same design philosophy.

A few key points concerning DDD:
* traditionally, four layers: presentation, application, domain and infrastructure.
* presentation for us corresponds to any type of dApp.
* application represents exposed services mapped to the different domains.
» domain represents the specific events related to our blockchain system and also domain objects.
* finally infra are the third party libraries we use for database, networking. . .

We also have a Github issue where we list some of the coding standards that we follow while developing AEIf.

14.1.1 Frameworks and libraries:

The main programming language used to code and build AEIf is C# and is built with the dotnet core framework. It’s
a choice that was made due to the excellent performances observed with the framework. Dotnet core also comes with
the benefit of being cross platform, at least for the three main ones that are Windows, MacOS and Linux. Dotnet
core also is a dynamic and open source framework and comes with many advantages of current modern development
patterns and is backed by big actors in the IT space.

At a higher level we use an application framework named ABP. From a functional point of view, a blockchain node is
a set of endpoints, like RPC, P2P and cross-chain and some higher level protocol on top of this. So ABP is a natural
fit for this, because it offers a framework for building these types of applications.

113

https://github.com/AElfProject/AElf/issues/1040
https://abp.io/documents/abp/latest/Index

AEIf, Release release/1.2.3

We use the XUnit framework for our unit tests. We also have some custom made frameworks for testing smart
contracts.

For lower level, we use gRPC for the cross-chain and p2p network communication. Besides for gRPC, we also use
Protobuf for serialization purposes.

14.2 Design principles:

External Applications (dApps, programs...)
0s
Network RPC
Kernel Node Plugins
Smart contracts .
Smart contracts . . Consensus
Execution
cross-chain
State Manager Block manager Transaction
Manager
Core 8
KeyValueStorage

The above diagram shows the conceptual structure of the node and the separation between OS and Kernel.

14.2.1 OS

The OS layer implements the application and infrastructure layer for the network. It also implements the high level
handlers for network events and job, like for example synchronizing the chain in reaction to a block announcement.
The OS layer also contains the RPC implementation for the exposed API.

Kernel

The kernel contains the smart contract and execution primitives and definitions. The kernel also defines the components
necessary for accessing the blockchain’s data. Various managers will use the storage layer to access the underlying
database.

The kernel also defines the notion of plugins. The diagram show that the side chain modules are implemented as
plugins.

114 Chapter 14. Core

AEIf, Release release/1.2.3

Structure of the project:

To help follow AEIf’s structure this section will present you with an overview of the solution.

Conceptually, AFIf is built on two main layers: OS and Kernel. The OS contains the high level definition for a node
and the endpoints like RPC and p2p, whereas the kernel mainly contains logic and definitions for smart contracts and
consensus.

AEIf has a native runtime for smart contracts which is implemented in C# and for contracts written in C#. The
implementation is the AEIf.Runtime.CSharp.* projects.

A big part of AEIf is the side chain framework. It is mainly implemented in the AEIf.CrossChain namespace and
defines the main abstractions in the core project and an implementation with grpc in the AEIf.Crosschain.Grpc project.

The AEIf.Test solution folder contains all the tests, coverage of the main functional aspects must be at a maximum to
ensure the quality of our system.

Finally there are other projects that implement either libraries we use, like the crypto library and others for infrastruc-
ture like the database library, that are not as important but are still worth looking into.

14.2.2 Jobs and event handlers

Event handlers implement the logic that reacts to external in internal events. They are in a certain sense the higher
levels of the application (they are called by the framework in purely domain agnostic way). An event handler, mostly
using other services will influence the state of the chain.

14.2.3 Modules

We currently base our architecture on modules that get wired together at runtime. Any new module must inherit
AEIfModule.

Give the need to implement a new module, it usually follows the following steps: 1. Write the event handler or the
job. 2. implement the interface and create manager or infrastructure layer interface that is needed. 3. implement the
infrastructure layer interface in the same project in it do not need add dependency. 4. implement the infrastructure
layer interface in another project, if it need third party dependency, for example, you can add GRPC / MongoDB /
MySQL in the new project.

Example: the p2p network module.

The networking code is defined amongst 2 modules: CoreOSAEIfModule and GrpcNetworkModule. The OS core
defines the application service (used by other components of the node) and also implements it since it is applica-
tion/domain logic. Whereas the infrastructure layer (like the server endpoint), is defined in the OS core modules but is
implemented in another project that relies on a third party - gRPC in this case.

14.2.4 Testing

When writing a new component, event handler, method. . . It’s important for AEIf’s quality to consider the correspond-
ing unit test. As said previously we have a solution-wide test folder where we place all the tests.

14.2. Design principles: 115

AEIf, Release release/1.2.3

116 Chapter 14. Core

cHAPTER 15

Cross Chain

15.1 Introduction

One of the major issues with current blockchain systems is scalability. Mainly because of congestion problems of
current blockchains, the problem is that when a single chain needs to sequentially order and process transactions, in
the event of a popular dApp taking up a lot of resources, it has negative side effects on other dApps.

This is why AEIf side chains were introduced in the initial design. It’s envisioned that one side-chain is responsible
for handling one or more similar business scenarios, distributing different tasks on multiple chains and improving the
overall processing efficiency.

The main idea is that the side-chains are independent and specialized to ensure that the dapps running on them can
perform efficiently and smoothly. A network link will exist between main-chain node and side-chain nodes, but the
communication is indirectly done through what’s called a Merkle root.

Merkle Tree Root

117

AEIf, Release release/1.2.3

The diagram above illustrates the conceptual idea behind side chains.

Side chains are isolated but still need a way to interact with each other for this AEIf introduces a communication
mechanism through merkle roots and indexing to enable cross chain verification scenarios.

The following sections of this documentation will give you an overview of the architecture of AEIlf’s side chains.
There will also be a guide explaining how to set up a main-chain and a side chain node.

15.2 Overview

Conceptually a side chain node and main chain node are similar, they are both independent blockchains, with their
own peer-to-peer network and possibly their own ecosystem. It is even possible to have this setup on multiple levels.
In terms of peer-to-peer networks, all side chains work in parallel to each other but they are linked to a main chain
node through a cross-chain communication mechanism.

Through this link, messages are exchanged and indexing is performed to ensure that transactions from the main-chain
or other side chains are verifiable in the side chain. Implementers can use AEIf libraries and frameworks to build
chains.

One important aspect is the key role that the main chain plays, because its main purpose is to index the side chains.
Only the main chain indexes data about all the side chains. Side chains are independent and do not have knowledge
about each other. This means that when they need to verify what happened in other chains, they need the main chain
as a bridge to provide the cross chain verification information.

15.2.1 Node level architecture

In the current architecture, both the side chain node and the main chain node has one server and exactly one client.
This is the base for AEIf’s two-way communication between main chain and side chains. Both the server and the client
are implemented as a node plugins (a node has a collection of plugins). Interaction (listening and requesting) can start
when both the nodes have started.

118 Chapter 15. Cross Chain

AEIf, Release release/1.2.3

Entity running
Main Chain Node AEIf

) Transaction merkle
Client/Server root from side chain
block.

Merkle tree root
calculated in main
chain cross chain
contract.

Client/Server

Side Chain Node

The diagram above illustrates two nodes run by an entity: one main chain node and one side chain node. Note that the
nodes don’t have to be in the same physical location.

Side chain lifetime

Side chain lifetime involves the following steps.
* Request side chain creation.
* Wait for accept on main chain.
* Start and initialize side chain and it will be indexed by main chain automatically.

* Itis allowed to do cross chain verification iff side chain is indexed correctly.

Communication

When the side chain node starts it will initiate a number of different communications, here are the main points of the
protocol:

* When the side chain node is started for the first time it will request the main chain node for a chain initialization
context.

* After initialization the side chain is launched and will perform a handshake with main chain node to signal that
it is ready to be indexed.

15.2. Overview 119

AEIf, Release release/1.2.3

* During the indexing process, the information of irreversible blocks will be exchanged between side chain and
main chain. The main chain will write the final result in block which is calculated with the cross chain data from
all side chains. Side chain is also recording the data in contract from main chain.

AEIf provides the cross chain communication implementation with grpc.

rpc RequestIndexingFromParentChain (CrossChainRequest) returns (stream acs7.
—ParentChainBlockData) {}

rpc RequestIndexingFromSideChain (CrossChainRequest) returns (stream acs7.
—SideChainBlockData) {}

Cache

For effective indexing, a cache layer is used to store cross chain data received from remote nodes, and make it available
and correct. Cross chain data is cached by chain id and block height with a count limit. The cache layer can give the
data if cached when the node needs it. So cache layer decouples the communication part and node running logic.

Cross chain contract

Apart from the data in block, most cross chain data will be stored by the cross chain contract. Cross chain data cached
by the node is packed in transaction during the mining process and the calculated result is stored by the contract.
Actually, the cross chain data in the block is the side chain indexing result of calculations in this contract. Only with
data in this contract can cross chain verification work correctly.

Data flow

Conceptually the node is like described in the following diagram. Main/Side chain node gets the cross chain data from
the other side and put it in the local memory. Indexing transaction will be packed by miner and cross chain data would
go into State through Crosschain Contract.

Node

Communciation Cache

Tx

ChainDB StateDB

A

15.3 Cross chain verification

Verification is the key feature that enables side chains. Because side chains do not have direct knowledge about other
side chains, they need a way to verify information from other chains. Side chains need the ability to verify that a
transaction was included in another side chains block.

120 Chapter 15. Cross Chain

AEIf, Release release/1.2.3

15.3.1 Indexing

The role of the main chain node is to index all the side chains blocks. This way it knows exactly the current state of all
the side chains. Side chains also index main chain blocks and this is how they can gain knowledge about the inclusion
of transactions in other chains.

Indexing is a continuous process, the main chain is permanently gathering information from the side chains and the
side chains are permanently getting information from the main chain. When a side chain wants to verify a transaction
from another side chain it must wait until the correct main chain block has been indexed.

15.3.2 Merkle tree

Merkle tree is a basic binary tree structure. For cross-chain in AEIf, leaf value is the hash from transaction data. Node
value (which is not a leaf node) is the hash calculated from its children values until to the tree root.

15.3.3 Merkle root

When a transaction gets included in a side chain’s block the block will also include a merkle root of the transactions
of this block. This root is local to this side chain’s blockchain and by itself of little value to other side chains because
they follow a different protocol. So communication between side chains goes through the main chain in the form of a
merkle path. During indexing process, main chain is going to calculate the root with the data from side chains, and side
chains in turn get the root in future indexing. This root is used for final check in cross chain transaction verification.

15.3.4 Merkle path

Merkle path is the node collection for one leaf node to calculate with to the root. Correct merkle path is necessary to
complete any work related to cross chain verification. For the transaction tx from chain A, you need the whole merkle
path root for tx to calculate the final root if you want to verify the existence of this transaction on other chains, and
verify the root by checking whether it is equal to the one obtained from indexing before.

15.3. Cross chain verification 121

AEIf, Release release/1.2.3

[] 3] []

1000 0 0 o B
OdO0dodoodboddom®Edd

15.4 Cross chain verify

This section will explain how to verify a transaction across chains. It assumes a side chain is already deployed and
been indexed by the main-chain.

15.4.1 Send a transaction

Any transaction with status Mined can be verified, the only pre-condition is that the transaction was indexed.

15.4.2 Verify the transaction

There’s basically two scenarios that can be considered:
* verifying a main-chain transaction.

* verifying a side-chain transaction.

rpc VerifyTransaction (VerifyTransactionInput) returns (google.protobuf.BoolValue) {
option (aelf.is_view) = true;

}

message VerifyTransactionInput {
aelf.Hash transaction_id = 1;
aelf.MerklePath path = 2;
int64 parent_chain_height

= 3;
int32 verified_chain_id = 4;

VerifyTransaction is the view method of the cross-chain contract and that will be used to perform the verification.
It returns whether the transaction was mined and indexed by the destination chain. This method will be used in both
scenarios, what differs is the input:

122 Chapter 15. Cross Chain

AEIf, Release release/1.2.3

Verify a main-chain tx
Verifying a main-chain transaction on a side chain, you can call VerifyTransaction on the side-chain with the follow-
ing input values:

e parent_chain_height - the height of the block, on the main-chain, in which the transaction was packed.

* transaction_id - the ID of the transaction that you want to verify.

* path - the merkle path from the main-chain’s web api with the GetMerklePathByTransactionldAsync with
the ID of the transaction.

¢ verified_chain_id - the source chainld, here the main chain’s.

You can get the MerklePath of transaction in one block which packed it by chain’s web api with the Get-
MerklePathByTransactionldAsync (See web api reference).

Verify a side-chain tx
First, you also need the query result of GetMerklePathByTransactionIldAsync, just like verification for a main-chain
tx.

And then if you want to verify a a side-chain transaction, you need to get the CrossChainMerkleProofContext
of this tx from the source chain. You can try the GetBoundParentChainHeightAndMerklePathByHeight method
of Crosschain contract.

The input of this api is the height of block which packed the transaction. And it will return merkle proof context

rpc GetBoundParentChainHeightAndMerklePathByHeight (google.protobuf.Int64Value)
—returns (CrossChainMerkleProofContext) {
option (aelf.is_view) = true;

}

message CrossChainMerkleProofContext ({
int64 bound_parent_chain_height = 1;
aelf.MerklePath merkle_path_from_parent_chain = 2;

With the result returned by above api, you can call VerifyTransaction on the target chain with the following input
values:

* transaction_id - the ID of the transaction that you want to verify.

e parent_chain_height - use the bound_parent_chain_height field of CrossChainMerkleProofContext .

* path - the concatenation of 2 merkle paths, in order:
— the merkle path of the transaction, use the web api method GetMerklePathByTransactionldAsync.
— use the merkle_path_from_parent_chain field from the CrossChainMerkleProofContext object.

¢ verified_chain_id - the source chainld, here the side chain on which the transaction was mined.

15.5 Cross chain transfer

Cross chain transfer is one of mostly used cases when it comes to cross chain verification. AEIf already supports cross
chain transfer functionality in contract. This section will explain how to transfer tokens across chains. It assumes a
side chain is already deployed and been indexed by the main chain.

15.5. Cross chain transfer 123

AEIf, Release release/1.2.3

The transfer will always use the same contract methods and the following two steps: - initiate the transfer - receive the
tokens

15.5.1 Prepare

Few preparing steps are required before cross chain transfer, which is to be done only once for one chain. Just ignore
this preparing part if already completed.

Let’s say that you want to transfer token FOO from chain A to chain B. Note that please make sure you are already
clear about how cross chain transaction verification works before you start. Any input containsMerklePath in the
following steps means the cross chain verification processing is needed. See cross chain verification for more details.

e Validate Token Contract address on chain A.

Send transaction tx_J to Genesis Contract with method ValidateSystemContractAddress. You should
provide system_contract_hash_name and address of Token Contract . tx_I would be packed in block
successfully.

rpc ValidateSystemContractAddress (ValidateSystemContractAddressInput) returns,,
— (google.protobuf.Empty) {}

message ValidateSystemContractAddressInput {
aelf.Hash system_contract_hash_name = 1;
aelf.Address address = 2;

* Register token contract address of chain A on chain B.

Create a proposal, which is proposed to RegisterCrossChainTokenContractAddress, for the de-
fault parliament organization (check Parliament contract for more details) on chain B. Apart from cross chain
verification context, you should also provide the origin data of #x_/ and Token Contract address on chain
A.

rpc RegisterCrossChainTokenContractAddress,,
— (RegisterCrossChainTokenContractAddressInput) returns (google.protobuf.Empty) {}

message RegisterCrossChainTokenContractAddressInput {
int32 from_chain_id = 1;
int64 parent_chain_height = 2;

bytes transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;
aelf.Address token_contract_address = 5;

Validate TokenInfo of FOO on chain A.

Send transaction fx_2 to Token Contract with method ValidateTokenInfoExists on chain A. You
should provide TokenInfo of FOO. tx_2 would be packed in block successfully.

rpc ValidateTokenInfoExists (ValidateTokenInfoExistsInput) returns (google.
—protobuf.Empty) {}

message ValidateTokenInfoExistsInput{
string symbol = 1;
string token_name = 2;
int64 total_supply = 3;
int32 decimals = 4;

(continues on next page)

124 Chapter 15. Cross Chain

AEIf, Release release/1.2.3

(continued from previous page)

aelf.Address issuer = 5;
bool is_burnable = 6;
int32 issue_chain_id = 7;

¢ Create token FOO on chain B.

Send transaction #x_3 to Token Contract with method CrossChainCreateToken on chain B. You should

provide the origin data of #x_2 and cross chain verification context of £x_2.

—Empty) {}

message CrossChainCreateTokenInput {
int32 from_chain_id = 1;
int64 parent_chain_height =
bytes transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

2;

rpc CrossChainCreateToken (CrossChainCreateTokenInput) returns (google.protobuf.

15.5.2 Initiate the transfer

On the token contract of source chain, it’s the CrossChainTransfer method that is used to trigger the transfer:

rpc CrossChainTransfer (CrossChainTransferInput) returns (google.protobuf.Empty) { }

message CrossChainTransferInput {
aelf.Address to = 1;
string symbol = 2;
sint64 amount = 3;
string memo = 4;
int32 to_chain_id = 5;

int32 issue_chain_id 6;

The fields of the input:
* to - the target address to receive token
* symbol - symbol of token to be transferred
¢ amount - amount of token to be transferred
* memo - memo field in this transfer
¢ to_chain_id - destination chain id on which the tokens will be received

¢ issue_chain_id - the chain on which the token was issued

15.5.3 Receive on the destination chain

On the destination chain tokens need to be received, it’s the CrossChainReceiveToken method that is used to

trigger the reception:

15.5. Cross chain transfer

125

AEIf, Release release/1.2.3

rpc CrossChainReceiveToken (CrossChainReceiveTokenInput) returns (google.protobuf.
—Empty) { }

message CrossChainReceiveTokenInput ({
int32 from_chain_id = 1;
int64 parent_chain_height = 2;
bytes transfer_transaction_bytes = 3;
aelf.MerklePath merkle_path = 4;

rpc GetBoundParentChainHeightAndMerklePathByHeight (aelf.Int64Value) returns,
— (CrossChainMerkleProofContext) {
option (aelf.is_view) = true;

message CrossChainMerkleProofContext ({
int64 bound_parent_chain_height = 1;
aelf.MerklePath merkle_path_from_parent_chain = 2;

Let’s review the fields of the input
¢ from_chain_id
the source chain id on which cross chain transfer launched
* parent_chain_height

— for the case of transfer from main chain to side chain: this parent_chain_height is the height of the block
on the main chain that contains the CrossChainTransfer transaction.

— for the case of transfer from side chain to side chain or side chain to main-chain: this parent_chain_height
is the result of GetBoundParentChainHeightAndMerklePathByHeight (input is the height of the Cross-
ChainTransfer, see cross chain verification) - accessible in the bound_parent_chain_height field.

« transfer_transaction_bytes
the serialized form of the CrossChainTransfer transaction.
* merkle_path
You should get this from the source chain but merkle path data construction differs among cases.

— for the case of transfer from main chain to side chain

% only need the merkle path from the main chain’s web api
GetMerklePathByTransactionIdAsync (CrossChainTransfer transaction ID as
input).

— for the case of transfer from side chain to side chain or from side chain to main chain

the merkle path from the source chain’s web api GetMerklePathByTransactionIdAsync
(CrossChainTransfer transaction ID as input).

* the output of GetBoundParentChainHeightAndMerklePathByHeight methodin Cross
chain Contract (CrossChainTransfer transaction’s block height as input). The path nodes
are in the merkle_path_from_parent_chain field of the CrossChainMerkleProofContext
object.

% Concat above two merkle path.

126 Chapter 15. Cross Chain

cHAPTER 16

Smart contract

16.1 Smart contract architecture

At its core, a blockchain platform can be viewed as a distributed multi-tenant database that holds the state of all the
smart contracts deployed on it. After deployment, each smart contract will have a unique address. The address is used
to scope the state and as the identifier for state queries and updates. The methods defined in the smart contract code
provides the permission checks and logics for queries and updates.

In aelf, a smart contract essentially has three parts: the interface, the state, and the business logic.

1. the interface - aelf supports smart contracts coded in multiple languages. Protobuf format is adopted as the
cross-language definition of the contract.

2. the state - the language specific SDK provides some prototypes for the state of different types, after the defi-
nation of properties of certain prototype, developers could query and update state database via accessing the
properties directly.

3. the business logic - aelf provides protobuf plugins to generate the smart contract skeleton from the contract’s
proto definition. Developers just need to fill the logics for each method by override.

Smart contracts in AEIf are spread across the Kernel, the runtime and the SDK. The kernel defines the fundamental
components and infrastructure associated with smart contracts. It also defines the abstractions for execution. Smart
contract also heavily rely on the runtime modules and the sdk project.

Smart contracts, along with the blockchain’s data, form the heart of a blockchain system. They define through some
predefined logic how and according to what rules the state of the blockchain is modified.

A smart contract is a collection of methods that each act upon a particular set of state variables.

Transactions trigger the logic contained in smart contracts. If a user of the blockchain wants to modify some state, he
needs to build a transaction that will call a specific method on some contract. When the transaction is included in a
block and this block is executed, the modifications will be executed.

Smart contracts are a part of what makes dApps possible. They implement a part of the business layer: the part that
gets included in the blockchain.

127

AEIf, Release release/1.2.3

What follows in this section will give you a general overview of how AEIf implements smart contracts. The other
sections will walk you through different notions more specifically.

16.1.1 Architecture overview

In AEIf, Smart Contracts are defined like micro-services. This makes Smart Contracts independent of specific pro-
gramming languages. This implies, for example, that our Consensus Protocol essentially becomes a service because it
is defined through Smart Contract.

Micro Service Message Queue
or

RPC Verification Module

=4
Flce[. = &

P2P Module Core

Storage Module Packing Module
]

= Y

cm & Loy Qo Side Chain
Database Transactions | Block Headers

As showed in the diagram above, smart contracts functionality is defined within the kernel. The kernel defines the
fundamental components and infrastructure associated with establishing smart contracts as a service: * SDK abstracts
- high-level entities that provide a hook for smart contract services to interact with the chain. * Execution - high-level
primitives defined for execution

16.1.2 Chain interactions

Smart contract need to interact with the chain and have access to contextual information. For this AEIf defines a bridge
and a bridge host. Usually the programming SDK corresponding to the specific language will implement features to
communicate with/through the bridge.

One of the major functionalities provided by the bridge is the ability to provide contextual information to the smart
contract being executed. Here are a few: the Self field represents the address of the current contract being called. the
Sender is the address that sent the transaction that executed the contract, and Origin is the address that signed the
transaction. Sometimes Sender and Origin are equal.the OriginTransactionld is the ID of the transaction fetch from
transaction pool or generated by the current miner, and Transactionld is the Id of the transaction is executing, which
means this transaction could be an inline one.

The bridge also exposes extra functionality: contracts can fire Events, which are in a way similar to logging. contracts
can call a method on another contract in a read-only manner. Any state change will not be persisted to the blockchain.
Send inline - this actually creates a transaction to call another method. As opposed to calling the changes to the state -
if any - will be persisted.

State

The main point of a smart contract is to read and/or modify state. The language SDK’s implement state helpers and
through the bridge’s StateProvider.

128 Chapter 16. Smart contract

AEIf, Release release/1.2.3

16.1.3 Runtime and execution

When a block’s transactions are executed, every transaction will generate a trace. Amongst other things, it contains:
the return value of the called method, this can be anything defined in protobuf format and is defined in the service
definition. error outputs, if execution encountered a problem. the results from inner calls in InlineTraces field. the
Logs field will contain the events launched from the called method.

16.1.4 Sdk

AEIf comes with a native C# SDK that gives smart contract developers the necessary tools to develop smart contracts
in C#. It contains helpers to communicate with the bridge. By using the SDK, you can also take advantage of the
type infrastructure defined in the library: ContractState: an interface that is implemented by a class that is destined
to be containers for the state field. MappedState: a base type that defines collections a key-value mapping, generic
subclasses are available to enable multi-key scenarios. SingletonState: this defines non-collection types with a

Any developer or company can develop an sdk and a runtime for a specific language by creating an adapter to com-
municate with the bridge through gRPC.

16.2 Smart contract service

When writing a smart contract in AEIf the first thing that need to be done is to define it so it can then be generate by
our tools. AEIf contracts are defined as services that are currently defined and generated with gRPC and protobuf.

As an example, here is part of the definition of our multi-token contract. Each functionality will be explained more in
detail in their respective sections. Note that for simplicity, the contract has been simplified to show only the essential.

syntax = "proto3";

package token;
option csharp_namespace = "AElf.Contracts.MultiToken.Messages";

service TokenContract {
option (aelf.csharp_state) = "AElf.Contracts.MultiToken.TokenContractState";

// Actions
rpc Create (CreatelInput) returns (google.protobuf.Empty) { }
rpc Transfer (TransferInput) returns (google.protobuf.Empty) { }

// Views
rpc GetBalance (GetBalanceInput) returns (GetBalanceOutput) {
option (aelf.is_view) = true;

}

For the service we have two different types of methods:

* Actions - these are normal smart contract methods that take input and output and usually modify the state of the
chain.

* Views - these methods are special in the sense that they do not modify the state of the chain. They are usually
used in some way to query the value of the contracts state.

rpc Create (CreatelInput) returns (google.protobuf.Empty) { }

16.2. Smart contract service 129

AEIf, Release release/1.2.3

The services takes a protobuf message as input and also returns a protobuf message as output. Note that here it returns
a special message - google.protobuf.Empty - that signifies returning nothing. As a convention we append Input to any
protobuf type that is destined to be a parameter to a service.

16.2.1 View option

rpc GetBalance (GetBalanceInput) returns (GetBalanceOutput) {
option (aelf.is_view) = true;

}

This service is annotated with a view option. This signifies that this is a readonly method and will not modify the state.

16.3 Smart contract events

16.3.1 Event option

During the execution, Events are used internally to represent events that have happened during the execution of a smart
contract. The event will be logged in the transaction traces logs (a collection of LogEvents).

message Transferred ({
option (aelf.is_event) = true;

aelf.Address from = 1 [(aelf.is_indexed) = true];
aelf.Address to = 2 [(aelf.is_indexed) = true];
string symbol = 3 [(aelf.is_indexed) = true];
sint64 amount = 4;
string memo = 5;
}
Notice the option (aelf.is_event) = true; line which indicates that the Transferred message is destined

to be an event.

The following code demonstrates how to fire the event in a contract:

Context .Fire (new Transferred()

{
From = from,
To = to,

)i

External code to the contract can monitor this after the execution of the transaction.

16.4 Smart contract messages

Here we define the concept of the message as defined by the protobuf language. We heavily use these messages to call
smart contracts and serializing their state. The following is the definition of a simple message:

message CreateInput {
string symbol = 1;
sint64 totalSupply = 2;
sint32 decimals = 3;

130 Chapter 16. Smart contract

AEIf, Release release/1.2.3

Here we see a message with three fields of type string, sint64 and sint32. In the message, you can use any type
supported by protobuf, including composite messages, where one of your messages contains another message.

For message and service definitions, we use the proto3 version of the protobuf language. You probably won’t need to
use most of the features that are provided, but here’s the full reference for the language.

16.5 Development Requirements and Restrictions

There are several requirements and restrictions for a contract to be deployable that are classified into below categories:

16.5.1 Contract Project Requirements
Project Properties
e Itis required to add ContractCode property in your contract project, so that the contract’s DLL will be post

processed by AEIf’s contract patcher to perform necessary injections that are required by code checks during
deployment. Otherwise, deployment will fail.

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>
<RootNamespace>AElf.Contracts.MyContract</RootNamespace>
<GeneratePackageOnBuild>true</GeneratePackageOnBuild>
</PropertyGroup>

<PropertyGroup>
<ContractCode Include="..\..\protobuf\my_ contract.proto">
<Link>Protobuf\Proto\my_contract.proto</Link>
</ContractCode>
</PropertyGroup>

e It is required to enable CheckForOverflowUnderflow for both Release and Debug mode so that your
contract will use arithmetic operators that will throw OverflowException if there is any overflow. This is
to ensure that execution will not continue in case of an overflow in your contract and result with unpredictable

output.
<PropertyGroup Condition=" 'S (Configuration)' == 'Debug' ">
<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>
</PropertyGroup>
<PropertyGroup Condition=" 'S$ (Configuration)' == 'Release' ">
<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>
</PropertyGroup>

If your contract contains any unchecked arithmetic operators, deployment will fail.

16.5.2 Contract Class Structure

Below restrictions are put in place to simplify code checks during deployment:

* Only 1 inheritance is allowed from Cont ractBase which is generated by the contract plugin as a nested type
in ContractContainer and only 1 inheritance will be allowed from CSharpSmartContract. If there
are multiple inheritances from ContractBase or CSharpSmartContract, code deployment will fail.

16.5. Development Requirements and Restrictions 131

https://developers.google.com/protocol-buffers/docs/proto3

AEIf, Release release/1.2.3

* Only 1 inheritance will be allowed from ContractState. Similar to above, if there are multiple inheritance
from AE1f.Sdk.ContractState, code check will fail.

* The type inherited from Cont ract State should be the element type of CSharpSmartContract generic
instance type, otherwise code check will fail.

ContractState

ContractContainer

V
i

ContractBase<| State Contractimplementation

CSharpSmartContract

Fig. 1: Contract Class Structure

Limitations on Field Usage

In Contract Implementation Class

¢ Initial value for non-readonly, non-constant fields is not allowed. (Applied to all static / non-static fields) The
reason is, their value will be reset to 0 or null after first execution and their initial value will be lost.

Allowed:

class MyContract : MyContractBase
{

int test;

static const int test = 2;

}

Not Allowed:

class MyContract : MyContractBase
{

' int test = 2;

}

class MyContract : MyContractBase
{

int test;

public MyContract

(continues on next page)

132 Chapter 16. Smart contract

AEIf, Release release/1.2.3

(continued from previous page)

! test = 2;

* Only primitive types, or one of below types are allowed for readonly / constant fields:

Type

All Primitive Types
Marshaller<T>

Method<T, T>
MessageParser<T>
FieldCodec<T>
MapField<T, T>
ReadonlyCollection<T>
ReadonlyDictionary<T, T>

* T can only be primitive type

In Non-Contract Classes (For classes that don’t inherit from ContractBase<T>)

¢ Initial value for non-readonly, non-constant fields is not allowed for static fields. The reason is, their value will
be reset to O or null after first execution and their initial value will be lost.

Allowed:

class AnyClass

{
static int test;

}

Not Allowed:

class AnyClass
{
! static int test = 2;

}

class AnyClass

{

static int test;

public AnyClass
{

! test = 2;
}

Exception Case: Fields with FileDescriptor types. This is due to protobuf generated code. There are static fields
FileDescriptor type fields generated by protobuf code and these fields don’t have readonly modifier. We allow
such fields only if they are FileDescriptor type and write access to these fields are only allowed from the constructor
of the type where descriptor field is declared.

Allowed:

16.5. Development Requirements and Restrictions 133

AEIf, Release release/1.2.3

public class TestType
{

private static FileDescriptor test;

public class TestType

{
test

Not Allowed:

public class TestType
{

private static FileDescriptor test;

public TestType
{
test =

' public void SetFromSomeWhereElse (FileDescriptor input)
oo

! test = input;

Accessing to set test field is restricted to its declaring type’s constructor only.

* Only below types are allowed for readonly / constant static fields:

Type

All Primitive Types
Marshaller<T>

Method<T, T>
MessageParser<T>
FieldCodec<T>
MapField<T, T>
ReadonlyCollection<T>
ReadonlyDictionary<T, T>

* T can only be primitive type

Exception Case: If a type has a readonly field same type as itself, it is only allowed if the type has no instance
field.

This is to support Ling related generated types.
Allowed:

public class TestType
{

private static readonly TestType test;

private static int i;

Not Allowed:

134 Chapter 16. Smart contract

AEIf, Release release/1.2.3

public class TestType
{

private static readonly TestType test;

! private int i;

}

In Contract State

In contract state, only below types are allowed:

Primitive Types
BoolState
Int32State
UInt32State
Int64State
UInt64State
StringState
BytesState

Complex Types

SingletonState<T>

ReadonlyState<T>

MappedState<T, T>

MappedState<T, T, T>

MappedState<T, T, T, T>

MappedState<T, T, T, T,

MethodReference<T, T>

ProtobufState<T>

ContractReferenceState

16.5.3 Type and Namespace Restrictions

Nodes checks new contract code against below whitelist and if there is a usage of any type that is not covered in the
whitelist, or the method access or type name is denied in below whitelist, the deployment will fail.

16.5. Development Requirements and Restrictions

135

AEIf, Release release/1.2.3

Assembly Dependencies

Assembly Trust
netstandard.dll Partial
System.Runtime.dll Partial
System.Runtime.Extensions.dll | Partial
System.Private.CoreLib.dll Partial
System.ObjectModel.dll Partial
System.Linq.dll Full
System.Collections Full
Google.Protobuf.dll Full
AEIf.Sdk.CSharp.dll Full
AEIf. Types.dll Full
AEIf.CSharp.Core.dll Full
AEIf.Cryptography.dll Full

Types and Members Whitelist in System Namespace

Type Member (Field / Method) Allowed
Array AsReadOnly Allowed
Func<T> ALL Allowed
Func<T, T> ALL Allowed
Func<T, T, T> ALL Allowed
Nullable<T> ALL Allowed
Environment CurrentManagedThreadId | Allowed
BitConverter GetBytes Allowed
NotImplementedException ALL Allowed
NotSupportedException ALL Allowed
ArgumentOutOfRangeException | ALL Allowed
DateTime Partially Allowed
DateTime Now, UtcNow, Today Denied

Uri TryCreate Allowed
Uri Scheme Allowed
Uri UriSchemeHttp Allowed
Uri UriSchemeHttps Allowed
void ALL Allowed
object ALL Allowed
Type ALL Allowed
IDisposable ALL Allowed
Convert ALL Allowed
Math ALL Allowed
bool ALL Allowed
byte ALL Allowed
sbyte ALL Allowed
char ALL Allowed
int ALL Allowed
uint ALL Allowed
long ALL Allowed
ulong ALL Allowed

Continued on next page

136

Chapter 16. Smart contract

AEIf, Release release/1.2.3

Table 1 — continued from previous page

Type Member (Field / Method) Allowed
decimal ALL Allowed
string ALL Allowed
string Constructor Denied
Bytel[] ALL Allowed

Types and Members Whitelist in System.Reflection Namespace

Type Member (Field / Method) | Allowed
AssemblyCompanyAttribute ALL Allowed
AssemblyConfigurationAttribute ALL Allowed
AssemblyFileVersionAttribute ALL Allowed
AssemblyInformationalVersionAttribute | ALL Allowed
AssemblyProductAttribute ALL Allowed
AssemblyTitleAttribute ALL Allowed
Other Whitelisted Namespaces
Namespace Type Member Allowed
System.Ling ALL ALL Allowed
System.Collections ALL ALL Allowed
System.Collections.Generic ALL ALL Allowed
System.Collections.ObjectModel ALL ALL Allowed
System.Globalization CulturelInfo InvariantCulture Allowed
System.Runtime.CompilerServices | RuntimeHelpers | InitializeArray Allowed
System.Text Encoding UTF8, GetByteCount | Allowed
Allowed Types for Arrays
Type Array Size Limit
byte 40960
short 20480
int 10240
long 5120
ushort 20480
uint 10240
ulong 5120
decimal 2560
char 20480
string 320
Type 5
Object 5
FileDescriptor 10
GeneratedClrTypeInfo | 100
16.5.4 Other Restrictions
16.5. Development Requirements and Restrictions 137

AEIf, Release release/1.2.3

Get

HashCode Usage

* GetHashCode method is only allowed to be called within GetHashCode methods. Calling GetHashCode meth-
ods from other methods is not allowed. This allows developers to implement their custom GetHashCode meth-
ods for their self defined types if required, and also allows protobuf generated message types.

* Itis not allowed to set any field within GetHashCode methods.

Execution observer

* AEIf’s contract patcher will patch method call count observer for your contract. This is used to prevent infinitely
method call like recursion. The number of method called in your contract will be counted during transaction
execution. The observer will pause transaction execution if the number exceeds 15,000. The limit adjustment is

governed by Parliament.

e AEIf’s contract patcher will patch method branch count observer for your contract. This is used to prevent
infinitely loop case. The number of code control transfer in your contract will be counted during transaction
execution. The observer will pause transaction execution if the number exceeds 15,000. The limit adjustment is
governed by Parliament. The control transfer opcodes in C# contract are shown as below.

Opcode

OpCodes.

Beqg

OpCodes.

Beqg_S

OpCodes.

Bge

OpCodes.

Bge_S

OpCodes.

Bge_Un

OpCodes.

Bge_Un_S

OpCodes.

Bgt

OpCodes.

Bgt_S

OpCodes.

Ble

OpCodes.

Ble_S

OpCodes.

Ble_Un

OpCodes.

Blt

OpCodes.

Bne_Un

OpCodes.

Bne_Un_S

OpCodes.

Br

OpCodes.

Brfalse

OpCodes.

Brfalse_S

OpCodes.

Brtrue

OpCodes.

Brtrue

OpCodes.

Brtrue_S

OpCodes.

Br_S

State size limit

* The size of data written to State would be limited every time. AEIf’s contract patcher is going to patch the
code to validate your contract. As a result, you cannot write too big thing to contract and the limit is 128k by
default. The limit adjustment is governed by Parliament.

138

Chapter 16. Smart contract

cHAPTER 17

AELF API 1.0

17.1 Chain API

17.1.1 Get information about a given block by block hash. Optionally with the list

of its transactions.

GET /api/blockChain/block

Parameters
Type Name Description Schema | Default
Query | blockHash block hash string
optional
Query | include Transactions include transactions or not | boolean "false"
optional
Responses
HTTP Code | Description | Schema
200 Success BlockDto
Produces

e text/plain; v=1.0

e application/Jjson; v=1.0

* text/json; v=1.0

139

AEIf, Release release/1.2.3

* application/x-protobuf;

Tags

¢ BlockChain

v=1.0

17.1.2 Get information about a given block by block height. Optionally with the list
of its transactions.

GET /api/blockChain/blockByHeight

Parameters
Type Name Description Schema Default
Query blockHeight block height integer (int64)
optional
Query include Transac- | include transactions | boolean "false"
tions or not
optional
Responses
HTTP Code | Description | Schema
200 Success BlockDto
Produces

e text/plain;

v=1.0

e application/Jjson; v=1.0

* text/json;

e application/x-protobuf;

Tags

¢ BlockChain

v=1.0

v=1.0

17.1.3 Get the height of the current chain.

GET /api/blockChain/blockHeight

140

Chapter 17. AELF API1.0

AEIf, Release release/1.2.3

Responses

HTTP Code | Description | Schema

200 Success integer (int64)

Produces

e text/plain; v=1.0

e application/Jjson; v=1.0

* text/json; v=1.0

* application/x—protobuf; v=1.0

Tags

¢ BlockChain

17.1.4 Get the current state about a given block

GET /api/blockChain/blockState

Parameters
Type Name Description | Schema
Query | blockHash optional | block hash string
Responses
HTTP Code | Description | Schema
200 Success BlockStateDto
Produces

e text/plain; v=1.0
* application/json; v=1.0
e text/json; v=1.0

e application/x-protobuf; v=1.0

Tags

¢ BlockChain

17.1. Chain API

141

AEIf, Release release/1.2.3

17.1.5 Get the current status of the block chain.

GET /api/blockChain/chainStatus

Responses

Pro

Tag

17.1.6 Get the protobuf definitions related to a contract

duces

e text/plain;

HTTP Code

Description

Schema

200

Success

ChainStatusDto

v=1.0

e application/Jjson; v=1.0

* text/json;

v=1.0

* application/x—-protobuf; v=1.0

S

¢ BlockChain

GET /api/blockChain/contractFileDescriptorSet

Parameters

Responses

Pro

duces

* text/plain;

Type Name Description Schema
Query | address optional | contract address | string
HTTP Code | Description | Schema
200 Success string (byte)
v=1.0
1.0

* application/json; v=

* text/json;

v=1.0

* application/x-protobuf; v=1.0

142

Chapter 17. AELF API1.0

AEIf, Release release/1.2.3

Tags

¢ BlockChain

17.1.7 POST /api/blockChain/executeRawTransaction

Parameters

Responses

Consumes

* application/json—-patch+json;

Type | Name Schema
Body | input optional | ExecuteRawTransactionDto
HTTP Code | Description | Schema
200 Success string
v=1.0

e application/Jjson; v=1.0

* text/json;

* application/*+json;

v=1.0

v=1.0

* application/x-protobuf; v=1.0

Produces

* text/plain;

v=1.0

* application/json;

* text/json;

v=1.0

v=1.0

* application/x—-protobuf; v=1.0

Tags

¢ BlockChain

17.1.8 Call a read-only method on a contract.

POST /api/blockChain/executeTransaction

17.1. Chain API

143

AEIf, Release release/1.2.3

Parameters

Responses

Consumes

* application/json—-patch+json;

* application/json;

* text/json;

v=1.0

Type | Name

Schema

Body | input optional | ExecuteTransactionDto

v=1.0

* application/*+json; v=1.0

* application/x—protobuf; v=1.0

Produces

* text/plain;

v=1.0

* application/json;

* text/json;

v=1.0

v=1.0

* application/x-protobuf; v=1.0

Tags

¢ BlockChain

HTTP Code | Description | Schema
200 Success string
v=1.0

17.1.9 Get the merkle path of a transaction.

GET /api/blockChain/merklePathByTransactionId

Parameters

Type Name

Schema

Query | transactionld optional | string

144

Chapter 17. AELF API1.0

AEIf, Release release/1.2.3

Responses

Produces

* text/plain;

HTTP Code

Description

Schema

200

Success

MerklePathDto

v=1.0

e application/Jjson; v=1.0

* text/json;

* application/x-protobuf;

Tags

¢ BlockChain

v=1.0

v=1.0

17.1.10 Creates an unsigned serialized transaction

POST /api/blockChain/rawTransaction

Parameters

Responses

Consumes

Type | Name Schema

Body | input optional | CreateRawTransactionlnput
HTTP Code | Description | Schema
200 Success CreateRawTransactionOutput

* application/Jjson-patch+json; v=1.0

* application/json;

* text/json;

v=1.0

v=1.0

e application/x+json; v=1.0

* application/x-protobuf;

v=1.0

17.1. Chain API

145

AEIf, Release release/1.2.3

Produces

e text/plain; v=1.0

* application/json; v=1.0

* text/json; v=1.0

* application/x-protobuf; v=1.0
Tags

¢ BlockChain

17.1.11 send a transaction

POST /api/blockChain/sendRawTransaction

Parameters
Type | Name Schema
Body | input optional | SendRawTransactionlnput
Responses
HTTP Code | Description | Schema
200 Success SendRawTransactionOutput
Consumes

* application/Jjson-patch+json; v=1.0
* application/json; v=1.0

e text/json; v=1.0

* application/*+json; v=1.0

* application/x—-protobuf; v=1.0

Produces

e text/plain; v=1.0
* application/json; v=1.0
e text/json; v=1.0

* application/x-protobuf; v=1.0

146 Chapter 17. AELF AP11.0

AEIf, Release release/1.2.3

Tags

¢ BlockChain

17.1.12 Broadcast a transaction

POST /api/blockChain/sendTransaction

Parameters
Type | Name Schema
Body | input optional | SendTransactionlnput
Responses
HTTP Code | Description | Schema
200 Success SendTransactionOutput
Consumes

* application/json-patch+json; v=1.0

* application/json; v=1.0
* text/json; v=1.0

* application/*+json; v=1.0

* application/x-protobuf; v=1.0

Produces

e text/plain; v=1.0
e application/Jjson; v=1.0

* text/json; v=1.0

* application/x—-protobuf; v=1.0

Tags

¢ BlockChain

17.1.13 Broadcast multiple transactions

POST /api/blockChain/sendTransactions

17.1. Chain API

147

AEIf, Release release/1.2.3

Parameters

Type | Name Schema

Body | input optional | SendTransactionsInput
Responses

HTTP Code | Description | Schema

200 Success < string > array
Consumes

* application/Jjson-patch+json; v=1.0
e application/json; v=1.0

e text/json; v=1.0

* application/*+json; v=1.0

* application/x—protobuf; v=1.0

Produces

e text/plain; v=1.0

* application/json; v=1.0

e text/json; v=1.0

* application/x-protobuf; v=1.0

Tags

¢ BlockChain

17.1.14 Estimate transaction fee

POST /api/blockChain/calculateTransactionFee

Parameters

Type | Name Schema Default
Body | Input optional | CalculateTransactionFeelnput

148 Chapter 17. AELF AP11.0

AEIf, Release release/1.2.3

Responses

HTTP Code | Description | Schema
200 Success CalculateTransactionFeeOutput

Consumes

* application/json-patch+json; v=1.0
e application/Jjson; v=1.0

* text/json; v=1.0

* application/*+json; v=1.0

* application/x-protobuf; v=1.0

Produces

* text/plain; v=1.0

e application/json; v=1.0

e text/json; v=1.0

* application/x—-protobuf; v=1.0

Tags

¢ BlockChain

17.1.15 GET /api/blockChain/taskQueueStatus

Responses

HTTP Code | Description | Schema
200 Success < TaskQueuelnfoDto > array

Produces

e text/plain; v=1.0
* application/json; v=1.0
* text/json; v=1.0

* application/x-protobuf; v=1.0

Tags

¢ BlockChain

17.1. Chain API 149

AEIf, Release release/1.2.3

17.1.16 Get the transaction pool status.

GET /api/blockChain/transactionPoolStatus

Responses

Produces

e text/plain;

e application/Jjson; v=1.0

* text/json;

* application/x-protobuf;

Tags

¢ BlockChain

v=1.0

v=1.0

17.1.17 Get the current status of a transaction

HTTP Code | Description | Schema
200 Success GetTransactionPoolStatusOutput
v=1.0

GET /api/blockChain/transactionResult

Parameters

Responses

The transaction result DTO object returned contains the transaction that contains the parameter values used for the

Type Name

Description

Schema

Query

transactionld optional

transaction id

string

HTTP Code

Description

Schema

200

Success

TransactionResultDto

call. The node will return the byte array as a base64 encoded string if it can’t decode it.

Produces

* text/plain;

v=1.0

* application/json; v=1.0

* text/json;

v=1.0

150

Chapter 17. AELF API1.0

AEIf, Release release/1.2.3

* application/x—protobuf; v=1.0

Tags

¢ BlockChain

17.1.18 Get multiple transaction resulits.

GET /api/blockChain/transactionResults

Parameters
Type Name Description | Schema Default
Query | blockHash optional | block hash string
Query | limit optional limit integer (int32) | 10
Query | offset optional offset integer (int32) | 0
Responses
HTTP Code | Description | Schema
200 Success < TransactionResultDto > array
Produces

e text/plain; v=1.0
* application/json; v=1.0
e text/json; v=1.0

e application/x-protobuf; v=1.0

Tags

¢ BlockChain

17.2 Net API

17.2.1 Get information about the node’s connection to the network.

’ GET /api/net/networkInfo

17.2. Net API 151

AEIf, Release release/1.2.3

Responses

Produces

e text/plain;

e application/Jjson; v=1.0

* text/json;

* application/x-protobuf;

Tags

¢ Net

HTTP Code | Description | Schema
200 Success GetNetworkInfoOutput
v=1.0
v=1.0
v=1.0

17.2.2 Attempts to add a node to the connected network nodes

POST /api/net/peer

Parameters

Responses

Security

¢ Basic Authentication

Consumes

Type | Name Schema
Body | input optional | AddPeerInput
HTTP Code | Description | Schema
200 Success boolean

401 Unauthorized

* application/Jjson-patch+json; v=1.0

* application/json;

* text/json;

v=1.0

v=1.0

* application/x+json; v=1.0

* application/x-protobuf;

v=1.0

152

Chapter 17. AELF API1.0

AEIf, Release release/1.2.3

Produces

* text/plain;

v=1.0

* application/json; v=1.0

* text/json;

v=1.0

* application/x-protobuf; v=1.0

Tags

¢ Net

17.2.3 Attempts to remove a node from the connected network nodes

DELETE /api/net/peer

Parameters

Responses

Security

¢ Basic Authentication

Produces

* text/plain;

Type Name Description | Schema
Query | address optional | ip address string
HTTP Code | Description | Schema
200 Success boolean
401 Unauthorized

v=1.0

e application/Jjson; v=1.0

* text/json;

v=1.0

* application/x—-protobuf; v=1.0

Tags

¢ Net

17.2. Net API

153

AEIf, Release release/1.2.3

17.2.4 Get peer info about the connected network nodes

GET /api/net/peers

Parameters
Type Name Schema | Default
Query | withMetrics optional | boolean "false"
Responses
HTTP Code | Description | Schema
200 Success < PeerDto > array

Produces

* text/plain; v=1.0

* application/json; v=1.0

e text/json; v=1.0

* application/x—-protobuf; v=1.0
Tags

* BlockChain
17.2.5 Definitions
AddPeerinput

Name Description | Schema
Address optional | ip address string
BlockBodyDto
Name Schema
Transactions optional < string > array
TransactionsCount optional | integer (int32)

154 Chapter 17. AELF API 1.0

AEIf, Release release/1.2.3

BlockDto

BlockHeaderDto

BlockStateDto

ChainStatusDto

Name Schema

BlockHash optional | string

Body optional BlockBodyDto

Header optional BlockHeaderDto

BlockSize optional integer (int32)
Name Schema
Bloom optional string
Chainld optional string
Extra optional string
Height optional integer (int64)
MerkleTreeRootOfTransactions optional string
MerkleTreeRootOfWorldState optional string
MerkleTreeRootOfTransactionState optional | string
PreviousBlockHash optional string
SignerPubkey optional string
Time optional string (date-time)

Name Schema

BlockHash optional string

BlockHeight optional integer (int64)

Changes optional < string, string > map

Deletes optional < string > array

PreviousHash optional | string

Name

Schema

BestChainHash optional

string

BestChainHeight optional

integer (int64)

Branches optional

< string, integer (int64) > map

Chainld optional

string

GenesisBlockHash optional string
GenesisContractAddress optional string
LastIrreversibleBlockHash optional string
LastIrreversibleBlockHeight optional | integer (int64)
LongestChainHash optional string

LongestChainHeight optional

integer (int64)

NotLinkedBlocks optional

< string, string > map

17.2. Net API

155

AEIf, Release release/1.2.3

CreateRawTransactionlnput

CreateRawTransactionOutput

ExecuteRawTransactionDto

ExecuteTransactionDto

GetNetworkInfoOutput

Name Description Schema
From required from address string
MethodName required contract method name string
Params required contract method parameters | string
RefBlockHash required refer block hash string
RefBlockNumber required | refer block height integer (int64)
To required to address string
Name Schema
RawTransaction optional | string
Name Description Schema
RawTransaction optional | raw transaction | string
Signature optional signature string
Name Description Schema
RawTransaction optional | raw transaction | string

Name Description Schema
Connections optional total number of open connections between this node and other nodes | integer (int32)
Protocol Version optional | network protocol version integer (int32)
Version optional node version string

GetTransactionPoolStatusOutput

Name Schema
Queued optional integer (int32)
Validated optional | integer (int32)

156

Chapter 17. AELF API1.0

AEIf, Release release/1.2.3

LogEventDto
Name Schema
Address optional string
Indexed optional < string > array
Name optional string
Nonlndexed optional | string
MerklePathDto
Name Schema
MerklePathNodes optional | < MerklePathNodeDto > array
MerklePathNodeDto
Name Schema
Hash optional string
IsLeftChildNode optional | boolean
MinerinRoundDto
Name Schema

ActualMiningTimes optional

< string (date-time) > array

ExpectedMiningTime optional

string (date-time)

ImpliedIrreversibleBlockHeight optional

integer (int64)

InValue optional

string

MissedBlocks optional

integer (int64)

Order optional

integer (int32)

QOutValue optional

string

PreviousInValue optional

string

ProducedBlocks optional

integer (int64)

ProducedTinyBlocks optional

integer (int32)

PeerDto

Name

Schema

Buffered AnnouncementsCount optional

integer (int32)

BufferedBlocksCount optional

integer (int32)

Buffered TransactionsCount optional

integer (int32)

ConnectionTime optional

integer (int64)

Inbound optional

boolean

IpAddress optional

string

Protocol Version optional

integer (int32)

RequestMetrics optional

< RequestMetric > array

ConnectionStatus optional

string

NodeVersion optional

string

17.2. Net API

AEIf, Release release/1.2.3

RequestMetric

RoundDto

Name Schema
Info optional string
MethodName optional string

RequestTime optional

Timestamp

RoundTripTime optional

integer (int64)

Name

Schema

Co nfirmedIrreversibleBlockHeight optional

integer (int64)

Confirm edIrreversibleBlockRoundNumber optional

integer (int64)

Ext raBlockProducerOfPreviousRound optional

string

IsMinerListJustChanged optional

boolean

RealTimeMinerInformation optional

< string, MinerlnRoundDto > map

RoundlId optional

integer (int64)

RoundNumber optional

integer (int64)

TermNumber optional

integer (int64)

SendRawTransactionlnput

SendRawTransactionOutput

SendTransactionlnput

SendTransactionOutput

Name Description Schema
ReturnTransaction optional | return transaction detail or not | boolean
Signature optional signature string
Transaction optional raw transaction string

Name Schema

Transaction optional TransactionDto

Transactionld optional | string

Name Description Schema

RawTransaction optional

raw transaction | string

Name

Schema

Transactionld optional

string

158

Chapter 17. AELF API1.0

AEIf, Release release/1.2.3

SendTransactionslinput

Name

Description

Schema

RawTransactions optional

raw transactions

string

TaskQueuelnfoDto

Timestamp

TransactionDto

TransactionResultDto

Name Schema
Name optional | string
Size optional integer (int32)
Name Schema
Nanos optional integer (int32)
Seconds optional | integer (int64)
Name Schema
From optional string
MethodName optional string
Params optional string

RefBlockNumber optional

integer (int64)

RefBlockPrefix optional string

Signature optional string
To optional string
Name Schema
BlockHash optional string
BlockNumber optional integer (int64)
Bloom optional string
Error optional string

Logs optional

< LogEventDto > array

ReturnValue optional

string

Status optional

string

Transaction optional

TransactionDto

Transactionld optional

string

TransactionSize optional

integer (int32)

17.2. Net API

159

AEIf, Release release/1.2.3

CalculateTransactionFeelnput

Name

Schema

RawTrasaction optional | string

CalculateTransactionFeeOutput

Name

Schema

Success optional

bool

TransactionFee optional

Dictionary<string, long>

ResourceFee optional

Dictionary<string, long>

160

Chapter 17. AELF API1.0

cHAPTER 18

Chain SDK

18.1 aelf-sdk.js - AELF JavaScript API

18.1.1 Introduction

aelf-sdk.js for aelf is like web.js for ethereum.

aelf-sdk.js is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.js, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.js

18.1.2 Adding aelf-sdk.js

First you need to get aelf-sdk.js into your project. This can be done using the following methods:
npm: npm install aelf-sdk
pure js: 1ink dist/aelf.umd.]s

After that you need to create a aelf instance and set a provider.

// in brower use: <script src="https://unpkg.com/aelf-sdk@lastest/dist/aelf.umd. js"></
—script>

// in node. js use: const AElf = require('aelf-sdk');

const aelf = new AElf (new AElf.providers.HttpProvider ('http://127.0.0.1:8000"));

18.1.3 Examples

You can also see full examples in . /examples;

161

https://github.com/AElfProject/aelf-sdk.js

AEIf, Release release/1.2.3

Create instance

Create a new instance of AEIf, connect to an AELF chain node.

import AElf from 'aelf-sdk';

// create a new instance of AEIf
const aelf new AE1f (new AElf.providers.HttpProvider ('http://127.0.0.1:1235"));

Create or load a wallet

Create or load a wallet with AE1f .wallet

"' javascript
// create a new wallet
const newWallet = AElf.wallet.createNewWallet ();
// load a wallet by private key
const priviteKeyWallet = AElf.wallet.getWalletByPrivateKey ('xxxxxxx') ;
// load a wallet by mnemonic
const mnemonicWallet = AElf.wallet.getWalletByMnemonic('set kite ...'");

3.Get a system contract address

Get a system contract address, take AE1f .ContractNames.Token as an example

const tokenContractName = 'AElf.ContractNames.Token';
let tokenContractAddress;
(async () => {
// get chain status
const chainStatus = await aelf.chain.getChainStatus();
// get genesis contract address
const GenesisContractAddress = chainStatus.GenesisContractAddress;
// get genesis contract instance
const zeroContract = await aelf.chain.contractAt (GenesisContractAddress,
—newWallet) ;
// Get contract address by the read only method ‘GetContractAddressByName of_,
—genesis contract
tokenContractAddress = await zeroContract.GetContractAddressByName.call (AE1f.
—utils.sha256 (tokenContractName)) ;
10

4.Get a contract instance

Get a contract instance by contract address

const wallet = AElf.wallet.createNewWallet ();
let tokenContract;
// Use token contract for examples to demonstrate how to get a contract instance_
—1in different ways
// in async function
(async () => {
tokenContract = await aelf.chain.contractAt (tokenContractAddress, wallet)

(continues on next page)

162 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

(continued from previous page)

IDNON

// promise way
aelf.chain.contractAt (tokenContractAddress, wallet)
.then (result => {
tokenContract = result;
1)

// callback way
aelf.chain.contractAt (tokenContractAddress, wallet, (error, result) => {if
— (error) throw error; tokenContract = result;});

5.Use contract instance

How to use contract instance

A contract instance consists of several contract methods and methods can be called in
—two ways: read-only and send transaction.

(async () => {
// get the balance of an address, this would not send a transaction,
// or store any data on the chain, or required any transaction fee, only get,
—the balance
// with “.call’ method, ‘aelf-sdk’ will only call read-only method
const result = await tokenContract.GetBalance.call ({
sympbol: "ELEF",
owner: "7s4XoUHfPugoZAwnTV7pHWZAaivMiL8aZrDSnY9%brElwoa8vz"
})i

console.log(result);

J *k
{
"symbol": "ELF",
"owner": "2661mQaaPnzLCoqXPeys3Vzf2wtGM1kSrqVBgNY4JUaGBxEsX8",
"balance": "1000000000000"
F*/
// with no ‘.call', ‘aelf-sdk' will sign and send a transaction to the chain,

—and return a transaction 1id.
// make sure you have enough transaction fee ‘ELF' in your wallet
const transactionId = await tokenContract.Transfer ({
symbol: "ELE",
to: "7s4XoUHfPuqoZAwnTV7pHWZAaivMiL8aZrDSnY9brElwoa8vz",
amount: "1000000000",
memo: "transfer in demo"
1)
console.log(transactionId);
J %
{
"TransactionId": "123123"

*/
IO

18.1. aelf-sdk.js - AELF JavaScript API 163

AEIf, Release release/1.2.3

6.Change the node endpoint

Change the node endpoint by using aelf.setProvider

" javascript
import AElf from 'aelf-sdk';

const aelf = new AELf (new AElf.providers.HttpProvider ('http://127.0.0.1:1235"));
aelf.setProvider (new AElf.providers.HttpProvider ('http://127.0.0.1:8000"'));

18.1.4 Web API
You can see how the Web Api of the node works in { chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

parameters and returns based on the URL: https://aelf-public-node.aelf.io/swagger/index.
html

The usage of these methods is based on the AEIf instance, so if you don’t have one please create it:

import AElf from 'aelf-sdk';

// create a new instance of AElf, change the URL if needed
const aelf = new AElf (new AElf.providers.HttpProvider ('http://127.0.0.1:1235"));

1.getChainStatus

Get the current status of the block chain.
Web API path
/api/blockChain/chainStatus
Parameters
Empty
Returns
Object
* ChainId - String
* Branches - Object
* NotLinkedBlocks - Object
* LongestChainHeight - Number
* LongestChainHash - String
* GenesisBlockHash - String
* GenesisContractAddress - String
* LastIrreversibleBlockHash - String
e LastIrreversibleBlockHeight - Number

* BestChainHash - String

164 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

* BestChainHeight - Number

Example

aelf.chain.getChainStatus ()
.then(res => {
console.log(res);

})

2.getContractFileDescriptorSet

Get the protobuf definitions related to a contract

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1. contractAddress - String address of a contract

Returns
String

Example

aelf.chain.getContractFileDescriptorSet (contractAddress)

.then(res => {
console.log(res);

})

3.getBlockHeight

Get current best height of the chain.
Web API path
/api/blockChain/blockHeight
Parameters

Empty

Returns

Number

Example

aelf.chain.getBlockHeight ()
.then (res => {
console.log(res);

P

4.getBlock

Get block information by block hash.
Web API path

18.1. aelf-sdk.js - AELF JavaScript API

165

AEIf, Release release/1.2.3

/api/blockChain/block
Parameters
1. blockHash - String
2. includeTransactions — Boolean:
* true require transaction ids list in the block
* false Doesn’t require transaction ids list in the block
Returns
Object
* BlockHash - String
* Header - Object
— PreviousBlockHash - String
— MerkleTreeRootOfTransactions - String
— MerkleTreeRootOfWorldState - String
- Extra - Array
— Height - Number
— Time - google.protobuf.Timestamp
— ChainId - String
- Bloom - String
— SignerPubkey - String
* Body - Object
— TransactionsCount - Number
— Transactions - Array
* transactionId - String

Example

aelf.chain.getBlock (blockHash, false)
.then(res => {
console.log(res);

})

5.getBlockByHeight

Web API path
/api/blockChain/blockByHeight
Get block information by block height.
Parameters

1. blockHeight - Number

2. includeTransactions - Boolean:

* true require transaction ids list in the block

166

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

* false Doesn’t require transaction ids list in the block
Returns
Object

* BlockHash - String

* Header - Object

— PreviousBlockHash - String

MerkleTreeRootOfTransactions — String
— MerkleTreeRootOfWorldState - String

— Extra - Array

— Height - Number

— Time - google.protobuf.Timestamp

— ChainId - String

— Bloom - String

— SignerPubkey - String

* Body - Object

— TransactionsCount - Number
- Transactions - Array
* transactionId - String

Example

aelf.chain.getBlockByHeight (12, false)
.then (res => {
console.log(res);

})

6.getTxResult

Get the result of a transaction
Web API path
/api/blockChain/transactionResult
Parameters

1. transactionId - String
Returns
Object

e TransactionId - String

* Status - String

e Logs — Array

— Address - String

— Name - String

18.1. aelf-sdk.js - AELF JavaScript API

167

AEIf, Release release/1.2.3

— Indexed - Array

— NonIndexed - String
* Bloom - String
* BlockNumber - Number
e Transaction - Object

— From - String

To - String

RefBlockNumber - Number

RefBlockPrefix - String

MethodName - String

— Params - Object

Signature - String
* ReadableReturnValue - Object
* Error - String

Example

aelf.chain.getTxResult (transactionId)
.then (res => {
console.log(res);

b

7.getTxResults

Get multiple transaction results in a block
Web API path
/api/blockChain/transactionResults
Parameters

1. blockHash - String

2. offset - Number

3. limit - Number
Returns Array - The array of method descriptions:

* the transaction result object

Example

aelf.chain.getTxResults (blockHash, 0, 2)
.then (res => {
console.log(res);

})

168 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

8.getTransactionPoolStatus

Get the transaction pool status.

Web API path
/api/blockChain/transactionPoolStatus
Parameters

Empty

9.sendTransaction

Broadcast a transaction

Web API path
/api/blockChain/sendTransaction
POST

Parameters

Object - Serialization of data into protobuf data, The object with the following structure :

* RawTransaction - String:

usually developers don’t need to use this function directly, just get a contract method and send transaction by call

contract method:

10.sendTransactions

Broadcast multiple transactions

POST

Parameters

Object - The object with the following structure :

* RawTransaction - String

11.callReadOnly

Call a read-only method on a contract.

POST

Parameters

Object - The object with the following structure :

* RawTransaction - String

18.1. aelf-sdk.js - AELF JavaScript API

169

AEIf, Release release/1.2.3

12.getPeers

Get peer info about the connected network nodes
GET
Parameters
1. withMetrics - Boolean:
* true with metrics

e false without metrics

13.addPeer

Attempts to add a node to the connected network nodes
POST

Parameters

Object - The object with the following structure :

* Address - String

14.removePeer

Attempts to remove a node from the connected network nodes
DELETE
Parameters

1. address - String

15.calculateTransactionFee

Estimate transaction fee

POST

Parameters

Object - The object with the following structure :

* RawTransaction - String

16.networkinfo

Get information about the node’s connection to the network
GET
Parameters

Empty

170

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

18.1.5 AElf.wallet

AElf.wallet is a static property of AE1f.

Use the api to see detailed results

1.createNewWallet

Returns
Object
e mnemonic - String: mnemonic
e BIP44Path - String: m/purpose’/coin_type’/account’/change/address_index
e childWallet - Object: HD Wallet
e keyPair - String: The EC key pair generated by elliptic
* privateKey - String: private Key
* address - String: address

Example

import AElf from 'aelf-sdk';
const wallet = AElf.wallet.createNewWallet ();

2.getWalletByMnemonic

Parameters

1. mnemonic - String : wallet’s mnemonic
Returns
Object: Complete wallet object.

Example

const wallet = AElf.wallet.getWalletByMnemonic (mnemonic);

3.getWalletByPrivateKey

Parameters

1. privateKey: String: wallet’s private key
Returns
Ob ject: Complete wallet object, with empty mnemonic

Example

const wallet = AElf.wallet.getWalletByPrivateKey (privateKey) ;

18.1. aelf-sdk.js - AELF JavaScript API 171

AEIf, Release release/1.2.3

4.signTransaction

Use wallet keypair to sign a transaction
Parameters
1. rawTxn - String
2. keyPair - String
Returns
Object: The object with the following structure :

Example

const result = aelf.wallet.signTransaction (rawTxn, keyPair);

5.AESEncrypt

Encrypt a string by aes algorithm
Parameters

1. input - String

2. password - String
Returns

String

6.AESDecrypt

Decrypt by aes algorithm
Parameters

1. input - String

2. password - String
Returns

String

18.1.6 AEIf.pbjs

The reference to protobuf.js, read the documentation to see how to use.

18.1.7 AEIf.pbUtils

Some basic format methods of aelf.

For more information, please see the code in src/utils/proto. js. Itis simple and easy to understand.

172

Chapter 18. Chain SDK

https://github.com/protobufjs/protobuf.js

AEIf, Release release/1.2.3

AEIf.utils

Some methods for aelf.

For more information, please see the code in src/utils/utils. js. It is simple and easy to understand.

Check address

const AElf = require('aelf-sdk'");
const {baseb58} = AElf.utils;
baseb8.decode ('Saddresss'); // throw error if invalid

18.1.8 AElf.version

import AElf from 'aelf-sdk';
AElf.version // eg. 3.2.23

18.1.9 Requirements

* Node.js
* NPM

18.1.10 Support

18.1.11 About contributing

Read out [contributing guide]

18.1.12 About Version

https://semver.org/

18.2 aelf-sdk.cs - AELF C# API

This C# library helps in the communication with an AEIlf node. You can find out more here.

18.2.1 Introduction

aelf-sdk.cs is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.cs, as well as providing a API
reference documentation with examples.

18.2. aelf-sdk.cs - AELF Ci# API 173

https://nodejs.org
http://npmjs.com/
https://github.com/AElfProject/aelf-sdk.cs

AEIf, Release release/1.2.3

If you need more information you can check out the repo : aelf-sdk.cs

18.2.2 Adding aelf-sdk.cs package

First you need to get AEIf.Client package into your project. This can be done using the following methods:

Package Manager:

’PM> Install-Package AElf.Client ‘

.NET CLI

’> dotnet add package AElf.Client ‘

PackageReference

<PackageReference Include="AElf.Client" Version="X.X.X" /> ‘

18.2.3 Examples

Create instance

Create a new instance of AEIfClient, and set url of an AEIf chain node.

using AElf.Client.Service;

// create a new instance of AElfClient
AElfClient client = new AElfClient ("http://127.0.0.1:1235");

Test connection

Check that the AEIf chain node is connectable.

var isConnected = await client.IsConnectedAsync();

Initiate a transfer transaction

// Get token contract address.

var tokenContractAddress = await client.GetContractAddressByNameAsync (HashHelper.
—ComputeFrom ("AELlf.ContractNames.Token"));

var methodName = "Transfer";

var param = new TransferInput

{
To = new Address {Value = Address.FromBaseb58 (
—"7s4X0oUHfPUuqoZAWNTV7pHWZAaivMiL8aZrDSnY9brElwoa8vz") .Value},

Symbol = "ELE",
Amount = 1000000000,
Memo = "transfer in demo"
}i
var ownerAddress = client.GetAddressFromPrivateKey (PrivateKey);

(continues on next page)

174 Chapter 18. Chain SDK

https://github.com/AElfProject/aelf-sdk.cs

AEIf, Release release/1.2.3

(continued from previous page)

// Generate a transfer transaction.

var transaction = await client.GenerateTransaction (ownerAddress, tokenContractAddress.
—~ToBase58 (), methodName, param);

var txWithSign = client.SignTransaction (PrivateKey, transaction);

// Send the transfer transaction to AElf chain node.
var result = await client.SendTransactionAsync (new SendTransactionInput
{
RawTransaction = txWithSign.ToByteArray () .ToHex ()
)i

await Task.Delay (4000);

// After the transaction is mined, query the execution results.

var transactionResult = await client.GetTransactionResultAsync (result.TransactionId);
Console.WritelLine (transactionResult.Status);

// Query account balance.
var paramGetBalance = new GetBalancelInput
{
Symbol = "ELEF",
Owner = new Address {Value = Address.FromBase58 (ownerAddress) .Value}
}i

var transactionGetBalance =await client.GenerateTransaction (ownerAddress,

—tokenContractAddress.ToBase58 (), "GetBalance", paramGetBalance);
var txWithSignGetBalance = client.SignTransaction (PrivateKey, transactionGetBalance);
var transactionGetBalanceResult = await client.ExecuteTransactionAsync (new_

—ExecuteTransactionDto
{

RawTransaction = txWithSignGetBalance.ToByteArray () .ToHex ()
}) i

var balance = GetBalanceOutput.Parser.ParseFrom(ByteArrayHelper.
—HexstringToByteArray (transactionGetBalanceResult));
Console.WritelLine (balance.Balance);

18.2.4 Web API

You can see how the Web Api of the node works in { chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AEIfClient instance, so if you don’t have one please create it:

using AElf.Client.Service;

// create a new instance of AElf, change the URL if needed
AE1fClient client = new AElfClient ("http://127.0.0.1:1235");

GetChainStatus

Get the current status of the block chain.

Web API path

18.2. aelf-sdk.cs - AELF Ci# API 175

AEIf,

Release release/1.2.3

/api/blockChain/chainStatus

Parameters

Empty

Returns

ChainStatusDto

ChainId - string

Branches - Dictionary<string, long>
NotLinkedBlocks - Dictionary<string, string>
LongestChainHeight - long

LongestChainHash - string

GenesisBlockHash - string
GenesisContractAddress - string
LastIrreversibleBlockHash - string

LastIrreversibleBlockHeight - long
BestChainHash - string

BestChainHeight - long

Example

await client.GetChainStatusAsync();

GetContractFileDescriptorSet

Get the protobuf definitions related to a contract.

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1.

contractAddress - string address of a contract

Returns

byte[]

Example

await client.GetContractFileDescriptorSetAsync (address);

GetBlockHeight

Get current best height of the chain.
Web API path
/api/blockChain/blockHeight

Parameters

176

Chapter 18

. Chain SDK

AEIf, Release release/1.2.3

Empty
Returns
long

Example

await client.GetBlockHeightAsync();

GetBlock

Get block information by block hash.
Web API path
/api/blockChain/block
Parameters
1. blockHash - string
2. includeTransactions - bool:
* true require transaction ids list in the block
* false Doesn’t require transaction ids list in the block
Returns
BlockDto
* BlockHash - string
* Header - BlockHeaderDto

— PreviousBlockHash - string

— MerkleTreeRootOfWorldState - string

- Extra - string
— Height - long
— Time - DateTime
— ChainId - string
- Bloom - string
— SignerPubkey - string
* Body - BlockBodyDto
— TransactionsCount - int
— Transactions - List<string>

Example

MerkleTreeRootOfTransactions - string

await client.GetBlockByHashAsync (blockHash);

18.2. aelf-sdk.cs - AELF Ci# API

177

AEIf, Release release/1.2.3

GetBlockByHeight

Web API path
/api/blockChain/blockByHeight
Get block information by block height.
Parameters
1. blockHeight - long
2. includeTransactions - bool:
* true require transaction ids list in the block
* false Doesn’t require transaction ids list in the block
Returns
BlockDto
* BlockHash - string
* Header - BlockHeaderDto

— PreviousBlockHash - string

— MerkleTreeRootOfWorldState - string

- Extra - string
— Height - long
— Time - DateTime
— ChainId - string
— Bloom - string
— SignerPubkey - string
* Body - BlockBodyDto
— TransactionsCount - int
— Transactions - List<string>

Example

MerkleTreeRootOfTransactions - string

await client.GetBlockByHeightAsync (height);

GetTransactionResult

Get the result of a transaction

Web API path
/api/blockChain/transactionResult
Parameters

1. transactionId - string

178

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

Returns
TransactionResultDto
* TransactionId - string
e Status - string
* Logs — LogEventDtol[]
— Address - string

— Name - string

Indexed - stringl]

NonIndexed - string
* Bloom - string
* BlockNumber - long
* Transaction - TransactionDto
— From - string
- To - string
— RefBlockNumber - long
— RefBlockPrefix - string

— MethodName - string

— Params - string
— Signature - string
* Error - string

Example

await client.GetTransactionResultAsync (transactionId);

GetTransactionResults

Get multiple transaction results in a block.
Web API path
/api/blockChain/transactionResults
Parameters

1. blockHash - string

2. offset - int

3. 1imit - int

Returns

List<TransactionResultDto> - The array of transaction result:

* the transaction result object

Example

18.2. aelf-sdk.cs - AELF Ci# API

179

AEIf, Release release/1.2.3

await client.GetTransactionResultsAsync (blockHash, 0, 10);

GetTransactionPoolStatus

Get the transaction pool status.
Web API path
/api/blockChain/transactionPoolStatus
Parameters
Empty
Returns
TransactionPoolStatusOutput
* Queued - int
* Validated - int

Example

await client.GetTransactionPoolStatusAsync();

SendTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendTransactionInput - Serialization of data into protobuf data:
* RawTransaction - string:

Returns

SendTransactionOutput
* TransactionId - string

Example

await client.SendTransactionAsync (input) ;

SendRawTransaction

Broadcast a transaction.
Web API path
/api/blockChain/sendTransaction

POST

180 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

Parameters

SendRawTransactionInput - Serialization of data into protobuf data:

e Transaction - string

e Signature - string

* ReturnTransaction - bool
Returns

SendRawTransactionOutput

e TransactionId - string
e Transaction - TransactionDto
Example

await client.SendRawTransactionAsync (input) ;

SendTransactions

Broadcast multiple transactions.

Web API path

/api/blockChain/sendTransactions

POST

Parameters

SendTransactionsInput - Serialization of data into protobuf data:
* RawTransactions — string

Returns

stringl[]

Example

await client.SendTransactionsAsync (input);

CreateRawTransaction

Creates an unsigned serialized transaction.
Web API path
/api/blockChain/rawTransaction
POST
Parameters
CreateRawTransactionInput

* From - string

e To - string

* RefBlockNumber - long

18.2. aelf-sdk.cs - AELF Ci# API

181

AEIf, Release release/1.2.3

¢ RefBlockHash - string
* MethodName - string
* Params - string
Returns
CreateRawTransactionOutput- Serialization of data into protobuf data:
* RawTransactions - string

Example

await client.CreateRawTransactionAsync (input);

ExecuteTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeTransaction

POST

Parameters

ExecuteTransactionDto - Serialization of data into protobuf data:
* RawTransaction - string

Returns

string

Example

await client.ExecuteTransactionAsync (input);

ExecuteRawTransaction

Call a read-only method on a contract.

Web API path
/api/blockChain/executeRawTransaction
POST

Parameters

ExecuteRawTransactionDto - Serialization of data into protobuf data:

* RawTransaction - string
* Signature - string
Returns
string
Example

182 Chapter 18

. Chain SDK

AEIf, Release release/1.2.3

await client.ExecuteRawTransactionAsync (input);

GetPeers

Get peer info about the connected network nodes.
Web API path
/api/net/peers
Parameters
1. withMetrics - bool
Returns
List<PeerDto>

* IpAddress - string

* ProtocolVersion - int
* ConnectionTime - long
* ConnectionStatus - string

e Inbound - bool

* BufferedTransactionsCount - int
* BufferedBlocksCount - int

* BufferedAnnouncementsCount - int

* RequestMetrics - List<RequestMetric>

RoundTripTime - long

MethodName - string

- Info - string

RequestTime - string

Example

await client.GetPeersAsync (false);

AddPeer

Attempts to add a node to the connected network nodes.
Web API path

/api/net/peer

POST

Parameters

l. ipAddress - string

18.2. aelf-sdk.cs - AELF Ci# API

183

AEIf, Release release/1.2.3

Returns
bool

Example

await client.AddPeerAsync("127.0.0.1:7001");

RemovePeer

Attempts to remove a node from the connected network nodes.
Web API path
/api/net/peer
DELETE
Parameters
1. ipAddress - string
Returns
bool

Example

await client.RemovePeerAsync ("127.0.0.1:7001");

GetNetworkinfo

Get the network information of the node.
Web API path

/api/net/networkInfo

Parameters
Empty
Returns
NetworkInfoOutput
* Version - string
* ProtocolVersion - int
* Connections - int
Example

await client.GetNetworkInfoAsync () ;

184 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

18.2.5 AEIf Client

IsConnected

Verify whether this sdk successfully connects the chain.
Parameters

Empty

Returns

bool

Example

await client.IsConnectedAsync();

GetGenesisContractAddress

Get the address of genesis contract.
Parameters

Empty

Returns

string

Example

await client.GetGenesisContractAddressAsync();

GetContractAddressByName

Get address of a contract by given contractNameHash.
Parameters
1. contractNameHash - Hash
Returns
Address

Example

await client.GetContractAddressByNameAsync (contractNameHash) ;

GenerateTransaction

Build a transaction from the input parameters.
Parameters
1. from - string

2. to - string

18.2. aelf-sdk.cs - AELF Ci# API

185

AEIf, Release release/1.2.3

3. methodName - string
4. input - IMessage
Returns
Transaction

Example

await client.GenerateTransactionAsync (from, to, methodName, input);

GetFormattedAddress

Convert the Address to the displayed stringsymbol_base58-string_base58-string-chain-id.
Parameters
1. address - Address
Returns
string

Example

await client.GetFormattedAddressAsync (address);

SignTransaction

Sign a transaction using private key.
Parameters

1. privateKeyHex - string

2. transaction - Transaction
Returns
Transaction

Example

client.SignTransaction (privateKeyHex, transaction);

GetAddressFromPubKey

Get the account address through the public key.
Parameters
1. pubKey - string
Returns
string

Example

186 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

client.GetAddressFromPubKey (pubKey) ;

GetAddressFromPrivateKey

Get the account address through the private key.
Parameters

1. privateKeyHex - string
Returns
string

Example

client.GetAddressFromPrivateKey (privateKeyHex) ;

GenerateKeyPairlnfo

Generate a new account key pair.

Parameters

Empty

Returns

KeyPairInfo
* PrivateKey - string
* PublicKey - string
* Address - string

Example

client.GenerateKeyPairInfo();

18.2.6 Supports

NET Standard 2.0

18.3 aelf-sdk.go - AELF Go API

This Go library helps in the communication with an AEIf node. You can find out more here.

18.3.1 Introduction

aelf-sdk.go is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP

connection.

The following documentation will guide you through installing and running aelf-sdk.go, as well as providing a API

reference documentation with examples.

18.3. aelf-sdk.go - AELF Go API

187

https://github.com/AElfProject/aelf-sdk.go

AEIf, Release release/1.2.3

If you need more information you can check out the repo : aelf-sdk.go

18.3.2 Adding aelf-sdk.go package

First you need to get aelf-sdk.go:

> go get —u github.com/AElfProject/aelf-sdk.go

18.3.3 Examples
Create instance

Create a new instance of AEIfClient, and set url of an AEIf chain node.

import ("github.com/AElfProject/aelf-sdk.go/client™)

var aelf = client.AElfClient{
Host: "http://127.0.0.1:8000",
Version: "i.o",
PrivateKey: "cd86ab6347d8e52bbbe8532141£c59ce596268143a308d1d40£edf385528b458

Initiate a transfer transaction

// Get token contract address.

tokenContractAddress, _ := aelf.GetContractAddressByName ("AELf.ContractNames.Token")
fromAddress := aelf.GetAddressFromPrivateKey (aelf.PrivateKey)

methodName := "Transfer"

toAddress, _ := util.Baseb58StringToAddress (

—"7s4X0UHfPuqoZAwWNTV7pHWZAaivMiL8aZrDSnY9brElwoa8vz")

params := &pb.TransferInput{

To: toAddress,

Symbol: "ELEF",

Amount: 1000000000,

Memo : "transfer in demo",
}

paramsByte, _ := proto.Marshal (params)

// Generate a transfer transaction.

transaction, _ := aelf.CreateTransaction (fromAddress, tokenContractAddress,
—methodName, paramsByte)

signature, _ := aelf.SignTransaction(aelf.PrivateKey, transaction)
transaction.Signature = signature

// Send the transfer transaction to AElf chain node.
transactionByets, := proto.Marshal (transaction)

sendResult, _ := aelf.SendTransaction (hex.EncodeToString(transactionByets))

time.Sleep(time.Duration(4) % time.Second)
transactionResult, _ := aelf.GetTransactionResult (sendResult.TransactionID)
fmt.Println (transactionResult)

(continues on next page)

188 Chapter 18. Chain SDK

https://github.com/AElfProject/aelf-sdk.go

AEIf, Release release/1.2.3

(continued from previous page)

// Query account balance.

ownerAddress, _ := util.Baseb8StringToAddress (fromAddress)
getBalanceInput := &pb.GetBalancelInput {
Symbol: "ELE",
Owner: ownerAddress,
}
getBalanceInputByte, _ := proto.Marshal (getBalancelInput)
getBalanceTransaction, _ := aelf.CreateTransaction (fromAddress, tokenContractAddress,
—"GetBalance", getBalanceInputByte)
getBalanceTransaction.Params = getBalancelnputByte
getBalanceSignature, _ := aelf.SignTransaction(aelf.PrivateKey, getBalanceTransaction)

getBalanceTransaction.Signature = getBalanceSignature

getBalanceTransactionByets, _ := proto.Marshal (getBalanceTransaction)
getBalanceResult, _ := aelf.ExecuteTransaction (hex.

—EncodeToString (getBalanceTransactionByets))

balance := &pb.GetBalanceOutput{}

getBalanceResultBytes, _ := hex.DecodeString(getBalanceResult)
proto.Unmarshal (getBalanceResultBytes, balance)

fmt.Println (balance)

18.3.4 Web API

You can see how the Web Api of the node works in { chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AEIfClient instance, so if you don’t have one please create it:

import ("github.com/AElfProject/aelf-sdk.go/client")

var aelf = client.AElfClient{
Host: "http://127.0.0.1:8000",
Version: "i1.o",
PrivateKey: "680afd630d82ae5c97942c4141d60b8a9%fedfabb2864fca84072cl7eelf72d9d

GetChainStatus

Get the current status of the block chain.
Web API path
/api/blockChain/chainStatus
Parameters

Empty

Returns

ChainStatusDto

* ChainId - string

18.3. aelf-sdk.go - AELF Go API 189

AEIf,

Release release/1.2.3

Branches - map[stringlinterface{}
NotLinkedBlocks — map[string]interface{}
LongestChainHeight - int64

LongestChainHash - string

GenesisBlockHash - string
GenesisContractAddress - string
LastIrreversibleBlockHash - string

LastIrreversibleBlockHeight - inté64
BestChainHash - string

BestChainHeight - int64

Example

chainStatus, err := aelf.GetChainStatus/()

GetContractFileDescriptorSet

Get the protobuf definitions related to a contract.

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1.

contractAddress - string address of a contract

Returns

bytel]

Example

contractFile, err := aelf.GetContractFileDescriptorSet (
—"pykr77ft9UUKJIZLVgl5wCH8PinBSjVRQ12sD1Aygq92mKEFsJ11i")

GetBlockHeight

Get current best height of the chain.

Web API path

/api/blockChain/blockHeight

Parameters

Empty

Returns

float64

Example

190

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

height, err := aelf.GetBlockHeight ()

GetBlock

Get block information by block hash.
Web API path
/api/blockChain/block
Parameters
1. blockHash - string
2. includeTransactions - bool:
* true require transaction ids list in the block
* false Doesn’t require transaction ids list in the block
Returns
BlockDto
* BlockHash - string
* Header - BlockHeaderDto

— PreviousBlockHash - string

MerkleTreeRootOfTransactions - string
— MerkleTreeRootOfWorldState - string

- Extra - string

— Height - int64

— Time - string

— ChainId - string

— Bloom - string

— SignerPubkey - string

* Body - BlockBodyDto

— TransactionsCount - int
— Transactions - []string
Example
block, err := aelf.GetBlockByHash (blockHash, true)

GetBlockByHeight

Web API path
/api/blockChain/blockByHeight
Get block information by block height.

Parameters

18.3. aelf-sdk.go - AELF Go API

191

AEIf, Release release/1.2.3

1. blockHeight - int64

2. includeTransactions - bool:

* true require transaction ids list in the block

* false Doesn’t require transaction ids list in the block
Returns
BlockDto

* BlockHash - string

e Header - BlockHeaderDto

PreviousBlockHash - string

MerkleTreeRootOfTransactions — string
— MerkleTreeRootOfWorldState - string
- Extra - string
— Height - int64
- Time - string
— ChainId - string
— Bloom - string
— SignerPubkey - string
* Body - BlockBodyDto

— TransactionsCount - int
— Transactions - []string
Example
block, err := aelf.GetBlockByHeight (100, true)

GetTransactionResult

Get the result of a transaction.
Web API path
/api/blockChain/transactionResult
Parameters

1. transactionId - string
Returns

TransactionResultDto

e TransactionId - string
* Status - string
* Logs - []LogEventDto

— Address - string

192 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

— Name - string
— Indexed - []string
— NonIndexed - string
* Bloom - string
* BlockNumber - int64
* BlockHash - string
* Transaction - TransactionDto
— From - string
— To - string
— RefBlockNumber - int64
— RefBlockPrefix - string
— MethodName - string
— Params - string
— Signature - string
* ReturnValue - string
* Error - string

Example

transactionResult, err := aelf.GetTransactionResult (transactionID)

GetTransactionResults

Get multiple transaction results in a block.
Web API path
/api/blockChain/transactionResults
Parameters
1. blockHash - string
2. offset - int
3. 1limit - int
Returns
[]TransactionResultDto - The array of transaction result
* the transaction result object

Example

transactionResults, err := aelf.GetTransactionResults (blockHash, 0, 10)

18.3. aelf-sdk.go - AELF Go API 193

AEIf, Release release/1.2.3

GetTransactionPoolStatus

Get the transaction pool status.
Web API path
/api/blockChain/transactionPoolStatus
Parameters
Empty
Returns
TransactionPoolStatusOutput
* Queued - int
e Validated - int

Example

poolStatus, err := aelf.GetTransactionPoolStatus/()

SendTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendTransactionInput - Serialization of data into protobuf data:
* RawTransaction - string

Returns

SendTransactionOutput

e TransactionId - string
Example
sendResult, err := aelf.SendTransaction (input)

SendRawTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendRawTransactionInput - Serialization of data into protobuf data:

e Transaction - string

194 Chapter 18

. Chain SDK

AEIf, Release release/1.2.3

* Signature - string

* ReturnTransaction - bool
Returns
SendRawTransactionOutput

e TransactionId - string

e Transaction - TransactionDto
Example
sendRawResult, err := aelf.SendRawTransaction (input)

SendTransactions

Broadcast multiple transactions.

Web API path
/api/blockChain/sendTransactions
POST

Parameters

rawTransactions - string - Serialization of data into protobuf data:

Returns
[]interface{}

Example

results, err := aelf.SendTransactions (transactions)

CreateRawTransaction

Creates an unsigned serialized transaction.
Web API path
/api/blockChain/rawTransaction
POST
Parameters
CreateRawTransactionInput

* From - string

* To - string

* RefBlockNumber - inté64

* RefBlockHash - string

* MethodName - string

* Params - string

18.3. aelf-sdk.go - AELF Go API

195

AEIf, Release release/1.2.3

Returns

CreateRawTransactionOutput- Serialization of data into protobuf data:

* RawTransactions — string
Example
result, err := aelf.CreateRawTransaction (input)

ExecuteTransaction

Call a read-only method on a contract.

Web API path
/api/blockChain/executeTransaction
POST

Parameters

rawTransaction - string

Returns

string

Example

executeresult, err := aelf.ExecuteTransaction(rawTransaction)

ExecuteRawTransaction

Call a read-only method on a contract.

Web API path
/api/blockChain/executeRawTransaction
POST

Parameters

ExecuteRawTransactionDto - Serialization of data into protobuf data:

* RawTransaction - string
* Signature - string
Returns
string
Example
executeRawresult, err := aelf.ExecuteRawTransaction (executeRawinput)

196 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

GetPeers

Get peer info about the connected network nodes.
Web API path
/api/net/peers
Parameters
1. withMetrics - bool
Returns
[]PeerDto

* IpAddress - string

e ProtocolVersion - int
e ConnectionTime - inté64
* ConnectionStatus - string

¢ Inbound - bool

* BufferedTransactionsCount - int
e BufferedBlocksCount - int

* BufferedAnnouncementsCount - int

* RequestMetrics - []RequestMetric

RoundTripTime - inté64

MethodName - string

— Info - string

RequestTime - string

Example

peers, err := aelf.GetPeers(false);

AddPeer

Attempts to add a node to the connected network nodes.
Web API path
/api/net/peer
POST
Parameters
1. ipAddress - string
Returns
bool

Example

18.3. aelf-sdk.go - AELF Go API

197

AEIf, Release release/1.2.3

addResult, err := aelf.AddPeer ("127.0.0.1:7001"™);

RemovePeer

Attempts to remove a node from the connected network nodes.
Web API path
/api/net/peer
DELETE
Parameters
1. ipAddress - string
Returns
bool

Example

removeResult, err := aelf.RemovePeer ("127.0.0.1:7001");

GetNetworkinfo

Get the network information of the node.
Web API path
/api/net/networkInfo
Parameters
Empty
Returns
NetworkInfoOutput

* Version - string

* ProtocolVersion - int

* Connections - int

Example

networkInfo, err := aelf.GetNetworkInfol()

18.3.5 AEIf Client

IsConnected

Verify whether this sdk successfully connects the chain.
Parameters
Empty

Returns

198 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

bool

Example

isConnected := aelf.IsConnected/()

GetGenesisContractAddress

Get the address of genesis contract.
Parameters

Empty

Returns

string

Example

contractAddress, err := aelf.GetGenesisContractAddress ()

GetContractAddressByName

Get address of a contract by given contractNameHash.
Parameters
l. contractNameHash - string
Returns
Address

Example

contractAddress, err := aelf.GetContractAddressByName ("AELlf.ContractNames.Token")

CreateTransaction

Build a transaction from the input parameters.
Parameters
1. from - string

2. to - string

3. methodName - string
4. params - []byte
Returns
Transaction
Example
transaction, err := aelf.CreateTransaction (fromAddress, toAddress, methodName, param)

18.3. aelf-sdk.go - AELF Go API 199

AEIf, Release release/1.2.3

GetFormattedAddress

Convert the Address to the displayed stringsymbol_base58-string_base58-string-chain-id.

Parameters

1. address - string
Returns
string

Example

formattedAddress, err := aelf.GetFormattedAddress (address);

SignTransaction

Sign a transaction using private key.

Parameters
1. privateKey - string
2. transaction - Transaction
Returns
[lbyte
Example
signature, err := aelf.SignTransaction(privateKey, transaction)
GetAddressFromPubKey

Get the account address through the public key.
Parameters
1. pubKey - string
Returns
string

Example

address := aelf.GetAddressFromPubKey (pubKey) ;

GetAddressFromPrivateKey

Get the account address through the private key.
Parameters

1. privateKey - string

200

Chapter 18

. Chain SDK

AEIf, Release release/1.2.3

Returns
string

Example

address := aelf.GetAddressFromPrivateKey (privateKey)

GenerateKeyPairlnfo

Generate a new account key pair.
Parameters
Empty
Returns
KeyPairInfo
* PrivateKey - string

* PublicKey - string

* Address - string
Example
keyPair := aelf.GenerateKeyPairInfo ()

18.3.6 Supports

Go 1.13

18.4 aelf-sdk.java - AELF Java API

This Java library helps in the communication with an AEIf node. You can find out more here.

18.4.1 Introduction
aelf-sdk.java is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.java, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.java

18.4.2 Adding aelf-sdk.java package

First you need to get elf-sdk.java package into your project: MvnRepository

Maven:

18.4. aelf-sdk.java - AELF Java API 201

https://github.com/AElfProject/aelf-sdk.java
https://github.com/AElfProject/aelf-sdk.java
https://mvnrepository.com/artifact/io.aelf/aelf-sdk

AEIf, Release release/1.2.3

<!—— https://mvnrepository.com/artifact/io.aelf/aelf-sdk —->

<dependency>
<groupId>io.aelf</groupld>
<artifactId>aelf-sdk</artifactId>
<version>0.X.X</version>

</dependency>

18.4.3 Examples

Create instance

Create a new instance of AEIfClient, and set url of an AEIf chain node.

using AElf.Client.Service;

// create a new instance of AElf, change the URL if needed
AE1fClient client = new AElfClient ("http://127.0.0.1:1235");

Test connection

Check that the AEIf chain node is connectable.

boolean isConnected = client.isConnected();

Initiate a transfer transaction

// Get token contract address.
String tokenContractAddress = client.getContractAddressByName (privateKey, Sha256.
—getBytesSha256 ("AE1f.ContractNames.Token"));

Client.Address.Builder to = Client.Address.newBuilder();
to.setValue (ByteString.copyFrom(Base58.decodeChecked (
—"7s4X0UHfPUuqoZAWNTV7pHWZAaivMiL8aZrDSnY9brElwoa8vz")));
Client.Address toObj = to.build();

TokenContract.TransferInput.Builder paramTransfer = TokenContract.TransferInput.
—newBuilder () ;

paramTransfer.setTo (toObj);

paramTransfer.setSymbol ("ELE") ;

paramTransfer.setAmount (1000000000) ;

paramTransfer.setMemo ("transfer in demo");

TokenContract.TransferInput paramTransferObj = paramTransfer.build();

String ownerAddress = client.getAddressFromPrivateKey (privateKey);

Transaction.Builder transactionTransfer = client.generateTransaction (ownerAddress,
—tokenContractAddress, "Transfer", paramTransferObj.toByteArray());

Transaction transactionTransferObj = transactionTransfer.build();
transactionTransfer.setSignature (ByteString.copyFrom(ByteArrayHelper.
—hexToByteArray (client.signTransaction (privateKey, transactionTransferObij))));
transactionTransferObj = transactionTransfer.build();

(continues on next page)

202 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

(continued from previous page)

// Send the transfer transaction to AElf chain node.

SendTransactionInput sendTransactionInputObj = new SendTransactionInput ();
sendTransactionInputObj.setRawTransaction (Hex.toHexString (transactionTransferObj.
—toByteArray()));

SendTransactionOutput sendResult = client.sendTransaction (sendTransactionInputObij);

Thread.sleep (4000);

// After the transaction is mined, query the execution results.
TransactionResultDto transactionResult = client.getTransactionResult (sendResult.
—getTransactionId());

System.out.println(transactionResult.getStatus());

// Query account balance.
Client.Address.Builder owner = Client.Address.newBuilder ();

owner.setValue (ByteString.copyFrom(Baseb58.decodeChecked (ownerAddress)));
Client.Address ownerObj = owner.build();
TokenContract.GetBalancelnput.Builder paramGetBalance = TokenContract.GetBalancelnput.

—newBuilder () ;

paramGetBalance.setSymbol ("ELE") ;

paramGetBalance.setOwner (ownerObj) ;

TokenContract.GetBalancelnput paramGetBalanceObj = paramGetBalance.build();

Transaction.Builder transactionGetBalance = client.generateTransaction (ownerAddress,
—tokenContractAddress, "GetBalance", paramGetBalanceObj.toByteArray());

Transaction transactionGetBalanceObj = transactionGetBalance.build();

String signature = client.signTransaction (privateKey, transactionGetBalanceObj);
transactionGetBalance.setSignature (ByteString.copyFrom (ByteArrayHelper.
—hexToByteArray (signature)));

transactionGetBalanceObj = transactionGetBalance.build();

ExecuteTransactionDto executeTransactionDto = new ExecuteTransactionDto();
executeTransactionDto.setRawTransaction (Hex.toHexString (transactionGetBalanceObj.
—toByteArray()));

String transactionGetBalanceResult = client.executeTransaction (executeTransactionDto);

TokenContract.GetBalanceOutput balance = TokenContract.GetBalanceOutput.
—getDefaultInstance () .parsefFrom(ByteArrayHelper.

—hexToByteArray (transactionGetBalanceResult)) ;

System.out .println(balance.getBalance());

18.4.4 Web API

You can see how the Web Api of the node works in { chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AEIfClient instance, so if you don’t have one please create it:

using AElf.Client.Service;

// create a new instance of AElf, change the URL if needed
AElfClient client = new AElfClient ("http://127.0.0.1:1235");

18.4. aelf-sdk.java - AELF Java API 203

AEIf,

Release release/1.2.3

GetChainStatus

Get the current status of the block chain.

Web API path

/api/blockChain/chainStatus

Parameters

Empty

Returns

ChainStatusDto

ChainId - String

Branches - HashMap<String, Long>
NotLinkedBlocks - ashMap<String, String>
LongestChainHeight - long
LongestChainHash - String
GenesisBlockHash - String
GenesisContractAddress - String
LastIrreversibleBlockHash - String
LastIrreversibleBlockHeight - long
BestChainHash - String

BestChainHeight - long

Example

client.getChainStatus();

GetContractFileDescriptorSet

Get the protobuf definitions related to a contract.

Web API path

/api/blockChain/contractFileDescriptorSet

Parameters

1.

contractAddress - String address of a contract

Returns

byte[]

Example

client.getContractFileDescriptorSet (address);

204

Chapter 18

. Chain SDK

AEIf, Release release/1.2.3

GetBlockHeight

Get current best height of the chain.
Web API path
/api/blockChain/blockHeight
Parameters

Empty

Returns

long

Example

client.getBlockHeight () ;

GetBlock

Get block information by block hash.
Web API path
/api/blockChain/block
Parameters
1. blockHash - String
2. includeTransactions - boolean:
* true require transaction ids list in the block
e false Doesn’t require transaction ids list in the block
Returns
BlockDto
* BlockHash - String
* Header - BlockHeaderDto

— PreviousBlockHash - String

— MerkleTreeRootOfTransactions - String

— MerkleTreeRootOfWorldState - String

- Extra - String

— Height - long

- Time - Date

— ChainId - String

— Bloom - String

— SignerPubkey - String
* Body — BlockBodyDto

— TransactionsCount - int

18.4. aelf-sdk.java - AELF Java API

205

AEIf, Release release/1.2.3

— Transactions - List<String>

Example

client.getBlockByHash (blockHash) ;

GetBlockByHeight

Web API path
/api/blockChain/blockByHeight
Get block information by block height.
Parameters
1. blockHeight - long
2. includeTransactions - boolean:
* true require transaction ids list in the block
* false Doesn’t require transaction ids list in the block
Returns
BlockDto
* BlockHash - String

* Header - BlockHeaderDto

PreviousBlockHash - String

— MerkleTreeRootOfTransactions - String

— MerkleTreeRootOfWorldState - String

- Extra - String
— Height - long
— Time - Date
— ChainId - String
— Bloom - String
— SignerPubkey - String
* Body - BlockBodyDto
— TransactionsCount - int
— Transactions - List<String>

Example

client.getBlockByHeight (height);

206

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

GetTransactionResult

Get the result of a transaction.
Web API path
/api/blockChain/transactionResult
Parameters

1. transactionId - String
Returns
TransactionResultDto

e TransactionId - String

* Status - String

* Logs - ist<LogEventDto>

— Address - String

Name - String

Indexed - List<String>

NonIndexed - String

* Bloom - String

* BlockNumber - long

* Transaction - TransactionDto

— From - String

To - String

RefBlockNumber - long

— RefBlockPrefix - String

MethodName - String

— Params - String
— Signature - String
* Error - String

Example

client.getTransactionResult (transactionId);

GetTransactionResults

Get multiple transaction results in a block.
Web API path
/api/blockChain/transactionResults
Parameters

1. blockHash - String

18.4. aelf-sdk.java - AELF Java API 207

AEIf, Release release/1.2.3

2. offset - int
3. 1limit - int

Returns

List<TransactionResultDto> - The array of transaction result:

* the transaction result object

Example

client.getTransactionResults (blockHash, 0, 10);

GetTransactionPoolStatus

Get the transaction pool status.
Web API path
/api/blockChain/transactionPoolStatus
Parameters
Empty
Returns
TransactionPoolStatusOutput
* Queued - int
e Validated - int

Example

client.getTransactionPoolStatus();

SendTransaction

Broadcast a transaction.

Web API path

/api/blockChain/sendTransaction

POST

Parameters

SendTransactionInput - Serialization of data into protobuf data:
* RawTransaction - String

Returns

SendTransactionOutput
e TransactionId - String

Example

client.sendTransaction (input) ;

208

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

SendRawTransaction

Broadcast a transaction.

Web API path
/api/blockChain/sendTransaction
POST

Parameters

SendRawTransactionInput - Serialization of data into protobuf data:

e Transaction - String

* Signature - String

* ReturnTransaction - boolean
Returns
SendRawTransactionOutput

* TransactionId - String

* Transaction - TransactionDto

Example

client.sendRawTransaction (input) ;

SendTransactions

Broadcast multiple transactions.

Web API path

/api/blockChain/sendTransactions

POST

Parameters

SendTransactionsInput - Serialization of data into protobuf data:
* RawTransactions - String

Returns

List<String>

Example

client.sendTransactions (input) ;

CreateRawTransaction

Creates an unsigned serialized transaction.
Web API path
/api/blockChain/rawTransaction

POST

18.4. aelf-sdk.java - AELF Java API

209

AEIf, Release release/1.2.3

Parameters
CreateRawTransactionInput

* From - String

e To - String

* RefBlockNumber - long

* RefBlockHash - String

* MethodName - String

* Params - String
Returns
CreateRawTransactionOutput- Serialization of data into protobuf data:

* RawTransaction - String

Example

client.createRawTransaction (input) ;

ExecuteTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeTransaction

POST

Parameters

ExecuteTransactionDto - Serialization of data into protobuf data:
* RawTransaction - String

Returns

String

Example

client.executeTransaction (input) ;

ExecuteRawTransaction

Call a read-only method on a contract.

Web API path

/api/blockChain/executeRawTransaction

POST

Parameters

ExecuteRawTransactionDto - Serialization of data into protobuf data:

* RawTransaction - String

210 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

* Signature - String
Returns
String

Example

client.executeRawTransaction (input);

GetPeers

Get peer info about the connected network nodes.
Web API path
/api/net/peers
Parameters
1. withMetrics - boolean
Returns
List<PeerDto>

* IpAddress - String

* ProtocolVersion - int
e ConnectionTime - long
* ConnectionStatus - String

e Inbound - boolean

* BufferedTransactionsCount - int
e BufferedBlocksCount - int

e BufferedAnnouncementsCount - int

* RequestMetrics - List<RequestMetric>

RoundTripTime - long

MethodName - String

Info - String

RequestTime - String

Example

client.getPeers (false);

AddPeer

Attempts to add a node to the connected network nodes.
Web API path

/api/net/peer

POST

18.4. aelf-sdk.java - AELF Java API

211

AEIf, Release release/1.2.3

Parameters
AddPeerInput

* Address - String
Returns
boolean

Example

client.addPeer ("127.0.0.1:7001");

RemovePeer

Attempts to remove a node from the connected network nodes.
Web API path
/api/net/peer
DELETE
Parameters
1. address - String
Returns
boolean

Example

client.removePeer ("127.0.0.1:7001");

GetNetworkinfo

Get the network information of the node.
Web API path

/api/net/networkInfo

Parameters
Empty
Returns
NetworkInfoOutput
* Version - String
* ProtocolVersion - int
* Connections - int
Example

client.getNetworkInfo () ;

212 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

18.4.5 AEIf Client

IsConnected

Verify whether this sdk successfully connects the chain.
Parameters

Empty

Returns

boolean

Example

client.isConnected();

GetGenesisContractAddress

Get the address of genesis contract.
Parameters

Empty

Returns

String

Example

client.getGenesisContractAddress();

GetContractAddressByName

Get address of a contract by given contractNameHash.
Parameters
1. privateKey - String
2. contractNameHash - bytel[]
Returns
String

Example

client.getContractAddressByName (privateKey, contractNameHash);

GenerateTransaction

Build a transaction from the input parameters.
Parameters

1. from - String

18.4. aelf-sdk.java - AELF Java API 213

AEIf, Release release/1.2.3

2. to - String
3. methodName - String
4. input - bytel]
Returns
Transaction

Example

client.generateTransaction(from, to, methodName, input);

GetFormattedAddress

Convert the Address to the displayed stringsymbol_base58-string_base58-String-chain-id.
Parameters
1. privateKey - String
2. address - String
Returns
String

Example

client.getFormattedAddress (privateKey, address);

SignTransaction

Sign a transaction using private key.
Parameters

1. privateKeyHex - String

2. transaction - Transaction
Returns
String

Example

client.signTransaction (privateKeyHex, transaction);

GetAddressFromPubKey

Get the account address through the public key.
Parameters

1. pubKey - String

214 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

Returns
String

Example

client.getAddressFromPubKey (pubKey) ;

GetAddressFromPrivateKey

Get the account address through the private key.
Parameters
1. privateKey - String
Returns
String

Example

client.getAddressFromPrivateKey (privateKey) ;

GenerateKeyPairlnfo

Generate a new account key pair.

Parameters

Empty

Returns

KeyPairInfo
* PrivateKey - String
* PublicKey - String
* Address - String

Example

client.generateKeyPairInfo () ;

18.4.6 Supports

. IDK1.8+
« Log4j2.6.2

18.5 aelf-sdk.php - AELF PHP API

18.5.1 Introduction

aelf-sdk.php for aelf is like web.js for ethereum.

18.5. aelf-sdk.php - AELF PHP API 215

AEIf, Release release/1.2.3

aelf-sdk.php is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.php, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.php)

18.5.2 Adding AEIf php SDK

In order to install this library via composer run the following command in the console:

’$ composer require aelf/aelf-sdk dev-dev

composer require curl/curl

If you directly clone the sdk You must install composer and execute it in the root directory

"aelf/aelf-sdk": "dev-dev"

18.5.3 Examples

You can also see full examples in . /test;

1.Create instance

Create a new instance of AEIf, connect to an AELF chain node. Using this instance, you can call the APIs on AEIf.

require_once 'vendor/autoload.php';
use AEL1f\AElf;

Surl = '127.0.0.1:8000";

Saelf = new AEIf (Surl);

2.Get a system contract address

Get a system contract address, take AE1f .ContractNames. Token as an example

require_once 'vendor/autoload.php';
use AELf\AElf;

Surl = '127.0.0.1:8000";

Saelf = new AELlf (Surl);

SprivateKey = 'cd86ab6347d8e52bbbe8532141£c59ce596268143a308d1d40fedf385528b458"';
Sbytes = new Hash();

Sbytes—>setValue (hex2bin (hash ('sha256', 'AElf.ContractNames.Token')));
ScontractAddress = $aelf->GetContractAddressByName ($SprivateKey, S$bytes);

3.Send a transaction

Get the contract address, and then send the transaction.

216 Chapter 18. Chain SDK

https://github.com/AElfProject/aelf-sdk.php

AEIf, Release release/1.2.3

require_once 'vendor/autoload.php';

use AE1f\AElf;

Surl = '127.0.0.1:8000";

// create a new instance of AELlf

Saelf = new AEIf (Surl);

// private key

SprivateKey = 'cd86ab6347d8e52bbbe8532141£c59ce596268143a308d1d40fedf385528b458"';

SaelfEcdsa = new BitcoinECDSA();

SaelfEcdsa->setPrivateKey ($SprivateKey) ;

SpublicKey = S$aelfEcdsa->getUncompressedPubKey () ;

Saddress = $aelfEcdsa->hash256 (hex2bin ($publicKey)) ;

Saddress = S$Saddress . substr(SaelfEcdsa->hash256 (hex2bin ($Saddress)), 0, 8);
// sender address

Sbaseb58Address = $SaelfEcdsa->base58_encode ($address) ;

// transaction input
$params = new Hash{();
Sparams->setValue (hex2bin (hash ('sha256', 'AElf.ContractNames.Vote')));

// transaction method name
SmethodName = "GetContractAddressByName";

// transaction contract address
StoAddress = S$aelf->getGenesisContractAddress();

// generate a transaction
StransactionObj = aelf->generateTransaction ($base58Address, $toAddress, $methodName,
—$params) ;

//signature
$signature = $aelf->signTransaction ($privateKey, S$transactionObj);
StransactionObj->setSignature (hex2bin ($signature));

// obj Dto

$SexecuteTransactionDtoObj = ['RawTransaction' => bin2hex ($transaction->
—serializeToString())];

Sresult = $aelf->sendTransaction ($executeTransactionDtoObj);

print_r (Sresult);

18.5.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-
ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AEIf instance, so if you don’t have one please create it:

require_once 'vendor/autoload.php';
use AEL1f\AElf;

Surl = '127.0.0.1:8000";

// create a new instance of AElf
Saelf = new AEIf (Surl);

18.5. aelf-sdk.php - AELF PHP API 217

AEIf, Release release/1.2.3

1.getChainStatus

Get the current status of the block chain.
Web API path
/api/blockChain/chainStatus
Parameters
Empty
Returns
Array
* ChainId - String
* Branches - Array
* NotLinkedBlocks - Array
* LongestChainHeight - Integer

* LongestChainHash - String

* GenesisBlockHash - String
* GenesisContractAddress - String
* LastIrreversibleBlockHash - String

* LastIrreversibleBlockHeight - Integer
* BestChainHash - String
* BestChainHeight - Integer

Example

// create a new instance of AELf
Saelf = new AEI1f (Surl);

SchainStatus = $aelf->getChainStatus();
print_r (SchainStatus);

2.getBlockHeight

Get current best height of the chain.
Web API path
/api/blockChain/blockHeight
Parameters

Empty

Returns

Integer

Example

218

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

Saelf = new AEIf (Surl);

Sheight = $aelfClient->GetBlockHeight () ;
print ($height);

3.getBlock

Get block information by block hash.
Web API path
/api/blockChain/block
Parameters
1. block_hash - String
2. include_transactions — Boolean:
* true require transaction ids list in the block
* false Doesn’t require transaction ids list in the block
Returns
Array

* BlockHash - String

* Header - Array
— PreviousBlockHash - String
— MerkleTreeRootOfTransactions - String

— MerkleTreeRootOfWorldState - String
- Extra - List
— Height - Integer
— Time - String
— ChainId - String
— Bloom - String
— SignerPubkey - String
* Body - Array
— TransactionsCount - Integer
— Transactions - Array
* transactionId - String

Example

Saelf = new AEIf (Surl);

$Sblock = $aelf->getBlockByHeight (1, true);
Sblock2 = Saelf->getBlockByHash ($block['BlockHash'], false);
print_r ($block2);

18.5. aelf-sdk.php - AELF PHP API

219

AEIf, Release release/1.2.3

4.getBlockByHeight

Web API path
/api/blockChain/blockByHeight
Get block information by block height.
Parameters
1. block_height - Number
2. include_transactions - Boolean:
* true require transaction ids list in the block
* false Doesn’t require transaction ids list in the block
Returns
Array
* BlockHash - String
* Header - Array

— PreviousBlockHash - String

— MerkleTreeRootOfWorldState - String

- Extra - List
— Height - Integer
— Time - String
— ChainId - String
— Bloom - String
— SignerPubkey - String
* Body - Array
— TransactionsCount - Integer
— Transactions - Array
* transactionId - String

Example

MerkleTreeRootOfTransactions - String

Saelf = new AEIf (Surl);

$Sblock = $aelf->getBlockByHeight (1, true);
print_r (Sblock) ;

5.getTransactionResult

Get the result of a transaction
Web API path

/api/blockChain/transactionResult

220

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

Parameters

1. transactionId - String
Returns
Object

e TransactionId - String

* Status - String

e Logs - Array

— Address - String

— Name - String

Indexed - Array

NonIndexed - String
* Bloom - String
* BlockNumber - Integer
* Transaction - Array
— From - String
— To - String
— RefBlockNumber - Integer
— RefBlockPrefix - String
— MethodName - String
— Params - json
- Signature - String
* ReadableReturnValue - String
* Error - String

Example

Saelf = new AEIf (Surl);

Sblock = $aelf->getBlockByHeight (1, true);

StransactionResult = $aelf->getTransactionResult ($block['Body']['Transactions'][0]);
print_r ('# get_transaction_result');

print_r ($transactionResult) ;

6.getTransactionResults

Get multiple transaction results in a block
Web API path
/api/blockChain/transactionResults
Parameters

1. blockHash - String

18.5. aelf-sdk.php - AELF PHP API 221

AEIf, Release release/1.2.3

2. offset - Number
3. limit - Number

Returns

List - The array of method descriptions:
* the transaction result object

Example

Saelf = new AEIf (Surl);

$block = $aelf->getBlockByHeight (1, true);
StransactionResults = $aelf->getTransactionResults ($Sblock['Body']);
print_r (StransactionResults);

7.getTransactionPoolStatus

Get the transaction pool status.
Web API path
/api/blockChain/transactionPoolStatus

Example

Saelf = new AEI1f (Surl);

Sstatus = Saelf->getTransactionPoolStatus/();
print_r ($status);

8.sendTransaction

Broadcast a transaction

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transaction - String - Serialization of data into String

Example

Saelf = new AEIf (Surl);

Sparams = new Hash{();
Sparams->setValue (hex2bin (hash ('sha256', 'AElf.ContractNames.Vote')));
Stransaction = buildTransaction ($aelf->getGenesisContractAddress(),

— 'GetContractAddressByName', S$params);

SexecuteTransactionDtoObj = ['RawTransaction' => bin2hex ($transaction->
—serializeToString())];

Sresult = Saelf->sendTransaction ($executeTransactionDtoOb]j);

print_r (Sresult);

222 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

9.sendTransactions

Broadcast multiple transactions

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transactions - String - Serialization of data into String

Example

Saelf = new AEIf (Surl);

SparamsList = [$paramsl, S$params2];

SrawTransactionsList = [];

foreach (SparamsList as S$param) {
StransactionObj = buildTransaction ($toAddress, S$methodName, S$param);
SrawTransactions = bin2hex ($transactionObj->serializeToString());

array_push ($SrawTransactionsList, SrawTransactions);
}
$sendTransactionsInputs = ['RawTransactions' => implode(',', S$SrawTransactionsList)];
$listString = $this->aelf->sendTransactions ($sendTransactionsInputs) ;
print_r($listString);

10.getPeers

Get peer info about the connected network nodes
Web API path
/api/net/peers

Example

Saelf = new AEI1f (Surl);

print_r (Saelf->getPeers (true));

11.addPeer

Attempts to add a node to the connected network nodes
Web API path

/api/net/peer

POST

Parameters

peer_address - String - peer’s endpoint

Example

18.5. aelf-sdk.php - AELF PHP API 223

AEIf, Release release/1.2.3

Saelf = new AEIf (Surl);

Saelf->addPeer (Surl) ;

12.removePeer

Attempts to remove a node from the connected network nodes
Web API path

/api/net/peer?address=

POST

Parameters

peer_address - String - peer’s endpoint

Example

Saelf = new AEI1f (Surl);

Saelf->removePeer (Surl) ;

13.createRawTransaction

create a raw transaction
Web API path
/api/blockchain/rawTransaction
POST
Parameters
1. transaction - Array
Returns
Array
* RawTransaction - hex string bytes generated by transaction information

Example

Saelf = new AEIf (Surl);

$Sstatus = $Saelf->getChainStatus();
Sparams = base64_encode (hex2bin (hash('sha256', 'AElf.ContractNames.Consensus')));
Sparam = array('value' => S$params);
Stransaction = |
"from" => $aelf->getAddressFromPrivateKey ($privateKey),
"to" => Saelf->getGenesisContractAddress(),

"refBlockNumber" => $status['BestChainHeight'],
"refBlockHash" => S$status['BestChainHash'],
"methodName" => "GetContractAddressByName",
"params" => json_encode ($param)

(continues on next page)

224 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

(continued from previous page)

SrawTransaction = $aelf->createRawTransaction ($transaction);
print_r (SrawTransaction);

14.sendRawTransaction

send raw transactions
Web API path
/api/blockchain/sendRawTransaction
Parameters
1. Transaction - raw transaction
2. Signature - signature
3. ReturnTransaction - indicates whether to return transaction

Example

Saelf = new AEIf (Surl);

SrawTransaction = S$Saelf->createRawTransaction ($transaction);

StransactionId = hash('sha256', hex2bin(SrawTransaction['RawTransaction']));

$sign = S$Saelf->getSignatureWithPrivateKey ($SprivateKey, S$transactionId);

Stransaction = array('Transaction' => S$rawTransaction['RawTransaction'], 'signature'
—=> $sign, 'returnTransaction' => true);

Sexecute = S$Saelf->sendRawTransaction (Stransaction);

print_r (Sexecute);

15.executeRawTransaction

execute raw transactions
Web API path

/api/blockchain/executeRawTransaction

Post

Parameters
1. RawTransaction - raw transaction
2. Signature - signature

Example

Saelf = new AEIf (Surl);

SrawTransaction = $Saelf->createRawTransaction ($transaction);

StransactionId = hash('sha256', hex2bin(SrawTransaction['RawTransaction']));

$sign = S$Saelf->getSignatureWithPrivateKey ($SprivateKey, S$transactionId);

Stransaction = array ('RawTransaction' => S$rawTransaction['RawTransaction'], 'signature
' => $sign);

Sexecute = Saelf->executeRawTransaction ($Stransaction);

print_r (Sexecute);

18.5. aelf-sdk.php - AELF PHP API 225

AEIf, Release release/1.2.3

16.getMerklePathByTransactionld

get merkle path
Web API path
/api/blockchain/merklePathByTransactionId?transactionId=
Parameters

1. transactionId - String

Example

Saelf = new AELlf (Surl);

Sblock = S$Saelf->getBlockByHeight (1, true);
SmerklePath = $aelf->getMerklePathByTransactionId($block['Body']['Transactions'] [0]);

17.getNetworkinfo

get network information
Web API path
/api/net/networkInfo

Example

Saelf = new AEIf (Surl);

print_r (Saelf->getNetworkInfo());

18.getContractFileDescriptorSet

get contract file descriptor set
Web API path
/api/blockChain/contractFileDescriptorSet

Example

Saelf = new AEIf (Surl);

SblockDto = $aelf->getBlockByHeight ($blockHeight, false);

StransactionResultDtolList = $aelf->getTransactionResults ($blockDto['BlockHash'], 0,
—10);
foreach ($transactionResultDtoList as S$v) {

Srequest = S$Saelf->getContractFileDescriptorSet ($v['Transaction']['To']);

print_r (Srequest);

19.getTaskQueueStatus

get task queue status

Web API path

226 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

/api/blockChain/taskQueueStatus

Example

Saelf = new AEIf (Surl);

StaskQueueStatus = $aelf->getTaskQueueStatus();
print_r (S$taskQueueStatus);

20.executeTransaction

execute transaction

Web API path

Post
/api/blockChain/executeTransaction

Example

Saelf = new AEI1f (Surl);

SmethodName = "GetNativeTokenInfo";

Sbytes = new Hash({();

Sbytes—->setValue (hex2bin (hash ('sha256', 'AElf.ContractNames.Token')));
StoAddress = Saelf->GetContractAddressByName ($SprivateKey, Sbytes);
Sparam = new Hash () ;

$Sparam->setValue (''");

Stransaction = $aelf->generateTransaction ($fromAddress, S$toAddress, S$SmethodName,
—S$param) ;

$signature = $aelf->signTransaction ($privateKey, $transaction);
Stransaction->setSignature (hex2bin ($signature));

SexecuteTransactionDtoObj = ['RawTransaction' => bin2hex ($transaction->
—serializeToString())];

Sresponse = $aelf->executeTransaction ($SexecuteTransactionDtoOb]j) ;

StokenInfo = new TokenInfol();
StokenInfo->mergeFromString (hex2bin ($response));

18.5.5 Other Tool Kit

AEIf supply some APIs to simplify developing.

1.getChainid

get chain id

Saelf = new AEI1f (Surl);

SchainId = $aelf->getChainId();
print_r ($chainId);

2.generateTransaction

generate a transaction object

18.5. aelf-sdk.php - AELF PHP API 227

AEIf, Release release/1.2.3

Saelf = new AEIf (Surl);

Sparam = new Hash () ;

Sparam->setValue (''");

Stransaction = $aelf->generateTransaction ($fromAddress, S$toAddress, S$methodName,
—$param) ;

3.signTransaction

sign a transaction

Saelf = new AEIf (Surl);

Stransaction = Saelf->generateTransaction ($fromAddress, S$toAddress, S$methodName,
—S$param) ;
$signature = $aelf->signTransaction ($privateKey, Stransaction);

4.getGenesisContractAddress

get the genesis contract’s address

Saelf = new AEIf (Surl);

SgenesisContractAddress = $aelf->getGenesisContractAddress () ;
print_r ($SgenesisContractAddress) ;

4.getAddressFromPubKey

calculate the account address accoriding to the public key

Saelf = new AEIf (Surl);

$SpubKeyAddress = $aelf->getAddressFromPubKey (
—'04166cf4be901deelc21£3d97b9%9e4818f229%bec72a5ecd56b5c4dece7abfc3c87e25¢c36£d279db721act
')

print_r ($SpubKeyAddress) ;

5.getFormattedAddress

convert the Address to the displayed stringsymbol_base58-string_base58-string-chain-id.

Saelf = new AEIf (Surl);

$addressVal = S$Saelf->getFormattedAddress ($SprivateKey, S$base58Address);
print_r (SaddressVal) ;

6.generateKeyPairlnfo

generate a new key pair using ECDSA

228 Chapter 18. Chain SDK

258fb489b4a4-

AEIf, Release release/1.2.3

Saelf = new AEIf (Surl);

SpairInfo = Saelf->generateKeyPairInfo();
print_r ($pairInfo);

7.getContractAddressByName

get contract’s address from its name

Saelf = new AEIf (Surl);

Sbytes = new Hash();

Sbytes->setValue (hex2bin (hash ('sha256', 'AElf.ContractNames.Token')));
ScontractAddress = Saelf->GetContractAddressByName ($SprivateKey, S$bytes);
print_r ($contractAddress);

8.getAddressFromPrivateKey

get address from a private key

Saelf = new AELlf (Surl);

Saddress = $aelf->getAddressFromPrivateKey ($privateKey) ;
print_r (Saddress);

9.getSignatureWithPrivateKey

given a private key, get the signature

Saelf = new AEIf (Surl);

$sign = Saelf->getSignatureWithPrivateKey (SprivateKey, S$transactionId);
print_r ($sign);

10.isConnected

check if it connects the chain

Saelf = new AEI1f (Surl);

$isConnected = $this->aelf->isConnected();
print_r (S$isConnected) ;

11.getTransactionFees

get the transaction fee from transaction result

18.5. aelf-sdk.php - AELF PHP API

229

AEIf, Release release/1.2.3

Saelf = new AEIf (Surl);

Sblock = S$Saelf->getBlockByHeight (1, true);

StransactionResult = $aelf->getTransactionResult ($block['Body']['Transactions'][0]);
StransactionFees = $aelf->getTransactionFees ($StransactionResult);

print_r (StransactionFees);

18.5.6 AElf.version

Saelf = new AELlf (Surl);

Sversion = $aelf->version;

18.5.7 Requirements

* php

18.5.8 About contributing

Read out [contributing guide]

18.5.9 About Version

https://semver.org/

18.6 aelf-sdk.py - AELF Python API

18.6.1 Introduction

aelf-sdk.py for aelf is like web.js for ethereum.

aelf-sdk.py is a collection of libraries which allow you to interact with a local or remote aelf node, using a HTTP
connection.

The following documentation will guide you through installing and running aelf-sdk.py, as well as providing a API
reference documentation with examples.

If you need more information you can check out the repo : aelf-sdk.py

18.6.2 Adding aelf-sdk.js

First you need to get aelf-sdk package into your project. This can be done using the following methods:
pip: pip install aelf-sdk

After that you need to create a aelf instance by a node’s URL.

chain = AE1f ('http://127.0.0.1:8000")

230 Chapter 18. Chain SDK

https://www.php.org
https://github.com/AElfProject/aelf-sdk.py

AEIf, Release release/1.2.3

18.6.3 Examples

You can also see full examples in . /test;

1.Create instance

Create a new instance of AEIf, connect to an AELF chain node. Using this instance, you can call the APIs on AEIf.

from aelf import AELlf

// create a new instance of AELf
aelf = AE1f('http://127.0.0.1:8000")

2.Get a system contract address

Get a system contract address, take AE1f.ContractNames . Token as an example

from aelf import AELlf

aelf = AElf('http://127.0.0.1:8000")
// get genesis contract address
genesis_contract_address = aelf.get_genesis_contract_address_string()

// get contract address

// in fact, get_system_contract_address call the method 'GetContractAddressByName' in
—the genesis contract to get other contracts' address

multi_token_contract_address = aelf.get_system_contract_address ('AElf.ContractNames.
—Token'")

[

3.Send a transaction

Get the contract address, and then send the transaction.

from aelf import AElLf

url = 'http://127.0.0.1:8000"
// create a new instance of AElf
aelf = AELf (url)

// generate the private key
private_key_string = 'b344570eb80043d7c5ae9800c813b8842660898bf03chbd4le583bde54afdefa
!

private_key = PrivateKey (bytes (bytearray.fromhex (private_key_string)))

// create input, the type is generated by protoc
cross_chain_transfer_input = CrossChainTransferInput ()

// generate the transaction
transaction = aelf.create_transaction(to_address, method_name, params.
—SerializeToString())

// sign the transaction by user's private key
aelf.sign_transaction (private_key, transaction)

(continues on next page)

18.6. aelf-sdk.py - AELF Python API 231

AEIf, Release release/1.2.3

(continued from previous page)

// execute the transaction
aelf.execute_transaction (transaction)

18.6.4 Web API

You can see how the Web Api of the node works in {chainAddress}/swagger/index.html tip: for an exam-

ple, my local address: ‘http://127.0.0.1:1235/swagger/index.html’

The usage of these methods is based on the AEIf instance, so if you don’t have one please create it:

from aelf import AE1lf

// create a new instance of AElf, change the URL if needed

aelf = AElf('http://127.0.0.1:8000")

1.get_chain_status

Get the current status of the block chain.
Web API path
/api/blockChain/chainStatus
Parameters
Empty
Returns
json
* ChainId - String
* Branches — json
* NotLinkedBlocks - json
* LongestChainHeight - Number

e LongestChainHash - String

* GenesisBlockHash - String
* GenesisContractAddress - String
* LastIrreversibleBlockHash - String

* LastIrreversibleBlockHeight - Number
* BestChainHash - String
* BestChainHeight - Number

Example

aelf = AELlf (url)

chain_status = aelf.get_chain_status/()
print ('# get_chain_status', chain_status)
232 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

2.get_block_height

Get current best height of the chain.
Web API path
/api/blockChain/blockHeight
Parameters

Empty

Returns

Number

Example

aelf = AEI1f (url)

block_height = aelf.get_block_height ()
print ('# get_block_height', block_height)

3.get_block

Get block information by block hash.
Web API path
/api/blockChain/block
Parameters
1. block_hash - String
2. include_transactions - Boolean:
* true require transaction ids list in the block
e false Doesn’t require transaction ids list in the block
Returns
json

* BlockHash - String

* Header - json
— PreviousBlockHash - String
— MerkleTreeRootOfTransactions - String

— MerkleTreeRootOfWorldState - String
- Extra - List

— Height - Number

— Time - json

— ChainId - String

— Bloom - String

— SignerPubkey - String

18.6. aelf-sdk.py - AELF Python API

233

AEIf, Release release/1.2.3

* Body — json

— TransactionsCount - Number
— Transactions - List
% transactionId - String

Example

aelf = AELlf (url)

block = aelf.get_block (blockHash)
print ('# get_block', block)

4.get_block_by height

Web API path
/api/blockChain/blockByHeight
Get block information by block height.
Parameters

1. block_height - Number

2. include_transactions - Boolean:

* true require transaction ids list in the block

* false Doesn’t require transaction ids list in the block

Returns
json

* BlockHash - String

* Header - json
— PreviousBlockHash - String
— MerkleTreeRootOfTransactions - String

— MerkleTreeRootOfWorldState — String

- Extra - List
— Height - Number
— Time - Jjson
— ChainId - String
— Bloom - String
— SignerPubkey - String
* Body - Jjson
— TransactionsCount - Number
— Transactions - List
* transactionId - String

Example

234

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

aelf = AELlf (url)

block_by_height = aelf.get_block_by_height (12, false)

print ('# get_block_by_height',

block_by_height)

5.get_transaction_result

Get the result of a transaction

Web API path

/api/blockChain/transactionResult

Parameters

1. transactionId - String

Returns

json

* TransactionId - String

e Status - String

e Logs - List

Address - String
Name - String
Indexed - List

NonIndexed - String

* Bloom - String

* BlockNumber - Number

e Transaction - List

From - String

To - String
RefBlockNumber - Number
RefBlockPrefix - String
MethodName - String
Params — 7Jjson

Signature - String

* ReadableReturnValue - Jjson

* Error - String

Example

aelf = AELlf (url)

transaction_result = aelf.get_transaction_result (transactionId)

print ("#

get_transaction_results',

transaction_result)

18.6. aelf-sdk.py - AELF Python API

235

AEIf, Release release/1.2.3

6.get_transaction_results

Get multiple transaction results in a block
Web API path
/api/blockChain/transactionResults
Parameters

1. blockHash - String

2. offset - Number

3. limit - Number
Returns
List - The array of method descriptions:

* the transaction result object

Example

aelf = AELlf (url)

transaction_results = aelf.get_transaction_results (blockHash,
print ('# get_transaction_results', transaction_results)

0, 2)

7.get_transaction_pool_status

Get the transaction pool status.
Web API path
/api/blockChain/transactionPoolStatus

Example

aelf = AEIf (url)

tx_pool_status = aelf.get_transaction_pool_status()
print ('# get_transaction_pool_status', tx_pool_status)

8.send_transaction

Broadcast a transaction

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transaction - String - Serialization of data into String

Example

236

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

aelf = AELlf (url)

current_height = aelf.get_block_height ()

block = aelf.get_block_by_height (current_height, include_transactions=False)
transaction = Transaction ()
transaction.to_address.CopyFrom(aelf.get_system_contract_address ("AElf.ContractNames.
—~Consensus"))

transaction.ref_block_number = current_height

transaction.ref_block_prefix = bytes.fromhex (block['BlockHash']) [0:4]
transaction.method_name = 'GetCurrentMinerList'

transaction = aelf.sign_transaction(private_key, transaction)

result = aelf.send_transaction(transaction.SerializePartialToString () .hex())

print ('# send_transaction', result)

9.send_transactions

Broadcast multiple transactions

Web API path

/api/blockChain/sendTransaction

POST

Parameters

transactions - String - Serialization of data into String

Example

aelf = AEI1f (url)

current_height = aelf.get_block_height ()
block = aelf.get_block_by_height (current_height, include_transactions=False)

transactionl = Transaction().SerializePartialToString() .hex()
transaction?2 = Transaction() .SerializePartialToString() .hex()
result = aelf.send_transaction (transactionl + ',' + transaction2)

print ('# send_transactions', result)

10.get_peers

Get peer info about the connected network nodes
Web API path
/api/net/peers

Example

aelf = AELf (url)

peers = aelf.get_peers()
print ('# get_peers', peers)

11.add_peer

Attempts to add a node to the connected network nodes

18.6. aelf-sdk.py - AELF Python API 237

AEIf, Release release/1.2.3

Web API path

/api/net/peer

POST

Parameters

peer_address - String - peer’s endpoint

Example

aelf = AEI1f (url)

add_peer = aelf.add_peer (endpoint)
print ('# add_peers', add_peer)

12.remove_peer

Attempts to remove a node from the connected network nodes
Web API path

/api/net/peer?address=

POST

Parameters

peer_address - String - peer’s endpoint

Example

aelf = AEIf (url)

remove_peer = aelf.remove_peer (address)
print ('# remove_peer', remove_peer)

13.create_raw_transaction

create a raw transaction
Web API path
/api/blockchain/rawTransaction
POST
Parameters
1. transaction - the json format transaction
Returns

json

e RawTransaction - hex string bytes generated by transaction information

Example

238

Chapter 18. Chain SDK

AEIf, Release release/1.2.3

aelf = AELlf (url)

transaction = {
"From": aelf.get_address_string_from _public_key (public_key),
"To": aelf.get_system_contract_address_string("AELlf.ContractNames.Consensus"),
"RefBlockNumber": 0,
"RefBlockHash": "b344570eb80043d7¢c5ae9800c813b8842660898bf03cbd41e583b4de54afdeTfa
— "I
"MethodName": "GetCurrentMinerList",
"Params": ' !
}
raw_transaction = aelf.create_raw_transaction (transaction)

14.send_raw_transaction

send raw transactions
Web API path
/api/blockchain/sendRawTransaction
Parameters
1. Transaction - raw transaction
2. Signature - signature
3. ReturnTransaction - indicates whether to return transaction

Example

aelf = AEI1f (url)

raw_transaction = aelf.create_raw_transaction (transaction)
signature = private_key.sign_recoverable (bytes.fromhex (raw_transaction|['Rawlransaction
—"'1))
transaction_2 = {
"Transaction": raw_transaction['RawTransaction'],
'Signature': signature.hex(),
'ReturnTransaction': True

}

print ('# send_raw_transaction', aelf.send_raw_transaction (transaction_2))

15.execute_raw_transaction

execute raw transactions
Web API path

/api/blockchain/executeRawTransaction

Post

Parameters
1. RawTransaction - raw transaction
2. Signature - signature

Example

18.6. aelf-sdk.py - AELF Python API 239

AEIf, Release release/1.2.3

aelf = AELlf (url)

raw_transaction = aelf.create_raw_transaction (transaction)
signature = private_key.sign_recoverable (bytes.fromhex (raw_transaction|['Rawlransaction
='1))
transaction_1 = {
"RawTransaction": raw_transaction['RawTransaction'],
"Signature": signature.hex()
}

print ('# execute_raw_transaction', aelf.execute_raw_transaction (transaction_1))

16.get_merkle_path

get merkle path
Web API path
/api/blockchain/merklePathByTransactionId?transactionId=
Parameters

1. transactionId - String

Example

aelf = AELlf (url)

transaction_results = aelf.get_transaction_results (transactionId)
print ('# get_transaction_results', transaction_results)

17.get_network_info

get network information
Web API path
/api/net/networkInfo

Example

aelf = AEI1f (url)

print ('# get_network_info', aelf.get_network_info())

18.6.5 AElf.client

Use the api to see detailed results

1.get_genesis_contract_address_string

Returns
String: zero contract address

Example

240 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

aelf = AELlf (url)

genesis_contract_address = aelf.get_genesis_contract_address_string()

2.get_system_contract_address

Parameters

1. contract_name - String: system Contract’s name
Returns
Address: system Contract’s address

Example

aelf = AELlf (url)

multi_token_contract_address = aelf.get_system_contract_address ('AELlf.ContractNames.
—Token'")

3.get_system_contract_address_string

Parameters

1. contract_name - String: system Contract’s name
Returns
String: system Contract’s address

Example

aelf = AELf (url)

multi_token_contract_address_string = aelf.get_system_contract_address_string('AELf.
—~ContractNames.Token')

4.create_transaction

create a transaction
Parameters

l. to_address - Address or String: target contract’s address

2. method_name - String: method name
3. params - String: serilize paramters into String
Example

aelf = AELlf (url)

params = Hash ()
params.value = hashlib.sha256 (contract_name.encode ('utf8')) .digest ()
transaction = self.create_transaction(genesisContractAddress,

—'GetContractAddressByName', params.SerializeToString())

18.6. aelf-sdk.py - AELF Python API 241

AEIf, Release release/1.2.3

5.sign_transaction

sign transaction with user’s private key

Parameters
1. private_key - String: user’s private key
2. transaction - Transaction : transaction

Example_

aelf = AEIf (url)

to_address_string = aelf.get_genesis_contract_address_string()

params = Hash ()

params.value = hashlib.sha256 (contract_name.encode ('utf8')) .digest ()

transaction = aelf.create_transaction(to_address_string, 'GetContractAddressByName', |,

—params.SerializeToString())
transaction = aelf.sign_transaction(private_key, transaction)

6.get_address_from_public_key

generate address from public key
Parameters
1. public_key - bytes : user’s pubilc key
Returns
Address

Example_

aelf = AEIf (url)

address = aelf.get_address_from_public_key (public_key)

7.get_address_string_from_public_key

generate address string from public key
Parameters
1. public_key - bytes: user’s pubilc key
Returns
String

Example_

aelf = AEI1f (url)

address = aelf.get_address_string_from_public_key (public_key)

242 Chapter 18. Chain SDK

AEIf, Release release/1.2.3

8.get_chain_id

get chain id
Returns
Number

Example_

aelf = AEI1f (url)

chain_id = aelf.get_chain_id()
print ("# get_chain_id', chain_id)

9.get_formatted_address

get formatted address
Parameters
1. address Address : address
Returns
String

Example_

aelf = AELlf (url)

address = aelf.chain.get_system_contract_address ("AElf.ContractNames.Consensus")
formatted_address = aelf.get_formatted_address (address)
print ('formatted address', formatted_address)

10.is_connected

check whether to connect the node

Example_

aelf = AELlf (url)

is_connected = aelf.is_connected()

18.6.6 Tookkits.py

AEIfToolkit Encapsulate AEIf and user’s private key. It simplifies the procedures of sending some transactions. You
can find it in src/aelf/toolkits.py.

Create a toolKit

Create a toolKit with AE1 fToolkit.

18.6. aelf-sdk.py - AELF Python API 243

AEIf, Release release/1.2.3

from aelf import AElfToolkit

// generate the private key

private_key_string = 'b344570eb80043d7¢c5ae9800c813b8842660898bf03chbd41le583b4de54afde7fa
private_key = PrivateKey (bytes (bytearray.fromhex (private_key_string)))

// create a toolKit

toolkit = AElfToolkit ('http://127.0.0.1:8000"', private_key)

Send a transaction

Send a CrossChainTransfer transaction

from aelf import AElfToolkit

// generate the private key
private_key_string = 'b344570eb80043d7c5ae9800c813b8842660898bf03chbd4le583bdeS54afdefa
!

private_key = PrivateKey (bytes (bytearray.fromhex (private_key_string)))

// create input, the type is generated by protoc
cross_chain_transfer_input = CrossChainTransferInput ()

// AElfToolkit simplifies this transcation execution.

// create a toolKit

toolkit = AElfToolkit ('http://127.0.0.1:8000', private_key)
toolkit.cross_chain_transfer (to_address_string, symbol, amount, memo, to_chain_id)

18.6.7 Requirements

* python

¢ docker

18.6.8 Support

node

18.6.9 About contributing

Read out [contributing guide]

18.6.10 About Version

https://semver.org/

244 Chapter 18. Chain SDK

https://www.python.org
https://www.docker.com
https://hub.docker.com/r/aelf/node

cHAPTER 19

C# reference

19.1 AEIf.Sdk.CSharp

19.1.1 Contents

* BoolState
* BytesState
* CSharpSmartContractContext
— Chainld
— CurrentBlockTime
— CurrentHeight
— Origin
— PreviousBlockHash
— Self
— Sender
— StateProvider
— Transactionld
— Variables
— Transaction
— Call(fromAddress,toAddress,methodName,args)
— ConvertHashTolnt64(hash,start,end)
— ConvertVirtualAddressToContractAddress(virtualAddress)

— ConvertVirtualAddressToContractAddress(virtualAddress,contractAddress)

245

AEIf, Release release/1.2.3

ConvertVirtualAddressToContractAddressWithContractHashName(virtualAddress)

ConvertVirtualAddressToContractAddressWithContractHashName(virtualAddress,contractAddress)

DeployContract(address,registration,name)
FireLogEvent(logEvent)
Generateld(contractAddress,bytes)
GetContractAddressByName(hash)
GetPreviousBlockTransactions()
GetRandomHash(fromHash)
GetSystemContractNameToAddressMapping()
GetZeroSmartContractAddress()
GetZeroSmartContractAddress(chainld)
LogDebug(func)

RecoverPublicKey()

Transaction()

SendInline(toAddress,methodName,args)

SendVirtuallnline(fromVirtualAddress,toAddress,methodName,args)

SendVirtuallnlineBySystemContract(fromVirtualAddress,toAddress,methodName,args)

UpdateContract(address,registration,name)
ValidateStateSize(obj)
VerifySignature(tx)

CSharpSmartContract

Context

State

ContractState

Int32State
Int64State

MappedState

SingletonState

SmartContractBridgeContextExtensions

Call(context,address,methodName,message)

Call(context,address,methodName,message)

Call(context,fromAddress,toAddress,methodName,message)

Call(context,address,methodName,message)

ConvertToByteString(message)

ConvertVirtualAddressToContractAddress(this,virtualAddress)

ConvertVirtualAddressToContractAddressWithContractHashName(this, virtualAddress)

246

Chapter 19. Ci# reference

AEIf, Release release/1.2.3

— Fire(context,eventData)
— Generateld(this,bytes)
— Generateld(this,token)
— Generateld(this,token)
— Generateld(this)
— Generateld(this,address,token)
— Sendlnline(context,toAddress,methodName,message)
— Sendlnline(context,toAddress,methodName,message)
— SendVirtuallnline(context,fromVirtualAddress,toAddress,methodName,message)
» SmartContractConstants
o StringState
Ulnt32State

Ulnt64State
BoolState type
Namespace

AEFEIf.Sdk.CSharp.State

Summary

Wrapper around boolean values for use in smart contract state.
BytesState type

Namespace

AEIf.Sdk.CSharp.State

Summary

Wrapper around byte arrays for use in smart contract state.
CSharpSmartContractContext type

Namespace

AEIf.Sdk.CSharp

19.1. AEIf.Sdk.CSharp 247

AEIf, Release release/1.2.3

Summary

Represents the transaction execution context in a smart contract. An instance of this class is present in the base class
for smart contracts (Context property). It provides access to properties and methods useful for implementing the logic
in smart contracts.

Chainld property

Summary

The chain id of the chain on which the contract is currently running.
CurrentBlockTime property

Summary

The time included in the current blocks header.

CurrentHeight property

Summary

The height of the block that contains the transaction currently executing.
Origin property

Summary

The address of the sender (signer) of the transaction being executed. It’s type is an AEIf address. It corresponds to the
From field of the transaction. This value never changes, even for nested inline calls. This means that when you access
this property in your contract, it’s value will be the entity that created the transaction (user or smart contract through
an inline call).

PreviousBlockHash property

Summary

The hash of the block that precedes the current in the blockchain structure.
Self property

Summary

The address of the contract currently being executed. This changes for every transaction and inline transaction.

248 Chapter 19. Ci# reference

AEIf, Release release/1.2.3

Sender property

Summary

The Sender of the transaction that is executing.
StateProvider property

Summary

Provides access to the underlying state provider.
Transactionld property

Summary

The ID of the transaction that’s currently executing.
Variables property

Summary

Provides access to variable of the bridge.
Transaction property

Summary

Including some transaction info.
Call(fromAddress,toAddress,methodName,args) method
Summary

Calls a method on another contract.

Returns

The result of the call.

19.1. AEIf.Sdk.CSharp

249

AEIf, Release release/1.2.3

Parameters
Name Type Description
fromAddress AEIf.Types.Address | The address to use as sender.
toAddress AEIf. Types.Address | The address of the contract you’re seeking to interact with.
methodName System.String The name of method you want to call.
args Google.Protobuf.Byte$tithg input arguments for calling that method. This is usually gener-
ated from the protobuf
definition of the in-
put type

Generic Types

Name | Description
T The type of the return message.

ConvertHashTolnt64(hash,start,end) method

Summary

Converts the input hash to a 64-bit signed integer.

Returns

The 64-bit signed integer.

Parameters
Name| Type Description
hash | AEIf. Types.Hash The hash.
start System.Int64 | The inclusive lower bound of the number returned.
end System.Int64 | The exclusive upper bound of the number returned. endValue must be greater than or
equal to startValue.
Exceptions

Description
startValue is less than O or greater than endValue.

Name
System.ArgumentException

ConvertVirtualAddressToContractAddress(virtualAddress) method

250 Chapter 19. Ci# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.ArgumentException

AEIf, Release release/1.2.3

Summary

Converts a virtual address to a contract address.

Returns

The converted address.

Parameters

Name Type Description
virtualAddress | AEIf. Types.Hash | The virtual address that want to convert.

ConvertVirtualAddressToContractAddress(virtualAddress,contractAddress) method

Summary

Converts a virtual address to a contract address with the contract address.

Returns

The converted address.

Parameters

Name Type Description
virtual Address AEIf. Types.Hash The virtual address that want to convert.
contractAddress | AEIf.Types.Address | The contract address.

ConvertVirtualAddressToContractAddressWithContractHashName(
virtualAddress) method

Summary

Converts a virtual address to a contract address with the current contract hash name.

Returns

The converted address.

19.1. AEIf.Sdk.CSharp 251

AEIf, Release release/1.2.3

Parameters

Name Type Description
virtualAddress | AEIf. Types.Hash | The virtual address that want to convert.

ConvertVirtualAddressToContractAddressWithContractHashName(
virtualAddress,contractAddress) method

Summary

Converts a virtual address to a contract address with the contract hash name.

Returns

Parameters

Name Type Description
virtualAddress AEIf. Types.Hash The virtual address that want to convert.
contractAddress | AEIf.Types.Address | The contract address.

DeployContract(address,registration,name) method

Summary

Deploy a new smart contract (only the genesis contract can call it).

Parameters
Name Type Description
address AEIf. Types.Address The address of new smart contract.
registration | AEIlf.Types.SmartContractRegistration | The registration of the new smart contract.
name AEIf. Types.Hash The hash value of the smart contract name.

FireLogEvent(logEvent) method

Summary

This method is used to produce logs that can be found in the transaction result after execution.

252 Chapter 19. Ci# reference

AEIf, Release release/1.2.3

Parameters

Name

Type

Description

logEvent

AEIf. Types.LogEvent | The event to fire.

Generateld(contractAddress,bytes) method

Summary

Generate a hash type id based on the contract address and the bytes.

Returns

The generated hash type id.

Parameters
Name Type Description
contractAd- AEIf. Types.Address The contract address on which the id generation
dress is based.
bytes System.Collections. Generic.IEnumerable | The bytes on which the id generation is based.
{System.Byte}

GetContractAddressByName(hash) method

Summary

It’s sometimes useful to get the address of a system contract. The input is a hash of the system contracts name. These
hashes are easily accessible through the constants in the SmartContractConstants.cs file of the C# SDK.

Returns

The address of the system contract.

Parameters

Name

Type

Description

hash

AEIf. Types.Hash

The hash of the name.

GetPreviousBlockTransactions() method

Summary

Returns the transaction included in the previous block (previous to the one currently executing).

19.1. AEIf.Sdk.CSharp

253

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable

AEIf, Release release/1.2.3

Returns

A list of transaction.

Parameters

This method has no parameters.

GetRandomHash(fromHash) method

Summary

Gets a random hash based on the input hash.

Returns

Random hash.

Parameters

Name Type Description
fromHash | AEIlf.Types.Hash | Hash.

GetSystemContractNameToAddressMapping() method

Summary

Get the mapping that associates the system contract addresses and their name’s hash.

Returns

The addresses with their hashes.

Parameters

This method has no parameters.

GetZeroSmartContractAddress() method

Summary

This method returns the address of the Genesis contract (smart contract zero) of the current chain.

254 Chapter 19. Ci# reference

AEIf, Release release/1.2.3

Returns

The address of the genesis contract.

Parameters

This method has no parameters.

GetZeroSmartContractAddress(chainld) method

Summary

This method returns the address of the Genesis contract (smart contract zero) of the specified chain.

Returns

The address of the genesis contract, for the given chain.

Parameters
Name | Type Description
chainld | System.Int32 | The chain’s ID.
LogDebug(func) method
Summary

Application logging - when writing a contract it is useful to be able to log some elements in the applications log file to
simplify development. Note that these logs are only visible when the node executing the transaction is build in debug
mode.

Parameters

Name | Type Description
func System.Func {System.String} | The logic that will be executed for logging purposes.

RecoverPublicKey() method

Summary

Recovers the public key of the transaction Sender.

19.1. AEIf.Sdk.CSharp 255

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int32
https://docs.microsoft.com/en-us/dotnet/api/system.func-1?view=netcore-6.0

AEIf, Release release/1.2.3

Returns

A byte array representing the public key.

Parameters

This method has no parameters.

Sendinline(toAddress,methodName,args) method

Summary

Sends an inline transaction to another contract.

Parameters
Name Type Description
toAddress AEIf. Types. Address | The address of the contract you're seeking to interact with.
methodName System.String The name of method you want to invoke.
args Google.Protobuf The input arguments for calling that method. This is usually gen-
.ByteString erated from the protobuf

definition of the in-
put type.

SendVirtuallnline(fromVirtualAddress,toAddress,methodName,args) method

Summary

Sends a virtual inline transaction to another contract.

Parameters
Name Type Description
fromVirtualAddress | AEIf. Types.Hash The virtual address to use as sender.
toAddress AEIf. Types. Address | The address of the contract you're seeking to interact with.
methodName System.String The name of method you want to invoke.
args Google.Protobuf The input arguments for calling that method. This is usually gen-
.ByteString erated from the protobuf
definition of the in-
put type.

SendVirtuallnlineBySystemContract(fromVirtualAddress,toAddress,

methodName,args) method

256

Chapter 19. Ci# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

Summary

Like SendVirtuallnline but the virtual address us a system smart contract.

Parameters

Name Type Description

fromVirtual Ad- AEIf. Types.Hash Sends a virtual inline transaction to another contract. This method is

dress only available to system smart contract.

toAddress AEIlf.Types. Ad- | The address of the contract you’re seeking to interact with.
dress

methodName System.String The name of method you want to invoke.

args Google.Protobuf The input arguments for calling that method. This is usually generated
.ByteString from the protobuf

definition of the

input type.

UpdateContract(address,registration,name) method

Summary

Update a smart contract (only the genesis contract can call it).

Parameters
Name Type Description
address AEIf. Types.Address The address of smart contract to update.
registration | AEIf.Types.SmartContractRegistration The registration of the smart contract to update.
name AEIf. Types.Hash <#T-AFEIf-Types-Hash> | The hash value of the smart contract name to update.

ValidateStateSize(obj) method

Summary

Verify that the state size is within the valid value.

Returns

The state.

Parameters

Name

Type

Description

obj

System.Object

The state.

19.1. AEIf.Sdk.CSharp

257

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Object

AEIf, Release release/1.2.3

Exceptions

Name Description
AEIf Kernel.SmartContract.StateOverSizeException | The state size exceeds the limit.

VerifySignature(tx) method

Summary

Returns whether or not the given transaction is well formed and the signature is correct.

Returns

The verification results.

Parameters

Name | Type Description
tx AEFEIf. Types.Transaction | The transaction to verify.

CSharpSmartContract type

Namespace

AEIf.Sdk.CSharp

Summary

This class represents a base class for contracts written in the C# language. The generated code from the protobuf
definitions will inherit from this class.

Generic Types

Name Description
TContractState

Context property

Summary

Represents the transaction execution context in a smart contract. It provides access inside the contract to properties
and methods useful for implementing the smart contracts action logic.

258 Chapter 19. Ci# reference

AEIf, Release release/1.2.3

State property

Summary

Provides access to the State class instance. TContractState is the type of the state class defined by the contract author.
ContractState type

Namespace

AEIf.Sdk.CSharp.State

Summary

Base class for the state class in smart contracts.
Int32State type

Namespace

AEIf.Sdk.CSharp.State

Summary

Wrapper around 32-bit integer values for use in smart contract state.
Int64State type

Namespace

AEIf.Sdk.CSharp.State

Summary

Wrapper around 64-bit integer values for use in smart contract state.

MappedState type

Namespace

AEIf.Sdk.CSharp.State

Summary

Key-value pair data structure used for representing state in contracts.

19.1. AEIf.Sdk.CSharp 259

AEIf, Release release/1.2.3

Generic Types

Name | Description
TKey The type of the key.
TEntity | The type of the value.

SingletonState type

Namespace

AEFEIf.Sdk.CSharp.State

Summary

Represents single values of a given type, for use in smart contract state.

SmartContractBridgeContextExtensions type

Namespace

AEIf.Sdk.CSharp

Summary

Extension methods that help with the interactions with the smart contract execution context.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The return value of the call.

260

Chapter 19. Ci# reference

AEIf, Release release/1.2.3

Parameters
Name Type Description
context AEIf Kernel.SmartContract. IS- | The virtual address of the system. contract to use as
martContractBridgeContext sender.

address AEIf. Types. Address The address of the contract you’re seeking to interact
with.

methodName System.String The name of method you want to call.

message Google.Protobuf.ByteString The input arguments for calling that method. This is
usually generated from the protobuf

definition of the

input type.

Generic Types

Name | Description

T The return type of the call.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

Parameters

Name Type Description

context AEIf.Sdk.CSharp.CSharpSmartContractConteXn instance of ISmartContractBridgeContext

address AEIf. Types. Address The address of the contract you’re seeking to interact
with.

method- System.String The name of method you want to call.

Name

message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

Generic Types

Name | Description

T The type of the return message.

19.1. AEIf.Sdk.CSharp

261

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

Call(context,fromAddress,toAddress,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

Parameters
Name Type Description
context AEIf.Sdk.CSharp.CSharpSmartContractConteXn instance of ISmartContractBridgeContext
fromAd- AEIf. Types. Address The address to use as sender.
dress
toAd- AFEIf. Types. Address The address of the contract you’re seeking to interact
dressvv with.
method- System.String The name of method you want to call.
Name
message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.

Generic Types

Name | Description

T The type of the return message.

Call(context,address,methodName,message) method

Summary

Calls a method on another contract.

Returns

The result of the call.

262

Chapter 19. Ci# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

Parameters
Name Type Description
context AEIf.Sdk.CSharp.CSharpSmartContractContejtAn instance of ISmartContractBridgeContext
address AEIf. Types. Address The address to use as sender.
method- System.String The name of method you want to call.
Name
message Google.Protobuf.ByteString The protobuf message that will be the input to the
call.
Generic Types
Name | Description
T The type of the return message.
ConvertToByteString(message) method
Summary
Serializes a protobuf message to a protobuf ByteString.
Returns
ByteString. Empty if the message is null
Parameters
Name Type Description

message | Google.Protobuf.IMessage | The message to serialize.

ConvertVirtualAddressToContractAddress(this,virtualAddress) method

Summary

Converts a virtual address to a contract address.

Returns

19.1. AEIf.Sdk.CSharp 263

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

Parameters
Name Type Description
this AEIf Kernel.SmartContract. ISmartContractBridge- | An instance of ISmartContractBridge-
Context Context
virtualAd- AEIf. Types.Hash Address The virtual address that want to convert.
dress

ConvertVirtualAddressToContractAddressWithContractHashName(this,

virtualAddress) method

Summary

Converts a virtual address to a contract address with the currently running contract address.

Returns
Parameters
Name Type Description
this AFIf Kernel.SmartContract. ISmartContractBridge- | An instance of ISmartContractBridge-
Context Context
virtual Ad- AEIf. Types.Hash Address The virtual address that want to convert.
dress

Fire(context,eventData) method

Summary

Logs an event during the execution of a transaction. The event type is defined in the AEIf.CSharp.core project.

Parameters
Name Type Description
context AEIf.Sdk.CSharp.CSharpSmartContractContext | An instance of ISmartContractBridgeContext
eventData The event to log.

Generic Types

Name

Description

The type of the event.

264

Chapter 19. Ci# reference

AEIf, Release release/1.2.3

Generateld(this,bytes) method

Summary

Generate a hash type id based on the currently running contract address and the bytes.

Returns

The generated hash type id.

Parameters
Name | Type Description
this AEIf Kernel.SmartContract. ISmartContractBridgeCon- | An instance of ISmartContractBridgeCon-
text text
bytes System.Collections.Generic JEnumer- | The bytes on which the id generation is
able{System.Byte} based.

Generateld(this,token) method

Summary

Generate a hash type id based on the currently running contract address and the token.

Returns

The generated hash type id.

Parameters
Name | Type Description
this AEIf Kernel.SmartContract. ISmartContractBridgeCon- | An instance of ISmartContractBridgeCon-
text text
token | System.String The token on which the id generation is
based.

Generateld(this,token) method

Summary

Generate a hash type id based on the currently running contract address and the hash type token.

Returns

The generated hash type id.

19.1. AEIf.Sdk.CSharp 265

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Collections.Generic.IEnumerable
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

Parameters
Name | Type Description
this AEIf Kernel.SmartContract. ISmartContractBridge- | An instance of ISmartContractBridgeContext

Context

token

AEIf. Types.Hash

The hash type token on which the id generation is
based.

Generateld(this) method

Summary

Generate a hash type id based on the currently running contract address.

Returns

The generated hash type id.

Parameters
Name | Type Description
this AEIf Kernel.SmartContract. ISmartContractBridgeCon- | An instance of ISmartContractBridgeCon-
text text
Generateld(this,address,token) method
Summary
Generate a hash type id based on the address and the bytes.
Returns
The generated hash type id.
Parameters
Name | Type Description
this AEIf.Kernel.SmartContract. ISmartContract- | An instance of ISmartContractBridgeContext
BridgeContext
ad- AEIf. Types.Address The address on which the id generation is based.
dress
token | AEIlf.Types.Hash The hash type token on which the id generation is
based.
266 Chapter 19. Ci# reference

AEIf, Release release/1.2.3

SendIinline(context,toAddress,methodName,message) method

Summary

Sends an inline transaction to another contract.

Parameters
Name Type Description
context AEIf Kernel.SmartContract. ~ ISmartContract- | An instance of ISmartContractBridgeContext
BridgeContext

toAddress | AEIlf.Types.Address The address of the contract you're seeking to in-
teract with.

method- System.String The name of method you want to invoke.

Name

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

Sendinline(context,toAddress,methodName,message) method

Summary

Sends a virtual inline transaction to another contract.

Parameters
Name Type Description
context AEIf Kernel.SmartContract. ~ ISmartContract- | An instance of ISmartContractBridgeContext
BridgeContext

toAddress | AEIf.Types.Address The address of the contract you're seeking to in-
teract with.

method- System.String The name of method you want to invoke.

Name

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

SendVirtuallnline(context,fromVirtualAddress,toAddress,methodName,

message) method

Summary

Sends a virtual inline transaction to another contract.

19.1. AEIf.Sdk.CSharp

267

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

Parameters
Name Type Description
context AEIf Kernel.SmartContract. ISmartContract- | An instance of ISmartContractBridgeContext
BridgeContext

fromVirtualAd- | AEIf.Types.Hash The virtual address to use as sender.

dress

toAddress AEIf. Types.Address The address of the contract you’re seeking to
interact with.

methodName System.String The name of method you want to invoke.

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

SendVirtuallnline(context,fromVirtualAddress,toAddress,methodName,
message) method

Summary

Sends a virtual inline transaction to another contract.

Parameters
Name Type Description
context AEIf Kernel.SmartContract. ISmartContract- | An instance of ISmartContractBridgeContext
BridgeContext

fromVirtualAd- | AEIf.Types.Hash The virtual address to use as sender.

dress

toAddress AEIf. Types.Address The address of the contract you’re seeking to
interact with.

methodName System.String The name of method you want to invoke.

message Google.Protobuf.ByteString The protobuf message that will be the input to
the call.

SmartContractConstants type

Namespace

AEIf.Sdk.CSharp

Summary

Static class containing the hashes built from the names of the contracts.

268 Chapter 19. Ci# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

StringState type

Namespace

AEIf.Sdk.CSharp.State

Summary

Wrapper around string values for use in smart contract state.

UInt32State type

Namespace

AEIf.Sdk.CSharp.State

Summary

Wrapper around unsigned 32-bit integer values for use in smart contract state.

UInt64State type

Namespace

AEIf.Sdk.CSharp.State

Summary

Wrapper around unsigned 64-bit integer values for use in smart contract state.

19.2 AEIf.CSharp.Core

19.2.1 Contents

* Builder
— ctor()
— AddMethod(method, handler)
— Build()
» EncodingHelper
— EncodeUtf8(str)
» [Method
— FullName

— Name

19.2. AEIf.CSharp.Core

269

AEIf, Release release/1.2.3

— ServiceName
- Type
* Marshaller
— ctor(serializer,deserializer)
— Deserializer
— Serializer
* Marshallers
— StringMarshaller
— Create()
* MethodType
— Action
— View
* Method
— ctor(type,serviceName,name, requestMarshaller,responseMarshaller)
— FullName
— Name
— RequestMarshaller
— ResponseMarshaller

ServiceName

- Type
GetFullName()

* Preconditions
— CheckNotNull(reference)
— CheckNotNullreference,paramName)
» SafeMath
o ServerServiceDefinition
— BindService()
— CreateBuilder()
* ServiceBinderBase
— AddMethod(method,handler)
* TimestampEXxtensions
— AddDays(timestamp,days)
— AddHours(timestamp,hours)
— AddMilliseconds(timestamp,milliseconds)
— AddMinutes(timestamp,minutes)

— AddSeconds(timestamp,seconds)

270 Chapter 19. Ci# reference

AEIf, Release release/1.2.3

— Max(timestamp1,timestamp?2)
— Milliseconds(duration)

* UnaryServerMethod

Builder type

Namespace

AEIf.CSharp.Core.ServerServiceDefinition

Summary

Builder class for ServerServiceDefinition.
ctor() constructor

Summary

Creates a new instance of builder.

Parameters

This constructor has no parameters.

AddMethod‘“2(method,handler) method

Summary

Adds a definition for a single request - single response method.

Returns

This builder instance.

Parameters

Name | Type Description
method | AEIlf.CSharp.Core.Method The method.
handler | AEIf.CSharp.Core.UnaryServerMethod | The method handler.

19.2. AEIf.CSharp.Core 271

AEIf, Release release/1.2.3

Generic Types

Name

Description

TRequest

The request message class.

TResponse

The response message class.

Build() method

Summary

Creates an immutable ServerServiceDefinition from this builder.

Returns

The ServerServiceDefinition object.

Parameters

This method has no parameters.

EncodingHelper type

Namespace

AEIf.CSharp.Core.Utils

Summary

Helper class for serializing strings.

EncodeUtf8(str) method

Summary

Serializes a UTF-8 string to a byte array.

Returns

the serialized string.

Parameters

Name

Type

Description

str

System.String

272

Chapter 19. Ci# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

IMethod type

Namespace

AEIf.CSharp.Core

Summary

A non-generic representation of a remote method.
FullName property

Summary

Gets the fully qualified name of the method. On the server side, methods are dispatched based on this name.
Name property

Summary

Gets the unqualified name of the method.

ServiceName property

Summary

Gets the name of the service to which this method belongs.
Type property

Summary

Gets the type of the method.

Marshaller type

Namespace

AEIf.CSharp.Core

Summary

Encapsulates the logic for serializing and deserializing messages.

19.2. AEIf.CSharp.Core 273

AEIf, Release release/1.2.3

ctor(serializer,deserializer) constructor

Summary

Initializes a new marshaller from simple serialize/deserialize functions.

Parameters

Name Type Description
serializer | System.Func | Function that will be used to deserialize messages.

Deserializer property

Summary

Gets the deserializer function.
Serializer property
Summary

Gets the serializer function.
Marshallers type
Namespace

AEIf.CSharp.Core

Summary

Utilities for creating marshallers.

StringMarshaller property

Summary

Returns a marshaller for st ring type. This is useful for testing.
Create() method

Summary

Creates a marshaller from specified serializer and deserializer.

274 Chapter 19. Ci# reference

https://docs.microsoft.com/en-us/dotnet/api/system.func-1?view=netcore-6.0

AEIf, Release release/1.2.3

Parameters

This method has no parameters.
MethodType type

Namespace

AEIf.CSharp.Core

Action constants

Summary

The method modifies the contrac state.
View constants

Summary

The method doesn’t modify the contract state.
Method type

Namespace

AEIf.CSharp.Core

Summary

A description of a remote method.

Generic Types

Name Description
TRequest Request message type for this method.
TResponse | Response message type for this method.

ctor(type,serviceName,name,requestMarshaller,responseMarshaller) constructor

Summary

Initializes a new instance of the Met hod class.

19.2. AEIf.CSharp.Core 275

AEIf, Release release/1.2.3

Parameters
Name Type Description
type AEIf.CSharp.Core.Method Type of method.
serviceName System.String Name of service this method belongs to.
name System.String Unqualified name of the method.
request Marshaller AEIf.CSharp.Core.Marshaller | Marshaller used for request messages.
response Marshaller | AEIf.CSharp.Core.Marshaller | Marshaller used for response messages.

FullName property

Summary

Gets the fully qualified name of the method. On the server side, methods are dispatched based on this name.

Name property

Summary

Gets the unqualified name of the method.
RequestMarshaller property

Summary

Gets the marshaller used for request messages.
ResponseMarshaller property
Summary

Gets the marshaller used for response messages.
ServiceName property

Summary

Gets the name of the service to which this method belongs.
Type property

Summary

Gets the type of the method.

276

Chapter 19. Ci# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

GetFullName() method

Summary

Gets full name of the method including the service name.

Parameters

This method has no parameters.
Preconditions type
Namespace

AEIf.CSharp.Core.Utils

CheckNotNull(reference) method

Summary

Throws ArgumentNullException if reference is null.

Parameters

Name Type | Description
reference The reference.

CheckNotNull(reference,paramName) method

Summary

Throws ArgumentNullException if reference is null.

Parameters

Name Type Description
reference The reference.
paramName | System.String | The parameter name.

SafeMath type

Namespace

AEIf.CSharp.Core

19.2. AEIf.CSharp.Core 277

https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.argumentnullexception?redirectedfrom=MSDN&view=netframework-4.7.2
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.String

AEIf, Release release/1.2.3

Summary

Helper methods for safe math operations that explicitly check for overflow.
ServerServiceDefinition type

Namespace

AEIf.CSharp.Core

Summary

Stores mapping of methods to server call handlers. Normally, the ServerServiceDefinition objects will be
created by the BindService factory method that is part of the autogenerated code for a protocol buffers service
definition.

BindService() method
Summary

Forwards all the previously stored AddMethod calls to the service binder.

Parameters

This method has no parameters.

CreateBuilder() method

Summary

Creates a new builder object for ServerServiceDefinition.

Returns

The builder object.

Parameters

This method has no parameters.
ServiceBinderBase type
Namespace

AEIf.CSharp.Core

278 Chapter 19. Ci# reference

AEIf, Release release/1.2.3

Summary

Allows binding server-side method implementations in alternative serving stacks. Instances of this class are usually
populated by the BindService method that is part of the autogenerated code for a protocol buffers service definition.

AddMethod(method,handler) method

Summary

Adds a definition for a single request - single response method.

Parameters

Name | Type Description
method | AEIf.CSharp.Core.Method The method.
handler | AEIf.CSharp.Core.UnaryServerMethod | The method handler.

Generic Types

Name Description
TRequest The request message class.
TResponse | The response message class.

TimestampExtensions type

Namespace

AEIf.CSharp.Core.Extension

Summary

Helper methods for dealing with protobuf timestamps.

AddDays(timestamp,days) method

Summary

Adds a given amount of days to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

19.2. AEIf.CSharp.Core

279

AEIf, Release release/1.2.3

Parameters

Name Type Description
timestamp | Google.Protobuf.WellKnown Types.Timestamp | the timestamp.
days System. Int64 the amount of days.

AddHours(timestamp,hours) method

Summary

Adds a given amount of hours to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp | Google.Protobuf .WellKnownTypes.Timestamp | the timestamp.
hours System.Int64 the amount of hours.

AddMilliseconds(timestamp,milliseconds) method

Summary

Adds a given amount of milliseconds to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters
Name Type Description
timestamp Google.Protobuf. WellKnownTypes.Timestamp | the timestamp.
milliseconds | System. Int64 the amount of milliseconds to add.

AddMinutes(timestamp,minutes) method

Summary

Adds a given amount of minutes to a timestamp. Returns a new instance.

280 Chapter 19. Ci# reference

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

AEIf, Release release/1.2.3

Returns

a new timestamp instance.

Parameters
Name Type Description
timestamp | Google.Protobuf .WellKnownTypes.Timestamp | the timestamp.
minutes System.Int64 the amount of minutes.

AddSeconds(timestamp,seconds) method

Summary

Adds a given amount of seconds to a timestamp. Returns a new instance.

Returns

a new timestamp instance.

Parameters

Name Type Description
timestamp | Google.Protobuf .WellKnownTypes.Timestam | the timestamp.
seconds System.Int64 the amount of seconds.

Max(timestamp1,timestamp2) method

Summary

Compares two timestamps and returns the greater one.

Returns

the greater timestamp.

Parameters

Name Type Description
timestampl | Google.Protobuf .WellKnownTypes.Timestamp | the first timestamp
timestamp2 | Google.Protobuf .WellKnownTypes.Timestamp | the second timestamp

19.2. AEIf.CSharp.Core 281

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64
http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k:System.Int64

AEIf, Release release/1.2.3

Milliseconds(duration) method

Summary

Converts a protobuf duration to long.

Returns

the duration represented with a long.

Parameters

Name Type

Description

duration

Google.Protobuf. WellKnownTypes.Duration

the duration to convert.

UnaryServerMethod type

Namespace

AEIf.CSharp.Core

Summary

Handler for a contract method.

Generic Types

Name

Description

TRequest

Request message type for this method.

TResponse

Response message type for this method.

282

Chapter 19. Ci# reference

cHAPTER 20

Smart Contract APIs

This section gives an overview of some important contracts and contract methods. It’s not meant to be exhaustive.
With every method description we give the parameter message in JSON format, this can be useful when using client
(like aelf-command).

20.1 AEIlf.Contracts.Association

Association contract.

Organizations established to achieve specific goals can use this contract to cooperatively handle transactions within
the organization

Implement AEIf Standards ACS1 and ACS3.

20.1.1 Contract Methods

Method Name Request Type Response Description
Type
CreateOrganization Associa- aelf.Address Create an organization and return its
tion.CreateOrganizationlnput address.
CreateOrganization- | Associa- aelf.Address Creates an organization by system
BySystemContract tion.CreateOrganizationBySystemContractInput | contract and return its address.
AddMember aelf.Address google.protobuf| Efapdyorganization members.
RemoveMember aelf.Address google.protobuf| FRganove organization members.
ChangeMember Associa- google.protobuf| EFRgpace organization member with a
tion.ChangeMemberInput new member.
GetOrganization aelf.Address Associa- Get the organization according to the
tion.Organizationorganization address.
CalculateOrganiza- Associa- aelf.Address Calculate the input and return the or-
tionAddress tion.CreateOrganizationlnput ganization address.

283

AEIf, Release release/1.2.3

AEIlf.Standards.ACS1
Method Name Request Type Response Description
Type
SetMethodFee acsl.MethodFees | google.protobulf. Betptye method fees for the specified method. Note that
this will override all fees of the method.
ChangeMethod- | Authoritylnfo google.protobuf. Elnpaige the method fee controller, the default is parlia-
FeeController ment and default organization.
GetMethodFee google.protobuf.StriagMaMethodFeefQuery method fee information by method name.
GetMethod- google.protobuf. Empaythoritylnfo | Query the method fee controller.
FeeController
AEIlf.Standards.ACS3
Method Request Re- Description
Name Type sponse
Type
CreatePro- acs3.CreatePropasiflHpsh| Create a proposal for which organization members can vote. When the
posal proposal is released, a transaction will be sent to the specified contract.
Return id of the newly created proposal.
Approve aelf.Hash google.protéipyibuepyproposal according to the proposal ID.
Reject aelf.Hash google.prot®lag¢dimpmoposal according to the proposal ID.
Abstain aelf.Hash google.protéthstdimptproposal according to the proposal ID.
Release aelf.Hash google.pro®Rlel¢dsmpryroposal according to the proposal ID and send a transaction
to the specified contract.
ChangeOr- acs3.ProposalRelpacgldipesholabinBeiphe thresholds associated with proposals. All fields will be
ganization- overwritten by the input value and this will affect all current propos-
Threshold als of the organization. Note: only the organization can execute this
through a proposal.
ChangeOr- acs3.Proposer Wigtalght. proteinghgepite white list of organization proposer. This method overrides
ganization- the list of whitelisted proposers.
Proposer-
WhiteList
CreatePro- acs3.CreatePropasdf BiSsistefin€aterptbposal by system contracts, and return id of the newly cre-
posal- ated proposal.
BySystem-
Contract
ClearPro- aelf.Hash google.pro®lewfid&repthe specified proposal. If the proposal is in effect, the cleanup
posal fails.
GetProposal | aelf.Hash acs3. Propo&atOingpptoposal according to the proposal ID.
Validate- aelf.Address google.protolhetBahéVedirtence of an organization.
Organiza-
tionExist
Vali- acs3.Validate Progosgibip¥hi6hecBnp tel/proposer is whitelisted.
datePro-
poserIn-
WhiteList

20.1.2 Contract Types

284

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIlf.Contracts.Association

Association.ChangeMemberinput

Field Type Description Label
old_member aelf.Address | The old member address.
new_member | aelfAddress | The new member address.

Association.CreateOrganizationBySystemContractinput

20.1. AEIlf.Contracts.Association

Field Type Description La-
bel
organiza- CreateOrgani- | The parameters of creating organization.
tion_creation_input zationlnput
organiza- string The organization address callback method which replies the
tion_address_feedback method organization address to caller contract.
Association.CreateOrganizationlnput
Field Type Description La-
bel
organiza- OrganizationMemberList Initial organization members.
tion_member_list
pro- acs3.ProposalReleaseThreshollihe threshold for releasing the proposal.
posal_release_threshold
proposer_white_list acs3.ProposerWhiteList The proposer whitelist.
creation_token aelf.Hash The creation token is for organization address
generation.
Association.MemberAdded
Field Type Description Label
member aelf.Address | The added member address.
organization_address | aelf.Address | The organization address.
Association.MemberChanged
Field Type Description Label
old_member aelf.Address | The old member address.
new_member aelf.Address | The new member address.
organization_address | aelf.Address | The organization address.
285

AEIf, Release release/1.2.3

Association.MemberRemoved

Field Type Description Label
member aelf.Address | The removed member address.
organization_address | aelf.Address | The organization address.

Association.Organization

Field Type Description La-
bel

organiza- OrganizationMemberList The organization members.

tion_member_list

pro- acs3.ProposalReleaseThreshollihe threshold for releasing the proposal.

posal_release_threshold

proposer_white_list acs3.ProposerWhiteList The proposer whitelist.

organization_address aelf.Address The address of organization.

organization_hash aelf.Hash The organizations id.

creation_token aelf.Hash The creation token is for organization address

generation.

Association.OrganizationMemberList

Field Type Description Label
organization_members | aelf.Address | The address of organization members. | repeated

Association.Proposalinfo

Field Type Description Label

proposal_id aelf.Hash The proposal ID.

con- string The method that this proposal will call when being

tract_method_name released.

to_address aelf-Address The address of the target contract.

params bytes The parameters of the release transaction.

expired_time google.protobuf. Timestamplhe date at which this proposal will expire.

proposer aelf.Address The address of the proposer of this proposal.

organization_address | aelfAddress The address of this proposals organization.

approvals aelf.Address Address list of approved. re-
peated

rejections aelf.Address Address list of rejected. re-
peated

abstentions aelf.Address Address list of abstained. re-
peated

pro- string Url is used for proposal describing.

posal_description_url

286 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIlf.Standards.ACS1

acs1.MethodFee

Field

Type | Description Label

symbol

string | The token symbol of the method fee.

basic_fee | int64 | The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee | List of fees to be charged. repeated
is_size_fee_free | bool Optional based on the implementation of SetMethodFee method.
AEIf.Standards.ACS3
acs3.CreateProposalBySystemContractinput
Field Type Description Label
proposal_input | CreateProposallnput | The parameters of creating proposal.
origin_proposer | aelf.Address The actor that trigger the call.
acs3.CreateProposallnput
Field Type Description La-
bel
con- string The name of the method to call after release.

tract_method_name

to_address

aelf.Address

The address of the contract to call after release.

params

bytes

The parameter of the method to be called after the release.

expired_time

google.protobuf. Timdermipnestamp at which this proposal will expire.

posal_description_url

organiza- aelf.Address The address of the organization.
tion_address
pro- string Url is used for proposal describing.

token

aelf.Hash

id can be calculated before proposing.

The token is for proposal id generation and with this token, proposal

acs3.0rganizationCreated

Field

Type Description Label

organization_address | aelf.Address | The address of the created organization.

20.1. AEIlf.Contracts.Association

287

AEIf, Release release/1.2.3

acs3.0rganizationHashAddressPair

Field Type Description Label
organization_hash aelf.Hash The id of organization.
organization_address | aelfAddress | The address of organization.

acs3.0rganizationThresholdChanged

Field Type Description Label
organization_address aelf.Address The organization address
proposer_release_threshold | ProposalReleaseThreshold | The new release threshold.

acs3.0rganizationWhiteListChanged

Field Type Description Label
organization_address | aelf.Address The organization address.
proposer_white_list ProposerWhiteList | The new proposer whitelist.

acs3.ProposalCreated

Field Type Description Label
proposal_id aelf.Hash The id of the created proposal.
organization_address | aelf.Address | The organization address of the created proposal.

acs3.ProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The id of the proposal.

con- string The method that this proposal will call when being re-

tract_method_name leased.

to_address aelf.Address The address of the target contract.

params bytes The parameters of the release transaction.

expired_time google.protobuf. Timestamp The date at which this proposal will expire.

organiza- aelf.Address The address of this proposals organization.

tion_address

proposer aelf.Address The address of the proposer of this proposal.

to_be_released bool Indicates if this proposal is releasable.

approval_count int64 Approval count for this proposal.

rejection_count int64 Rejection count for this proposal.

abstention_count int64 Abstention count for this proposal.

288 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

acs3.ProposalReleaseThreshold

Field Type | Description Label
minimal_approval_threshold int64 | The value for the minimum approval threshold.
maximal_rejection_threshold int64 | The value for the maximal rejection threshold.
maximal_abstention_threshold | int64 | The value for the maximal abstention threshold.
minimal_vote_threshold int64 | The value for the minimal vote threshold.
acs3.ProposalReleased
Field Type Description Label
proposal_id aelf.Hash The id of the released proposal.
organization_address | aelf.Address | The organization address of the released proposal.
acs3.ProposerWhiteList
Field Type Description Label
proposers | aelf.Address | The address of the proposers | repeated
acs3.ReceiptCreated
Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp | The timestamp of this method call.
organization_address | aelf.Address The address of the organization.

acs3.ValidateProposerinWhiteListinput

Field Type Description Label
proposer aelf.Address | The address to search/check.
organization_address | aelf.Address | The address of the organization.
AEIf.Types
aelf.Address
Field | Type | Description | Label
value | bytes

20.1. AEIlf.Contracts.Association

289

AEIf, Release release/1.2.3

aelf.BinaryMerkleTree

aelf.Hash

aelf.LogEvent

aelf.MerklePath
Field Type Description Label
merkle_path_nodes | MerklePathNode | The merkle path nodes. | repeated
aelf.MerklePathNode
Field Type | Description Label
hash Hash | The node hash.
is_left_child_node | bool | Whether it is a left child node.
aelf.SInt32Value
Field | Type | Description | Label
value | sint32
aelf.SInt64Value
Field | Type | Description | Label
value | sint64

Field Type | Description Label
nodes Hash | The leaf nodes. repeated
root Hash | The root node hash.
leaf count | int32 | The count of leaf node.
Field | Type | Description | Label
value | bytes
Field Type Description Label
address Address | The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. | repeated
non_indexed | bytes The non indexed data.

290

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

aelf.Scope

dStatePath

Field Type Description Label
address | Address The scope address, which will be the contract address.
path StatePath | The path of contract state.
aelf.SmartContractRegistration
Field Type | Description Label
category sint32 | The category of contract code(0: C#).
code bytes | The byte array of the contract code.
code_hash Hash | The hash of the contract code.
is_system_contract | bool Whether it is a system contract.
version int32 | The version of the current contract.

aelf.StatePath

aelf.Transaction

Field | Type | Description

Label

parts | string | The partial path of the state path. | repeated

Field Type| Description La-
bel
from Ad- | The address of the sender of the transaction.
dress
to Ad- | The address of the contract when calling a contract.
dress
ref_block | nimtflsr The height of the referenced block hash.
ref_block | pbefies| The first four bytes of the referenced block hash.
method_namgring The name of a method in the smart contract at the To address.
params bytes| The parameters to pass to the smart contract method.
signa- bytes| When signing a transaction it’s actually a subset of the fields: from/to and the target
ture method as well as the parameter that were given. It also contains the reference block
number and prefix.
aelf.TransactionExecutingStateSet
Field | Type Description Label
writes | TransactionExecutingStateSet.WritesEntry | The changed states. | repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes | TransactionExecutingStateSet.DeletesEntry | The deleted states. | repeated
20.1. AEIlf.Contracts.Association 291

AEIf, Release release/1.2.3

aelf.TransactionExecutingStateSet.DeletesEntry

Field | Type | Description | Label
key string
value | bool

aelf.TransactionExecutingStateSet.ReadsEntry

Field | Type | Description | Label
key string
value | bool

aelf.TransactionExecutingStateSet.WritesEntry

Field | Type | Description | Label
key string
value | bytes

aelf.TransactionResult

Field | Type Description La-
bel
trans- | Hash The transaction id.
ac-
tion_id
sta- Trans- The transaction result status.
tus action-
Result-
Status
logs | Lo- The log events. re-
gEvent peated
bloom| bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.
re- bytes The return value of the transaction execution.
turn_value
block_|nirmbér The height of the block hat packages the transaction.
block_|h#thsh The hash of the block hat packages the transaction.
error | string Failed execution error message.

292 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

aelf.TransactionResultStatus

Name Num- Description
ber

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILEI® Transaction validation failed.

Authoritylnfo

Field Type Description Label
contract_address | aelf.Address | The contract address of the controller.
owner_address aelf.Address | The address of the owner of the contract.

20.2 AEIlf.Contracts.Referendum

Referendum contract.

Production nodes or associations cannot determine all decisions. Some extremely important decisions, especially those
involving user rights and interests, should involve all users and give full control to the user’s voting for governance.
The Referendum contract is built for this.

Implement AEIf Standards ACS1 and ACS3.

20.2.1 Contract Methods

Method Name Request Type Response Description
Type
ReclaimVoteToken aelf.Hash google.protobuf| Fiphyck the token used for voting ac-
cording to proposal id.
CreateOrganization Referen- aelf.Address Create an organization and return its
dum.CreateOrganizationlnput address.
CreateOrganization- Referen- aelf.Address Creates an organization by system
BySystemContract dum.CreateOrganizationBySystemContractlnput | contract and return its address.
GetOrganization aelf.Address Referen- Get the organization according to the
dum.Organizatiprorganization address.
CalculateOrganiza- Referen- aelf.Address Calculate the input and return the or-
tionAddress dum.CreateOrganizationlnput ganization address.
GetProposal Virtual- aelf.Hash aelf.Address Get the virtual address of a proposal
Address based on the proposal id.

20.2. AEIlf.Contracts.Referendum

293

AEIf, Release release/1.2.3

AEIlf.Standards.ACS1
Method Name Request Type Response Description
Type
SetMethodFee acsl.MethodFees | google.protobulf. Betptye method fees for the specified method. Note that
this will override all fees of the method.
ChangeMethod- | Authoritylnfo google.protobuf. Elnpaige the method fee controller, the default is parlia-
FeeController ment and default organization.
GetMethodFee google.protobuf.StriagMaMethodFeefQuery method fee information by method name.
GetMethod- google.protobuf. Empaythoritylnfo | Query the method fee controller.
FeeController
AEIlf.Standards.ACS3
Method Request Re- Description
Name Type sponse
Type
CreatePro- acs3.CreatePropasiflHpsh| Create a proposal for which organization members can vote. When the
posal proposal is released, a transaction will be sent to the specified contract.
Return id of the newly created proposal.
Approve aelf.Hash google.protéipyibuepyproposal according to the proposal ID.
Reject aelf.Hash google.prot®lag¢dimpmoposal according to the proposal ID.
Abstain aelf.Hash google.protéthstdimptproposal according to the proposal ID.
Release aelf.Hash google.pro®Rlel¢dsmpryroposal according to the proposal ID and send a transaction
to the specified contract.
ChangeOr- acs3.ProposalRelpacgldipesholabinBeiphe thresholds associated with proposals. All fields will be
ganization- overwritten by the input value and this will affect all current propos-
Threshold als of the organization. Note: only the organization can execute this
through a proposal.
ChangeOr- acs3.Proposer Wigtalght. proteinghgepite white list of organization proposer. This method overrides
ganization- the list of whitelisted proposers.
Proposer-
WhiteList
CreatePro- acs3.CreatePropasdf BiSsistefin€aterptbposal by system contracts, and return id of the newly cre-
posal- ated proposal.
BySystem-
Contract
ClearPro- aelf.Hash google.pro®lewfid&repthe specified proposal. If the proposal is in effect, the cleanup
posal fails.
GetProposal | aelf.Hash acs3. Propo&atOingpptoposal according to the proposal ID.
Validate- aelf.Address google.protolhetBahéVedirtence of an organization.
Organiza-
tionExist
Vali- acs3.Validate Progosgibip¥hi6hecBnp tel/proposer is whitelisted.
datePro-
poserIn-
WhiteList

20.2.2 Contract Types

294

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIlf.Contracts.Referendum

Referendum.CreateOrganizationBySystemContractinput

Field Type Description La-
bel
organiza- CreateOrgani- | The parameters of creating organization.
tion_creation_input zationlnput
organiza- string The organization address callback method which replies the
tion_address_feedback_method organization address to caller contract.
Referendum.CreateOrganizationlnput
Field Type Description La-
bel
token_symbol string The token used during proposal operations.
pro- acs3.ProposalReleaseThreshollihe threshold for releasing the proposal.
posal_release_threshold
proposer_white_list acs3.ProposerWhiteList The proposer whitelist.
creation_token aelf.-Hash The creation token is for organization address
generation.
Referendum.Organization
Field Type Description La-
bel
pro- acs3.ProposalReleaseThreshollihe threshold for releasing the proposal.
posal_release_threshold
token_symbol string The token used during proposal operations.
organization_address aelf.Address The address of organization.
organization_hash aelf.Hash The organizations id.
proposer_white_list acs3.ProposerWhiteList The proposer whitelist.
creation_token aelf.Hash The creation token is for organization address
generation.
20.2. AEIlf.Contracts.Referendum 295

AEIf, Release release/1.2.3

Referendum.Proposalinfo

Field Type Description La-
bel

proposal_id aelf-Hash The proposal ID.

con- string The method that this proposal will call when being

tract_method_name released.

to_address aelf.Address The address of the target contract.

params bytes The parameters of the release transaction.

expired_time google.protobuf. TimestampThe date at which this proposal will expire.

proposer aelf.Address The address of the proposer of this proposal.

organization_address | aelf.Address The address of this proposals organization.

approval_count int64 The count of approved.

rejection_count int64 The count of rejected.

abstention_count int64 The count of abstained.

pro- string Url is used for proposal describing.

posal_description_url

Referendum.Receipt

Field Type Description Label
amount int64 The amount of token locked.
token_symbol | string The symbol of token locked.

lock_id aelf.Hash | The lock id.

Referendum.ReferendumReceiptCreated

Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
symbol string The symbol of token locked.
amount int64 The amount of token locked.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp | The timestamp of this method call.
organization_address | aelf.Address The address of the organization.
AEIlf.Standards.ACS1

acs1.MethodFee

Field Type | Description Label
symbol string | The token symbol of the method fee.
basic_fee | int64 | The amount of fees to be charged.

296 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee | List of fees to be charged. repeated
is_size_fee_free | bool Optional based on the implementation of SetMethodFee method.
AEIf.Standards.ACS3
acs3.CreateProposalBySystemContractinput
Field Type Description Label
proposal_input | CreateProposallnput | The parameters of creating proposal.
origin_proposer | aelf.Address The actor that trigger the call.
acs3.CreateProposallnput
Field Type Description La-
bel
con- string The name of the method to call after release.

tract_method_name

to_address

aelf.Address

The address of the contract to call after release.

params

bytes

The parameter of the method to be called after the release.

expired_time

google.protobuf. Timdermipestamp at which this proposal will expire.

posal_description_url

organiza- aelf.Address The address of the organization.
tion_address
pro- string Url is used for proposal describing.

token

aelf.Hash

id can be calculated before proposing.

The token is for proposal id generation and with this token, proposal

acs3.0rganizationCreated

Field

Type Description Label

organization_address | aelf.Address | The address of the created organization.

acs3.0rganizationHashAddressPair

Field

Type Description Label

organization_hash aelf.Hash The id of organization.

organization_address | aelf.Address | The address of organization.

20.2. AEIlf.Contracts.Referendum

297

AEIf, Release release/1.2.3

acs3.0rganizationThresholdChanged

Field Type Description Label
organization_address aelf.Address The organization address
proposer_release_threshold | ProposalReleaseThreshold | The new release threshold.

acs3.0rganizationWhiteListChanged

Field Type Description Label
organization_address | aelfAddress The organization address.
proposer_white_list ProposerWhiteList | The new proposer whitelist.

acs3.ProposalCreated

Field Type Description Label
proposal_id aelf.Hash The id of the created proposal.
organization_address | aelf.Address | The organization address of the created proposal.

acs3.ProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The id of the proposal.

con- string The method that this proposal will call when being re-

tract_method_name leased.

to_address aelf.Address The address of the target contract.

params bytes The parameters of the release transaction.

expired_time google.protobuf.Timestanp The date at which this proposal will expire.

organiza- aelf.Address The address of this proposals organization.

tion_address

proposer aelf.Address The address of the proposer of this proposal.

to_be_released bool Indicates if this proposal is releasable.

approval_count int64 Approval count for this proposal.

rejection_count int64 Rejection count for this proposal.

abstention_count int64 Abstention count for this proposal.

acs3.ProposalReleaseThreshold

Field Type | Description Label
minimal_approval_threshold int64 | The value for the minimum approval threshold.
maximal_rejection_threshold int64 | The value for the maximal rejection threshold.
maximal_abstention_threshold | int64 | The value for the maximal abstention threshold.
minimal_vote_threshold int64 | The value for the minimal vote threshold.

298 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

acs3.ProposalReleased

Field Type Description Label
proposal_id aelf.Hash The id of the released proposal.
organization_address | aelf.Address | The organization address of the released proposal.
acs3.ProposerWhiteList
Field Type Description Label
proposers | aelf.Address | The address of the proposers | repeated
acs3.ReceiptCreated
Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf.Timestamp | The timestamp of this method call.
organization_address | aelf.-Address The address of the organization.
acs3.ValidateProposerinWhiteListInput
Field Type Description Label
proposer aelf.Address | The address to search/check.
organization_address | aelf.Address | The address of the organization.
AEIf.Types
aelf.Address
Field | Type | Description | Label
value | bytes
aelf.BinaryMerkleTree
Field Type | Description Label
nodes Hash | The leaf nodes. repeated
root Hash | The root node hash.
leaf_count | int32 | The count of leaf node.
20.2. AEIlf.Contracts.Referendum 299

AEIf, Release release/1.2.3

aelf.Hash

Field | Type | Description | Label
value | byftes
aelf.LogEvent
Field Type Description Label
address Address | The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. | repeated
non_indexed | bytes The non indexed data.

aelf.MerklePath
Field Type Description Label
merkle_path_nodes | MerklePathNode | The merkle path nodes. | repeated
aelf.MerklePathNode
Field Type | Description Label
hash Hash | The node hash.
is_left_child_node | bool | Whether it is a left child node.
aelf.SInt32Value
Field | Type | Description | Label
value | sint32
aelf.SInt64Value
Field | Type | Description | Label
value | sint64
aelf.ScopedStatePath
Field Type Description Label
address | Address The scope address, which will be the contract address.
path StatePath | The path of contract state.

300

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

aelf.SmartContractRegistration

aelf.StatePath

Field Type | Description Label
category sint32 | The category of contract code(0: C#).
code bytes | The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract | bool Whether it is a system contract.
version int32 The version of the current contract.

Field | Type | Description Label

parts | string | The partial path of the state path. | repeated

aelf.Transaction

Field Typel Description La-
bel
from Ad- | The address of the sender of the transaction.
dress|
to Ad- | The address of the contract when calling a contract.
dress|
ref_block | nimtélkr The height of the referenced block hash.
ref_block | pbsfizs| The first four bytes of the referenced block hash.
method_namwing The name of a method in the smart contract at the To address.
params bytes| The parameters to pass to the smart contract method.
signa- bytes) When signing a transaction it’s actually a subset of the fields: from/to and the target
ture method as well as the parameter that were given. It also contains the reference block
number and prefix.
aelf.TransactionExecutingStateSet
Field Type Description Label
writes | TransactionExecutingStateSet.WritesEntry | The changed states. | repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes | TransactionExecutingStateSet.DeletesEntry | The deleted states. | repeated
aelf.TransactionExecutingStateSet.DeletesEntry
Field | Type | Description | Label
key string
value | bool
20.2. AEIlf.Contracts.Referendum 301

AEIf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field | Type | Description | Label
key string
value | bool

aelf.TransactionExecutingStateSet.WritesEntry

Field | Type | Description | Label
key string
value | bytes

aelf.TransactionResult

Field | Type Description La-
bel
trans- | Hash The transaction id.
ac-
tion_id
sta- Trans- The transaction result status.
tus action-
Result-
Status
logs | Lo- The log events. re-
gEvent peated

bloom| bytes

Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re- bytes The return value of the transaction execution.
turn_value

block_|nimrbér The height of the block hat packages the transaction.
block_|h#thsh The hash of the block hat packages the transaction.

error | string

Failed execution error message.

aelf.TransactionResultStatus

Name Num- Description
ber

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILEID Transaction validation failed.

302

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Authorityinfo

Field Type Description Label
contract_address | aelf.Address | The contract address of the controller.
owner_address aelf.Address | The address of the owner of the contract.

20.3 AEIlf.Contracts.Parliament

Parliament contract.

The production nodes use the Parliament contract to govern important matters. In the initial state, the production nodes
are members of the parliament, and only when two-thirds of the production nodes vote in favor of a given decision,
will it be executed.

Implement AEIf Standards ACS1 and ACS3.

20.3.1 Contract Methods

Method Name | Request Type Response | Description
Type
Initialize Farlia- google.protobdfifiinline parliament proposer whitelist and create
ment.Initializelnput the first parliament organization with specific pro-
poser_authority_required.
CreateOrgani- Parlia- aelf.Address| Create an organization and return its address.
zation ment.CreateOrganizationlnput
ApproveMulti- Parlia- google.protoplpdtelpapproval proposal.
Proposals ment.ProposalldList
CreateOrgani- Farlia- aelf.Address| Creates an organization by system contract and return
zationBySys- ment.CreateOrganizationBySystemConirats hgaress.
temContract
GetOrganiza- aelf.Address Farlia- Get the organization according to the organization ad-
tion ment.Organizadiess.
GetDefaultOr- google.protobuf.Empty | aelf.Address| Get the default organization address.
ganizationAd-
dress
ValidateAddres- | aelfAddress google.protoply Butalsifehe provided address is a parliament mem-
sIsParliament- ber.
Member
GetProposer- google.protobuf.Empty | acs3.ProposerRititedsshe list of whitelisted proposers.
WhiteList
GetNotVoted- Parlia- Parlia- Filter still pending ones not yet voted by the sender
PendingPropos- | ment.ProposalldList ment. Proposalftiusprovided proposals.
als
GetNotVoted- Farlia- Farlia- Filter not yet voted ones by the sender from provided
Proposals ment.ProposalldList ment.Proposalpdbpsrsals.
CalculateOrga- | Parlia- aelf.Address| Calculates with input and return the organization ad-
nizationAddress | ment.CreateOrganizationlnput dress.

20.3. AEIlf.Contracts.Parliament

303

AEIf, Release release/1.2.3

AEIlf.Standards.ACS1
Method Name Request Type Response Description
Type
SetMethodFee acsl.MethodFees | google.protobulf. Betptye method fees for the specified method. Note that
this will override all fees of the method.
ChangeMethod- | Authoritylnfo google.protobuf. Elnpaige the method fee controller, the default is parlia-
FeeController ment and default organization.
GetMethodFee google.protobuf.StriagMaMethodFeefQuery method fee information by method name.
GetMethod- google.protobuf. Empaythoritylnfo | Query the method fee controller.
FeeController
AEIlf.Standards.ACS3
Method Request Re- Description
Name Type sponse
Type
CreatePro- acs3.CreatePropasiflHpsh| Create a proposal for which organization members can vote. When the
posal proposal is released, a transaction will be sent to the specified contract.
Return id of the newly created proposal.
Approve aelf.Hash google.protéipyibuepyproposal according to the proposal ID.
Reject aelf.Hash google.prot®lag¢dimpmoposal according to the proposal ID.
Abstain aelf.Hash google.protéthstdimptproposal according to the proposal ID.
Release aelf.Hash google.pro®Rlel¢dsmpryroposal according to the proposal ID and send a transaction
to the specified contract.
ChangeOr- acs3.ProposalRelpacgldipesholabinBeiphe thresholds associated with proposals. All fields will be
ganization- overwritten by the input value and this will affect all current propos-
Threshold als of the organization. Note: only the organization can execute this
through a proposal.
ChangeOr- acs3.Proposer Wigtalght. proteinghgepite white list of organization proposer. This method overrides
ganization- the list of whitelisted proposers.
Proposer-
WhiteList
CreatePro- acs3.CreatePropasdf BiSsistefin€aterptbposal by system contracts, and return id of the newly cre-
posal- ated proposal.
BySystem-
Contract
ClearPro- aelf.Hash google.pro®lewfid&repthe specified proposal. If the proposal is in effect, the cleanup
posal fails.
GetProposal | aelf.Hash acs3. Propo&atOingpptoposal according to the proposal ID.
Validate- aelf.Address google.protolhetBahéVedirtence of an organization.
Organiza-
tionExist
Vali- acs3.Validate Progosgibip¥hi6hecBnp tel/proposer is whitelisted.
datePro-
poserIn-
WhiteList

20.3.2 Contract Types

304

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIlf.Contracts.Parliament

Parliament.CreateOrganizationBySystemContractinput

Field Type Description La-
bel
organiza- CreateOrgani- | The parameters of creating organization.
tion_creation_input zationlnput
organiza- string The organization address callback method which replies the
tion_address_feedback_method organization address to caller contract.
Parliament.CreateOrganizationinput
Field Type Description La-
bel
proposal_release_threshold acs3.ProposalReleaseThrdshelireshold for releasing the proposal.
proposer_authority_required | bool Setting this to true can allow anyone to create
proposals.
parlia- bool Setting this to true can allow parliament member
ment_member_proposing_allgwed to create proposals.
creation_token aelf.Hash The creation token is for organization address
generation.
Parliament.Initializelnput
Field Type Description La-
bel
privileged_proposer | aelf.Addrgs®Privileged proposer would be the first address in parliament proposer
whitelist.
pro- bool The setting indicates if proposals need authority to be created for
poser_authority_required first/default parliament organization.
Parliament.Organization
Field Type Description La-
bel
proposer_authority_required | bool Indicates if proposals need authority to be cre-
ated.
organization_address aelf.Address The organization address.
organization_hash aelf.Hash The organization id.
proposal_release_threshold acs3.ProposalReleaseThredlelthreshold for releasing the proposal.
parlia- bool Indicates if parliament member can propose to
ment_member_proposing_allowed this organization.
creation_token aelfHash The creation token is for organization address
generation.
20.3. AEIlf.Contracts.Parliament 305

AEIf, Release release/1.2.3

Parliament.ProposalldList

Field Type Description Label
proposal_ids | aelf.Hash | The list of proposal ids. | repeated
Parliament.Proposalinfo
Field Type Description Label
proposal_id aelf.Hash The proposal ID.
con- string The method that this proposal will call when being
tract_method_name released.
to_address aelf-Address The address of the target contract.
params bytes The parameters of the release transaction.
expired_time google.protobuf. Timestamplhe date at which this proposal will expire.
proposer aelf.Address The address of the proposer of this proposal.
organization_address | aelfAddress The address of this proposals organization.
approvals aelf.Address Address list of approved. re-
peated
rejections aelf.Address Address list of rejected. re-
peated
abstentions aelf.Address Address list of abstained. re-
peated
pro- string Url is used for proposal describing.
posal_description_url
AEIf.Standards.ACS1
acs1.MethodFee
Field Type | Description Label
symbol string | The token symbol of the method fee.
basic_fee | int64 | The amount of fees to be charged.
acs1.MethodFees
Field Type Description Label
method_name string The name of the method to be charged.
fees MethodFee | List of fees to be charged. repeated
is_size_fee free | bool Optional based on the implementation of SetMethodFee method.

AEIf.Standards.ACS3

306 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

acs3.CreateProposalBySystemContractinput

Field Type Description Label
proposal_input | CreateProposallnput | The parameters of creating proposal.
origin_proposer | aelf.Address The actor that trigger the call.
acs3.CreateProposallnput
Field Type Description La-
bel
con- string The name of the method to call after release.
tract_method_name
to_address aelf.Address The address of the contract to call after release.
params bytes The parameter of the method to be called after the release.
expired_time google.protobuf. Timdsermipestamp at which this proposal will expire.
organiza- aelf.Address The address of the organization.
tion_address
pro- string Url is used for proposal describing.
posal_description_url
token aelf.Hash The token is for proposal id generation and with this token, proposal
id can be calculated before proposing.
acs3.0rganizationCreated
Field Type Description Label
organization_address | aelf.Address | The address of the created organization.
acs3.0rganizationHashAddressPair
Field Type Description Label
organization_hash aelf.Hash The id of organization.
organization_address | aelfAddress | The address of organization.
acs3.0rganizationThresholdChanged
Field Type Description Label
organization_address aelf.Address The organization address
proposer_release_threshold | ProposalReleaseThreshold | The new release threshold.
20.3. AEIlf.Contracts.Parliament 307

AEIf, Release release/1.2.3

acs3.0rganizationWhiteListChanged

Field Type Description Label
organization_address | aelf.Address The organization address.
proposer_white_list | ProposerWhiteList | The new proposer whitelist.

acs3.ProposalCreated

Field Type Description Label
proposal_id aelf.Hash The id of the created proposal.
organization_address | aelf.Address | The organization address of the created proposal.

acs3.ProposalOutput

Field Type Description La-
bel

proposal_id aelf.Hash The id of the proposal.

con- string The method that this proposal will call when being re-

tract_method_name leased.

to_address aelf.Address The address of the target contract.

params bytes The parameters of the release transaction.

expired_time google.protobuf. Timestamp The date at which this proposal will expire.

organiza- aelf.Address The address of this proposals organization.

tion_address

proposer aelf.Address The address of the proposer of this proposal.

to_be_released bool Indicates if this proposal is releasable.

approval_count int64 Approval count for this proposal.

rejection_count int64 Rejection count for this proposal.

abstention_count int64 Abstention count for this proposal.

acs3.ProposalReleaseThreshold

Field Type | Description Label
minimal_approval_threshold int64 | The value for the minimum approval threshold.
maximal_rejection_threshold int64 | The value for the maximal rejection threshold.
maximal_abstention_threshold | int64 | The value for the maximal abstention threshold.
minimal_vote_threshold int64 | The value for the minimal vote threshold.

acs3.ProposalReleased

Field Type Description Label
proposal_id aelf.Hash The id of the released proposal.
organization_address | aelf.Address | The organization address of the released proposal.

308 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

acs3.ProposerWhiteList

Field Type Description Label
proposers | aelf.Address | The address of the proposers | repeated
acs3.ReceiptCreated
Field Type Description Label
proposal_id aelf.Hash The id of the proposal.
address aelf.Address The sender address.
receipt_type string The type of receipt(Approve, Reject or Abstain).
time google.protobuf. Timestamp | The timestamp of this method call.
organization_address | aelf.Address The address of the organization.
acs3.ValidateProposerinWhiteListinput
Field Type Description Label
proposer aelf.Address | The address to search/check.
organization_address | aelf.Address | The address of the organization.
AEIf.Types
aelf.Address
Field | Type | Description | Label
value | bytes
aelf.BinaryMerkleTree
Field Type | Description Label
nodes Hash | The leaf nodes. repeated
root Hash | The root node hash.
leaf count | int32 | The count of leaf node.
aelf.Hash
Field | Type | Description | Label
value | bytes
20.3. AEIlf.Contracts.Parliament 309

AEIf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address | The contract address.

name string The name of the log event.

indexed bytes The indexed data, used to calculate bloom. | repeated
non_indexed | bytes The non indexed data.

aelf.MerklePath

Field

Type

Description

Label

merkle_path_nodes

MerklePathNode

The merkle path nodes. | repeated

aelf.MerklePathNode

Field

Type | Description

Label

hash

Hash | The node hash.

is_left_child_node

bool | Whether it is a left child node.

aelf.SInt32Value

Field | Type | Description | Label
value | sint32
aelf.SInt64Value
Field | Type | Description | Label
value | sint64
aelf.ScopedStatePath
Field Type Description Label
address | Address The scope address, which will be the contract address.
path StatePath | The path of contract state.

310

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

aelf.SmartContractRegistration

aelf.StatePath

Field Type | Description Label
category sint32 | The category of contract code(0: C#).
code bytes | The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract | bool Whether it is a system contract.
version int32 The version of the current contract.

Field | Type | Description Label

parts | string | The partial path of the state path. | repeated

aelf.Transaction

Field Typel Description La-
bel
from Ad- | The address of the sender of the transaction.
dress|
to Ad- | The address of the contract when calling a contract.
dress|
ref_block | nimtélkr The height of the referenced block hash.
ref_block | pbsfizs| The first four bytes of the referenced block hash.
method_namwing The name of a method in the smart contract at the To address.
params bytes| The parameters to pass to the smart contract method.
signa- bytes) When signing a transaction it’s actually a subset of the fields: from/to and the target
ture method as well as the parameter that were given. It also contains the reference block
number and prefix.
aelf.TransactionExecutingStateSet
Field Type Description Label
writes | TransactionExecutingStateSet.WritesEntry | The changed states. | repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes | TransactionExecutingStateSet.DeletesEntry | The deleted states. | repeated
aelf.TransactionExecutingStateSet.DeletesEntry
Field | Type | Description | Label
key string
value | bool
20.3. AEIlf.Contracts.Parliament 311

AEIf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field | Type | Description | Label
key string
value | bool

aelf.TransactionExecutingStateSet.WritesEntry

Field | Type | Description | Label
key string
value | bytes

aelf.TransactionResult

Field | Type Description La-
bel
trans- | Hash The transaction id.
ac-
tion_id
sta- Trans- The transaction result status.
tus action-
Result-
Status
logs | Lo- The log events. re-
gEvent peated

bloom| bytes

Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re- bytes The return value of the transaction execution.
turn_value

block_|nimrbér The height of the block hat packages the transaction.
block_|h#thsh The hash of the block hat packages the transaction.

error | string

Failed execution error message.

aelf.TransactionResultStatus

Name Num- Description
ber

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILEID Transaction validation failed.

312

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Authorityinfo

Field Type Description Label
contract_address | aelf.Address | The contract address of the controller.
owner_address aelf.Address | The address of the owner of the contract.
20.4 AEIf.Contracts.Consensus.AEDPoS
AEDPoS contract.
Used to managing block producers and synchronizing data.
Implement AEIf Standards ACS1, ACS4, ACS6, ACS10 and ACS11.
20.4.1 Contract Methods
Method Name Request Type Response Type
Initial AEIfConsensusContract AEDPoS. Initial AElfConsensusContractlnput | google.protobuf. Empty
FirstRound AEDPoS.Round google.protobuf. Empty
UpdateValue AEDPoS.UpdateValuelnput google.protobuf. Empty
NextRound AEDPoS.Round google.protobuf. Empty
NextTerm AEDPoS.Round google.protobuf. Empty
UpdateTinyBlockInformation AEDPoS.TinyBlockInput google.protobuf. Empty
SetMaximumMinersCount google.protobuf.Int32Value google.protobuf. Empty
ChangeMaximumMinersCountController | Authoritylnfo google.protobuf. Empty
RecordCandidateReplacement AEDPoS.RecordCandidateReplacementlnput | google.protobuf. Empty
GetCurrentMinerList google.protobuf. Empty AEDPoS.MinerList
GetCurrentMinerPubkeyList google.protobuf. Empty AEDPoS.PubkeyList
GetCurrentMinerListWithRoundNumber | google.protobuf. Empty AEDPoS.MinerListWithRoundNumber
GetRoundInformation google.protobuf.Int64Value AEDPoS.Round
GetCurrentRoundNumber google.protobuf. Empty google.protobuf.Int64Value
GetCurrentRoundInformation google.protobuf. Empty AEDPoS.Round
GetPreviousRoundInformation google.protobuf. Empty AEDPoS.Round
GetCurrentTermNumber google.protobuf. Empty google.protobuf.Int64Value
GetCurrentTermMiningReward google.protobuf. Empty google.protobuf.Int64Value
GetMinerList AEDPoS.GetMinerListInput AEDPoS.MinerList
GetPreviousMinerList google.protobuf. Empty AEDPoS.MinerList
GetMinedBlocksOfPreviousTerm google.protobuf. Empty google.protobuf.Int64Value
GetNextMinerPubkey google.protobuf. Empty google.protobuf.StringValue
IsCurrentMiner aelf.Address google.protobuf.BoolValue
GetNextElectCountDown google.protobuf. Empty google.protobuf.Int64Value
GetPreviousTermInformation google.protobuf.Int64Value AEDPoS.Round
GetRandomHash google.protobuf.Int64Value aelf.Hash
GetMaximumBlocksCount google.protobuf. Empty google.protobuf.Int32Value
GetMaximumMinersCount google.protobuf. Empty google.protobuf.Int32Value
GetMaximumMinersCountController google.protobuf. Empty AuthorityInfo
GetMainChainCurrentMinerList google.protobuf. Empty AEDPoS.MinerList
GetPreviousTermMinerPubkeyList google.protobuf. Empty AEDPoS.PubkeyList

20.4. AEIlf.Contracts.Consensus.AEDPoS

313

AEIf, Release release/1.2.3

Table 1 — contint

Method Name Request Type Response Type
GetCurrentMiningRewardPerBlock google.protobuf. Empty google.protobuf.Int64Value
SetMinerIncreaselnterval google.protobuf.Int64Value google.protobuf. Empty
GetMinerIncreaselnterval google.protobuf. Empty google.protobuf.Int64Value
AEIf.Standards.ACS1
Method Name Request Type Response Description
Type
SetMethodFee acsl.MethodFees | google.protobuf. Betplye method fees for the specified method. Note that
this will override all fees of the method.
ChangeMethod- | Authoritylnfo google.protobuf. Elnpige the method fee controller, the default is parlia-
FeeController ment and default organization.
GetMethodFee google.protobuf.StriagMaMethodFeef)uery method fee information by method name.
GetMethod- google.protobuf. Empaythoritylnfo | Query the method fee controller.
FeeController
AEIf.Standards.ACS4
Method Request | Re- Description
Name Type sponse
Type
GetConsen- | google.protobufBFesMahbasticrataandonsensus command based on the consensus contract state
susCom- and the input public key.
mand
GetConsen- | google.profolgwoBieasiblagiiytae\edneensus extra data when a block is generated.
susExtra-
Data
Generate- google.protobufBliasVstuBontiate consensus system transactions when a block is generated. Each
Consensus- block will contain only one consensus transaction, which is used to write
Transactions the latest consensus information to the State database.
Validate- google.protobufBMeklahibreRes brxecuting the block, verify that the consensus information in the
Consensus- block header is correct.
BeforeExe-
cution
Validate- google.protobufBMeklahidviRResedecuting the block, verify that the state information written to the
Consen- consensus is correct.
susAfterEx-
ecution
AEIf.Standards.ACS6
Method Name | Request Type Response Type Description
GetRandom- google.protobuf.BytesValyiegoogle.protobuf. BytesValueGet random number according to block
Bytes height.
314 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIf.Standards.ACS10

Method
Name

Request
Type

Re-
sponse
Type

Description

Donate

native token.

acs10.Donatelnpaogle.protobohatpgytokens from the caller to the treasury. If the tokens are not
native tokens in the current chain, they will be first converted to the

Release

acs10.Releaselmguigle.protobREEmgeylividend pool according the period number.

SetSymbol-
List

acs10.SymbolLigbogle.protobSgtimptpken symbols dividend pool supports.

GetSymbol-
List

google.protobufdcwlghy§ymbolQisery the token symbols dividend pool supports.

GetUndis-
tributedDiv-
idends

cluded in the symbol list.

google.protobufdcmlghDivideduery the balance of undistributed tokens whose symbols are in-

GetDivi-
dends

google.protobufdetd@Naivicleduery the dividend information according to the height.

AEIlf.Standards.ACS11

Method Name

Request Type

Response Type

Description

UpdateInformationFrom-
CrossChain

google.protobuf.Bytd

s¥ahgle.protobuf. Emy,

side chain.

pt¥Jpdate the consensus information of the

GetChainlnitializationIn-
formation

google.protobuf. Bytd

s¥Yahgle.protobuf. Byté

round information.

sGduthe current miner list and consensus

CheckCrossChainlndex-
ingPermission

aelf.Address

google.protobuf.Boo

miner.

[Viéudy that the input address is the current

20.4.2 Contract Types

AEIlf.Contracts.Consensus.AEDPoS

AEDPoS.AEIfConsensusHeaderinformation

Field

Type

Description

Label

sender_pubkey

bytes

The sender public key.

round

Round

The round information.

behaviour

AEIfConsensusBehaviour

The behaviour of consensus.

AEDPoS.AEIfConsensusHint

Field

Type

Description

Label

behaviour

AEIfConsensusBehaviour

The behaviour of consensus.

round_id

int64

The round id.

previous_round_id

int64

The previous round id.

20.4. AEIlf.Contracts.Consensus.AEDPoS

315

AEIf, Release release/1.2.3

AEDPoS.AEIfConsensusTriggerinformation

Field Type Description Label
pubkey bytes The miner public key.
in_value aelf.Hash The InValue for -current

round.
previ- aelf.Hash The InValue for previous
ous_in_value round.
behaviour AElfConsensusBehaviour The behaviour of consensus.
en- AEIlfConsensusTriggerInforma- The encrypted pieces of In- | re-
crypted_pieces tion.EncryptedPiecesEntry Value. peated
de- AElfConsensusTriggerInforma- The decrypted pieces of In- | re-
crypted_pieces tion.DecryptedPiecesEntry Value. peated
re- AElfConsensusTriggerInforma- The revealed InValues. re-
vealed_in_values | tion.RevealedInValuesEntry peated

AEDPoS.AElfConsensusTriggerinformation.DecryptedPiecesEntry

Field | Type | Description | Label
key string
value | bytes

AEDPoS.AElfConsensusTriggerinformation.EncryptedPiecesEntry

Field | Type | Description | Label
key string
value | bytes

AEDPoS.AEIfConsensusTriggerinformation.RevealedinValuesEntry

Field | Type Description | Label
key string
value | aelfHash

AEDPoS.Candidates

Field Type | Description Label
pubkeys | bytes | The candidate public keys. | repeated

AEDPoS.Consensusinformation

Field | Type | Description | Label
value | bytes

316 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEDPoS.GetMinerListinput

Field Type | Description Label
term_number | int64 | The term number.

AEDPoS.HashList

Field | Type Description | Label
values | aelf-Hash repeated

AEDPoS.Initial AEIfConsensusContractinput

Field Type | Description Label
is_term_stay_one bool | Whether not to change the term.

is_side_chain bool | Is a side chain.

period_seconds int64 | The number of seconds per term.

miner_increase_interval | int64 | The interval second that increases the number of miners.

AEDPoS.IrreversibleBlockFound

Field Type | Description Label
irreversible_block_height | int64 | The irreversible block height found.

AEDPoS.IrreversibleBlockHeightUnacceptable

Field Type | Description Label
distance_to_irreversible_block_height | int64 | Distance to the height of the last irreversible block.

AEDPoS.LatestPubkeyToTinyBlocksCount

Field Type | Description Label
pubkey string | The miner public key.
blocks_count | int64 | The count of blocks the miner produced.

20.4. AEIlf.Contracts.Consensus.AEDPoS 317

AEIf, Release release/1.2.3

AEDPoS.MinerinRound

Field Type Description La-
bel
order int32 The order of the miner producing block.
is_extra_block_producerbool Is extra block producer in the current round.
in_value aelf.Hash Generated by secret sharing and used for validation
between miner.
out_value aelf.Hash Calculated from current in value.
signature aelf.Hash Calculated from current in value and signatures of pre-
vious round.
ex- google.protobuf. TimestampThe expected mining time.
pected_mining_time
produced_blocks int64 The amount of produced blocks.
missed_time_slots int64 The amount of missed time slots.
pubkey string The public key of this miner.
previous_in_value aelf.Hash The InValue of the previous round.
sup- int32 The supposed order of mining for the next round.
posed_order_of_next_round
fi- int32 The final order of mining for the next round.
nal_order_of_next_round
actual_mining_times | google.protobuf.TimestampThe actual mining time, miners must fill actual mining | re-
time when they do the mining. peated
encrypted_pieces Minerin- The encrypted pieces of InValue. re-
Round.EncryptedPiecesEntry peated
decrypted_pieces MineriIn- The decrypted pieces of InValue. re-
Round.DecryptedPiecesEntry peated
pro- int64 The amount of produced tiny blocks.
duced_tiny_blocks
im- int64 The irreversible block height that current miner
plied_irreversible_block_height recorded.

AEDPoS.MinerinRound.DecryptedPiecesEntry

Field | Type | Description | Label
key string
value | bytes

AEDPoS.MinerinRound.EncryptedPiecesEntry

Field | Type | Description | Label
key string
value | bytes

318 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEDPoS.MinerList

AEDPoS.MinerListWithRoundNumber

AEDPoS.MinerReplaced

Field Type | Description Label
pubkeys | bytes | The miners public key list. | repeated
Field Type Description Label
miner_list MinerList | The list of miners.
round_number | int64 The round number.
Field Type | Description Label
new_miner_pubkey | string | The new miner public key.

AEDPoS.MiningIinformationUpdated

Field Type Description Label
pubkey string The miner public key.
mining_time google.protobuf.Timestamp | The current block time.
behaviour string The behaviour of consensus.
block_height int64 The current block height.
previous_block_hash | aelf.Hash The previous block hash.
AEDPoS.MiningRewardGenerated
Field Type | Description Label
term_number | int64 | The number of term the mining reward is generated.
amount int64 | The amount of mining reward.
AEDPoS.PubkeyList
Field Type | Description Label
pubkeys | string | The miners public key list. | repeated

20.4. AEIlf.Contracts.Consensus.AEDPoS

319

AEIf, Release release/1.2.3

AEDPoS.RandomNumberRequestinformation

Field Type | Description Label
target_round_number int64 | The random hash is likely generated during this round.

order int64

expected_block_height | int64

AEDPoS.RecordCandidateReplacementinput

Field Type | Description | Label
old_pubkey | string
new_pubkey | string

AEDPo0S.Round

Field Type Description La-
bel

round_number int64 The round number.

real_time_miners_informationRound. RealTime MinersInfofinatémt Bnimrgr information, miner public key -> | re-
miner information. peated

main_chain_miners_round_nuinisef The round number on the main chain

blockchain_age int64 The time from chain start to current round (sec-
onds).

ex- string The miner public key that produced the extra

tra_block_producer_of_previjous_round block in the previous round.

term_number int64 The current term number.

con- int64 The height of the confirmed irreversible block.

firmed_irreversible_block_h¢ight

con- int64 The round number of the confirmed irreversible

firmed_irreversible_block_round_number block.

is_miner_list_just_changed | bool Is miner list different from the the miner list in
the previous round.

round_id_for_validation int64 The round id, calculated by summing block pro-
ducers’ expecting time (second).

AEDPo0S.Round.RealTimeMinersinformationEntry

Field | Type Description | Label
key string
value | MinerInRound

320 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEDPoS.SecretSharinginformation

AEDPoS.TermlInfo

Field Type | Description Label
previous_round Round | The previous round information.
current_round_id int64 The current round id.
previous_round_id | int64 The previous round id.
Field Type | Description | Label
term_number int64
round_number | int64
AEDPoS.TermNumberLookUp
Field | Type Description Label

map TermNumberLookUp.MapEntry

Term number -> Round number. | repeated

AEDPoS.TermNumberLookUp.MapEntry

AEDPoS.TinyBlockinput

Field | Type

Description | Label

key int64

value | int64

Field

Type

Description

Label

round_id

int64

The round id.

actual_mining_time

google.protobuf.Timestamp | The actual mining time.

produced_blocks

int64

Count of blocks currently produced

20.4. AEIlf.Contracts.Consensus.AEDPoS

321

AEIf, Release releas

e/1.2.3

AEDPoS.UpdateValuelnput

Field Type Description La-
bel
out_value aelf.Hash Calculated from current in value.
signature aelf.Hash Calculated from current in value and signatures of
previous round.
round_id int64 To ensure the values to update will be apply to cor-
rect round by comparing round id.
previous_in_value aelf.Hash Publish previous in value for validation previous
signature and previous out value.
actual_mining_time | google.protobuf.Timestamp The actual mining time, miners must fill actual
mining time when they do the mining.
sup- int32 The supposed order of mining for the next round.
posed_order_of_next_round
tune_order_informationUpdate Valueln- The tuning order of mining for the next round, | re-
put. TuneOrderInformationEntyyminer public key -> order. peated
encrypted_pieces UpdateValueln- The encrypted pieces of InValue. re-
put.EncryptedPiecesEntry peated
decrypted_pieces UpdateValueln- The decrypted pieces of InValue. re-
put.DecryptedPiecesEntry peated
produced_blocks int64 The amount of produced blocks.
min- UpdateValueln- The InValue in the previous round, miner public | re-
ers_previous_in_valuesput. MinersPreviousInValuesEntkey -> InValue. peated
im- int64 The irreversible block height that miner recorded.
plied_irreversible_block_height

AEDPoS.UpdateValuelnput.DecryptedPiecesEntry

Field | Type | Description | Label

key string

value | bytes
AEDPoS.UpdateValuelnput.EncryptedPiecesEntry

Field | Type | Description | Label

key string

value | bytes
AEDPoS.UpdateValuelnput.MinersPreviousinValuesEntry

Field | Type Description | Label

key string

value | aelfHash

322

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEDPoS.UpdateValuelnput.TuneOrderinformationEntry

Field | Type | Description | Label
key string
value | int32

AEDPoS.VoteMinersCountinput

Field Type | Description | Label
miners_count | int32
amount int64

AEDPoS.AElfConsensusBehaviour

Name Number | Description
UPDATE_VALUE | 0
NEXT_ROUND 1
NEXT_TERM 2
NOTHING 3
TINY_BLOCK 4
AEIlf.Standards.ACS1
acs1.MethodFee
Field Type | Description Label

symbol string | The token symbol of the method fee.
basic_fee | int64 | The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label

method_name string The name of the method to be charged.

fees MethodFee | List of fees to be charged. repeated

is_size_fee free | bool Optional based on the implementation of SetMethodFee method.
AEIlf.Standards.ACS4

20.4. AEIlf.Contracts.Consensus.AEDPoS 323

AEIf, Release release/1.2.3

acs4.ConsensusCommand

Field Type Description La-
bel

limit_milliseconds_of_mining3block Time limit of mining next block.

hint bytes Context of Hint is diverse according to the consensus pro-

tocol we choose, so we use bytes.
arranged_mining_time google.protobuf. TiméFhopme of arrange mining.
mining_due_time google.protobuf. TiméFhmgxpiration time of mining.

acs4.TransactionList

Field Type Description Label
transactions | aelf.-Transaction | Consensus system transactions. | repeated

acs4.ValidationResult

Field Type | Description Label
success bool Is successful.

message string | The error message.

is_re_trigger | bool Whether to trigger mining again.

AEIf.Standards.ACS6
AEIf.Standards.ACS10

acs10.Dividends

Field | Type Description Label
value | Dividends.ValueEntry | The dividends, symbol -> amount. | repeated

acs10.Dividends.ValueEntry

Field | Type | Description | Label
key string
value | int64

acs10.Donatelnput

Field Type | Description Label
symbol | string | The token symbol to donate.
amount | int64 | The amount to donate.

324 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

acs10.DonationReceived

Field Type Description Label
from aelf.Address | The address of donors.
pool_contract | aelfAddress | The address of dividend pool.
symbol string The token symbol Donated.
amount int64 The amount Donated.
acs10.Releaselnput
Field Type | Description Label
period_number | int64 | The period number to release.
acs10.SymbolList
Field | Type | Description Label
value | string | The token symbol list. | repeated
AEIf.Standards.ACS11
AEIf.Types
aelf.Address
Field | Type | Description | Label
value | bytes
aelf.BinaryMerkleTree
Field Type | Description Label
nodes Hash | The leaf nodes. repeated
root Hash | The root node hash.
leaf_count | int32 | The count of leaf node.
aelf.Hash
Field | Type | Description | Label
value | bytes

20.4. AEIlf.Contracts.Consensus.AEDPoS

325

AEIf, Release release/1.2.3

aelf.LogEvent

Field Type Description Label
address Address | The contract address.

name string The name of the log event.

indexed bytes The indexed data, used to calculate bloom. | repeated
non_indexed | bytes The non indexed data.

aelf.MerklePath

Field

Type

Description

Label

merkle_path_nodes

MerklePathNode

The merkle path nodes. | repeated

aelf.MerklePathNode

Field

Type | Description

Label

hash

Hash | The node hash.

is_left_child_node

bool | Whether it is a left child node.

aelf.SInt32Value

Field | Type | Description | Label
value | sint32
aelf.SInt64Value
Field | Type | Description | Label
value | sint64
aelf.ScopedStatePath
Field Type Description Label
address | Address The scope address, which will be the contract address.
path StatePath | The path of contract state.

326

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

aelf.SmartContractRegistration

aelf.StatePath

Field Type | Description Label
category sint32 | The category of contract code(0: C#).
code bytes | The byte array of the contract code.
code_hash Hash The hash of the contract code.
is_system_contract | bool Whether it is a system contract.
version int32 The version of the current contract.

Field | Type | Description Label

parts | string | The partial path of the state path. | repeated

aelf.Transaction

Field Typel Description La-
bel
from Ad- | The address of the sender of the transaction.
dress|
to Ad- | The address of the contract when calling a contract.
dress|
ref_block | nimtélkr The height of the referenced block hash.
ref_block | pbsfizs| The first four bytes of the referenced block hash.
method_namwing The name of a method in the smart contract at the To address.
params bytes| The parameters to pass to the smart contract method.
signa- bytes) When signing a transaction it’s actually a subset of the fields: from/to and the target
ture method as well as the parameter that were given. It also contains the reference block
number and prefix.
aelf.TransactionExecutingStateSet
Field Type Description Label
writes | TransactionExecutingStateSet.WritesEntry | The changed states. | repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes | TransactionExecutingStateSet.DeletesEntry | The deleted states. | repeated
aelf.TransactionExecutingStateSet.DeletesEntry
Field | Type | Description | Label
key string
value | bool
20.4. AEIlf.Contracts.Consensus.AEDPoS 327

AEIf, Release release/1.2.3

aelf.TransactionExecutingStateSet.ReadsEntry

Field | Type | Description | Label
key string
value | bool

aelf.TransactionExecutingStateSet.WritesEntry

Field | Type | Description | Label
key string
value | bytes

aelf.TransactionResult

Field | Type Description La-
bel
trans- | Hash The transaction id.
ac-
tion_id
sta- Trans- The transaction result status.
tus action-
Result-
Status
logs | Lo- The log events. re-
gEvent peated

bloom| bytes

Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re- bytes The return value of the transaction execution.
turn_value

block_|nimrbér The height of the block hat packages the transaction.
block_|h#thsh The hash of the block hat packages the transaction.

error | string

Failed execution error message.

aelf.TransactionResultStatus

Name Num- Description
ber

NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILEID Transaction validation failed.

328

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Authorityinfo

Field Type Description Label
contract_address | aelf.Address | The contract address of the controller.
owner_address aelf.Address | The address of the owner of the contract.
20.5 AEIlf.Contracts.Election
Election contract.
Used for voting for Block Producers.
Implement AEIf Standards ACS1.
20.5.1 Contract Methods
Method Name Request Type Response Type
InitialElectionContract Election.InitialElectionContractInput google.protobuf. Empty
RegisterElection VotingEvent google.protobuf. Empty google.protobuf. Empty
TakeSnapshot Election.TakeElectionSnapshotInput google.protobuf. Empty
AnnounceElection aelf.Address google.protobuf. Empty
QuitElection google.protobuf.String Value google.protobuf. Empty
Vote Election.VoteMinerInput aelf.Hash
ChangeVotingOption Election.ChangeVoting Optionlnput google.protobuf. Empty
Withdraw aelf.Hash google.protobuf. Empty
UpdateCandidateInformation Election.UpdateCandidateInformationlnput google.protobuf. Empty

UpdateMultipleCandidateInformation | Election.UpdateMultipleCandidatelnformationlnput | google.protobuf. Empty
UpdateMinersCount Election.UpdateMinersCountlnput google.protobuf. Empty
SetTreasurySchemelds Election.SetTreasurySchemeldsInput google.protobuf. Empty
SetVoteWeightInterest Election.VoteWeightInterestList google.protobuf. Empty
SetVoteWeightProportion Election.VoteWeightProportion google.protobuf. Empty
Change VoteWeightInterestController | Authoritylnfo google.protobuf. Empty
ReplaceCandidatePubkey Election.ReplaceCandidatePubkeylnput google.protobuf. Empty
SetCandidateAdmin Election.SetCandidateAdminInput google.protobuf. Empty
GetCandidates google.protobuf. Empty Election. PubkeyList
GetVotedCandidates google.protobuf. Empty Election. PubkeyList
GetCandidateInformation google.protobuf.StringValue Election.Candidatelnformation
GetVictories google.protobuf. Empty Election. PubkeyList
GetTermSnapshot Election.GetTermSnapshotInput Election.TermSnapshot
GetMinersCount google.protobuf. Empty google.protobuf.Int32Value
GetElectionResult Election.GetElectionResultInput Election.ElectionResult
GetElectorVote google.protobuf.StringValue Election.ElectorVote

GetElectorVoteWithRecords

google.protobuf.String Value

Election.ElectorVote

GetElectorVoteWithAllRecords

google.protobuf.StringValue

Election.ElectorVote

GetCandidate Vote

google.protobuf.StringValue

Election.CandidateVote

GetCandidate VoteWithRecords

google.protobuf.StringValue

Election.CandidateVote

GetCandidate Vote WithAllRecords

google.protobuf.String Value

Election.CandidateVote

GetVotersCount

google.protobuf. Empty

google.protobuf.Int64Value

20.5. AEIlf.Contracts.Election

329

AEIf, Release release/1.2.3

Method Name Request Type Response Type
GetVotesAmount google.protobuf. Empty google.protobuf.Int64Value
GetPageableCandidateInformation Election.Pagelnformation Election.GetPageableCandidateInfor
GetMinerElection VotingltemId google.protobuf. Empty aelf.Hash
GetDataCenterRankingList google.protobuf. Empty Election.DataCenterRankingList
GetVoteWeightSetting google.protobuf. Empty Election.VoteWeightInterestList
GetVoteWeightProportion google.protobuf. Empty Election.VoteWeightProportion
GetCalculate VoteWeight Election.Votelnformation google.protobuf.Int64Value
GetVoteWeightInterestController google.protobuf. Empty Authoritylnfo
GetMinerReplacementInformation Election.GetMinerReplacementlInformationlnput Election.MinerReplacementlInformati
GetCandidate Admin google.protobuf.StringValue aelf.Address
GetNewestPubkey google.protobuf.StringValue google.protobuf.StringValue
GetReplacedPubkey google.protobuf.StringValue google.protobuf.StringValue
AEIf.Standards.ACS1
Method Name Request Type Response Description
Type
SetMethodFee acsl.MethodFees | google.protobuf. Betpitye method fees for the specified method. Note that
this will override all fees of the method.
ChangeMethod- | Authoritylnfo google.protobuf. Elnpige the method fee controller, the default is parlia-
FeeController ment and default organization.
GetMethodFee google.protobuf.StriagMaMethodFeefQuery method fee information by method name.
GetMethod- google.protobuf. EmpythorityInfo | Query the method fee controller.
FeeController

20.5.2 Contract Types

AEIlf.Contracts.Election

Election.CandidateDetail

Field Type

Description

Label

candidate_information

Candidatelnformation

The candidate information.

obtained_votes_amount | int64

The number of votes a candidate has obtained.

330

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Election.Candidatelnformation

Field Type Description Label
pubkey string Candidate’s public key.
terms int64 The number of terms that the candidate is elected. re-
peated

produced_blocks int64 The number of blocks the candidate has produced.
missed_time_slots int64 The time slot for which the candidate failed to produce

blocks.
contin- int64 The count of continual appointment.
ual_appointment_count
announce- aelf.Hash | The transaction id when the candidate announced.
ment_transaction_id
is_current_candidate bool Indicate whether the candidate can be elected in the current

term.

Election.CandidatePubkeyReplaced

Field Type | Description | Label
old_pubkey | string
new_pubkey | string

Election.CandidateVote

Field Type Description Label
ob- aelf.Hash The active voting record ids obtained. re-
tained_active_voting_record_ids peated
ob- aelf.Hash The active voting record ids that were with- | re-
tained_withdrawn_voting_record_ids drawn. peated
ob- int64 The total number of active votes obtained.
tained_active_voted_votes_amount
all_obtained_voted_votes_amount | int64 The total number of votes obtained.
obtained_active_voting_records ElectionVotin- The active voting records. re-
gRecord peated
ob- ElectionVotin- The voting records that were withdrawn. re-
tained_withdrawn_votes_records gRecord peated
pubkey bytes Public key for candidate.

Election.ChangeVotingOptioninput

Field Type Description Label
vote_id aelf.Hash | The vote id to change.
candidate_pubkey | string The new candidate public key.

20.5. AEIlf.Contracts.Election 331

AEIf, Release release/1.2.3

Election.DataCenterRankingList

Field Type Description Label
data_centersDataCenterRank- The top n * 5 candidates with vote amount, candidate pub- | re-
ingList.DataCentersEntry lic key -> vote amount. peated
Election.DataCenterRankingList.DataCentersEntry
Field | Type | Description | Label
key string
value | int64
Election.ElectionResult
Field Type Description Label
term_number | int64 The term number
results ElectionRe- The election result, candidates’ public key -> number of | re-
sult.ResultsEntry votes. peated
is_active bool Whether an election is currently being held.
Election.ElectionResult.ResultsEntry
Field | Type | Description | Label
key string
value | int64
Election.ElectionVotingRecord
Field Type Description Label
voter aelf.Address The address of voter.
candidate string The public key of candidate.
amount int64 Amount of voting.
term_number int64 The term number of voting.
vote_id aelf.Hash The vote id.
lock_time int64 Vote lock time.

unlock_timestamp

google.protobuf.Timestamp

The unlock timestamp.

withdraw_timestamp

google.protobuf. Timestamp

The withdraw timestamp.

vote_timestamp

google.protobuf.Timestamp

The vote timestamp.

is_withdrawn

bool

Indicates if the vote has been withdrawn.

weight

int64

Vote weight for sharing bonus.

is_change_target

bool

Whether vote others.

332

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Election.ElectorVote

Field Type Description Label

ac- aelf.Hash The active voting record ids. re-

tive_voting_record_ids peated

with- aelf.Hash The voting record ids that were withdrawn. re-

drawn_voting_record_ids peated

ac- int64 The total number of active votes.

tive_voted_votes_amount

all_voted_votes_amount | int64 The total number of votes (including the number of votes

withdrawn).

active_voting_records ElectionVotin- The active voting records. re-
gRecord peated

with- ElectionVotin- The voting records that were withdrawn. re-

drawn_votes_records gRecord peated

pubkey bytes Public key for voter.

Election.EvilMinerDetected

Field Type | Description Label
pubkey | string | The public key of evil miner.

Election.GetElectionResultinput

Field Type | Description Label
term_number | int64 | The term number.

Election.GetMinerReplacementinformationinput

Field Type | Description Label
current_miner_list | string | The current miner list to inspect. | repeated

Election.GetPageableCandidatelnformationOutput

Field | Type Description Label
value | CandidateDetail | The details of the candidates. | repeated

Election.GetTermSnapshotinput

Field Type | Description Label
term_number | int64 | The term number.

20.5. AEIlf.Contracts.Election 333

AEIf, Release release/1.2.3

Election.InitialElectionContractinput

Field Type | Description Label
minimum_lock_time int64 | Minimum number of seconds for locking.

maximum_lock_time int64 | Maximum number of seconds for locking.

miner_list string | The current miner list. repeated
time_each_term int64 | The number of seconds per term.

miner_increase_interval | int64 | The interval second that increases the number of miners.

Election.MinerReplacementinformation

Field Type | Description Label
alternative_candidate_pubkeys | string | The alternative candidate public keys. | repeated
evil_miner_pubkeys string | The evil miner public keys. repeated

Election.Pagelnformation

Field | Type | Description Label
start int32 | The start index.
length | int32 | The number of records.

Election.PubkeyList

Field | Type | Description Label
value | bytes | Candidates’ public keys | repeated

Election.ReplaceCandidatePubkeylnput

Field Type | Description | Label
old_pubkey | string
new_pubkey | string

Election.SetCandidateAdmininput

Field Type Description | Label
pubkey | string
admin | aelf.Address

334 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Election.SetTreasurySchemeldsinput

Field Type Description Label
treasury_hash aelf.Hash | The scheme id of treasury reward.
welfare_hash aelf.Hash | The scheme id of welfare reward.
subsidy_hash aelf.Hash | The scheme id of subsidy reward.
votes_reward_hash aelf.Hash | The scheme id of votes reward.
re_election_reward_hash | aelf.Hash | The scheme id of re-election reward.

Election.TakeElectionSnapshotinput

Field Type | Description Label
term_number int64 | The term number to take snapshot.
mined_blocks | int64 | The number of mined blocks of this term.
round_number | int64 | The end round number of this term.

Election.TermSnapshot

Field Type Description Label

end_round numberint64 The end round number of this term.

mined_blocks int64 The number of blocks mined in this term.

election_result TermSnap- The election result, candidates’ public key -> num- | re-
shot.ElectionResultEntry ber of votes. peated

Election.TermSnapshot.ElectionResultEntry

Field | Type | Description | Label
key string
value | int64

Election.UpdateCandidatelnformationinput

Field Type | Description Label
pubkey string | The candidate public key.
recently_produced_blocks int64 | The number of blocks recently produced.
recently_missed_time_slots | int64 | The number of time slots recently missed.
is_evil_node bool Is it a evil node. If true will remove the candidate.

Election.UpdateMinersCountinput

Field Type | Description Label
miners_count | int32 | The count of miner.

20.5. AEIlf.Contracts.Election 335

AEIf, Release release/1.2.3

Election.UpdateMultipleCandidatelnformationinput

Field | Type Description Label
value | UpdateCandidatelnformationlnput | The candidate information to update. | repeated

Election.UpdateTermNumberinput

Field Type | Description Label

term_number | int64 | The term number.

Election.Votelnformation

Field Type | Description Label
amount int64 | Amount of voting.
lock_time | int64 | Vote lock time.

Election.VoteMinerinput

Field Type Description Label
candidate_pubkey | string The candidate public key.

amount int64 The amount token to vote.
end_timestamp google.protobuf. Timestamp | The end timestamp of this vote.

token aelf-Hash Used to generate vote id.

Election.VoteWeightinterest

Field Type | Description Label
day int32 | Number of days locked.
interest | int32 | Locked interest.

capital | int32

Election.VoteWeightinterestList

Field Type Description Label
vote_weight_interest_infos | VoteWeightinterest | The weight of vote interest. | repeated

Election.VoteWeightProportion

Field Type | Description Label
time_proportion int32 | The weight of lock time.
amount_proportion | int32 | The weight of the votes cast.

336 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIlf.Standards.ACS1

acs1.MethodFee

Field Type | Description Label
symbol string | The token symbol of the method fee.
basic_fee | int64 | The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label

method_name string The name of the method to be charged.

fees MethodFee | List of fees to be charged. repeated

is_size_fee_free | bool Optional based on the implementation of SetMethodFee method.
AEIf.Types

aelf.Address

Field | Type | Description | Label
value | bytes

aelf.BinaryMerkleTree

Field Type | Description Label
nodes Hash | The leaf nodes. repeated
root Hash | The root node hash.

leaf_count | int32 | The count of leaf node.

aelf.Hash

Field | Type | Description | Label
value | bytes

aelf.LogEvent

Field Type Description Label
address Address | The contract address.

name string The name of the log event.

indexed bytes The indexed data, used to calculate bloom. | repeated
non_indexed | bytes The non indexed data.

20.5. AEIlf.Contracts.Election 337

AEIf, Release release/1.2.3

aelf.MerklePath

Field Type Description Label
merkle_path_nodes | MerklePathNode | The merkle path nodes. | repeated

aelf.MerklePathNode
Field Type | Description Label
hash Hash | The node hash.

is_left_child_node | bool | Whether it is a left child node.

aelf.SInt32Value

Field | Type | Description | Label
value | sint32

aelf.SInt64Value

Field | Type | Description | Label
value | sint64

aelf.ScopedStatePath
Field Type Description Label
address | Address The scope address, which will be the contract address.
path StatePath | The path of contract state.

aelf.SmartContractRegistration

Field Type | Description Label

category sint32 | The category of contract code(0: C#).

code bytes | The byte array of the contract code.

code_hash Hash | The hash of the contract code.

is_system_contract | bool Whether it is a system contract.

version int32 | The version of the current contract.
aelf.StatePath

Field | Type | Description Label

parts | string | The partial path of the state path. | repeated

338 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

aelf.Transaction

Field Type| Description La-
bel
from Ad- | The address of the sender of the transaction.
dress
to Ad- | The address of the contract when calling a contract.
dress
ref_block | nimttlsr The height of the referenced block hash.
ref_block | pbefies| The first four bytes of the referenced block hash.
method_namgring The name of a method in the smart contract at the To address.
params bytes| The parameters to pass to the smart contract method.
signa- bytes| When signing a transaction it’s actually a subset of the fields: from/to and the target
ture method as well as the parameter that were given. It also contains the reference block
number and prefix.
aelf.TransactionExecutingStateSet
Field Type Description Label
writes | TransactionExecutingStateSet.WritesEntry | The changed states. | repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes | TransactionExecutingStateSet.DeletesEntry | The deleted states. repeated
aelf.TransactionExecutingStateSet.DeletesEntry
Field | Type | Description | Label
key string
value | bool
aelf.TransactionExecutingStateSet.ReadsEntry
Field | Type | Description | Label
key string
value | bool
aelf.TransactionExecutingStateSet.WritesEntry
Field | Type | Description | Label
key string
value | bytes
20.5. AEIlf.Contracts.Election 339

AEIf, Release release/1.2.3

aelf.TransactionResult

Field | Type Description La-
bel
trans- | Hash The transaction id.
ac-
tion_id
sta- Trans- The transaction result status.
tus action-
Result-
Status
logs | Lo- The log events. re-
gEvent peated
bloom| bytes Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.
re- bytes The return value of the transaction execution.
turn_value
block_|nimrbér The height of the block hat packages the transaction.
block_h#thsh The hash of the block hat packages the transaction.
error | string Failed execution error message.

aelf.TransactionResultStatus

Name Num- Description
ber
NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged

into a block.

CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILEI® Transaction validation failed.
Authoritylnfo
Field Type Description Label
contract_address | aelf.Address | The contract address of the controller.
owner_address aelf.Address | The address of the owner of the contract.

20.6 AEIlf.Contracts.Genesis

Genesis contract.

Used to manage the deployment and update of contracts.

340 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Implement AEIf Standards ACSO and ACS1.

20.6.1 Contract Methods

Method Name Request Type Re- Description

sponse

Type
Initialize Zero.Initializelnput google.protoBufitidipeythe genesis contract.
SetInitialController- aelf.Address google.protolBeiFmjtial controller address for CodeCheck-
Address Controller and ContractDeploymentController.
ChangeContractDe- AuthorityInfo google.protoiMfntptthe contract deployment controller au-
ploymentController thority. Note: Only old controller has permis-

sion to do this.
ChangeCodeCheck- Authoritylnfo google.protoMfolintptthe contract code check controller au-
Controller thority. Note: Only old controller has permis-
sion to do this.

GetContractDeploy- google.protobuf.Empty | Authority- | Query the ContractDeploymentController au-
mentController Info thority info.
GetCodeCheckCon- google.protobuf.Empty | Authority- | Query the CodeCheckController authority info.
troller Info
SetContractProposal- Zero.SetContractProposal FgpogltipndiptSferingimtion time for contract proposals, 72
ExpirationTimePeriod hours by default
GetCurrentCon- google.protobuf. Empty int32 get the expiration time for the current contract
tractProposalExpira- proposal
tionTimePeriod

20.6. AEIlf.Contracts.Genesis

341

AEIf, Release release/1.2.3

AEIlf.Standards.ACS0
Method Name Request Type Response Description
Type
DeploySystemS- acs0.SystemContractixdfilbgdrensinpuDeploy a system smart contract on chain and return the
martContract address of the system contract deployed.
DeploySmartCon- | acs0.ContractDeploymedfifldgrass | Deploy a smart contract on chain and return the address
tract of the contract deployed.
UpdateSmartCon- | acs0.ContractUpdatalaffitddress | Update a smart contract on chain.
tract
ProposeNewCon- | acs0.ContractDeploymedfiHupht Create a proposal to deploy a new contract and returns
tract the id of the proposed contract.
ProposeContract- | acs0.ContractCodelChelfHnit Create a proposal to check the code of a contract and
CodeCheck return the id of the proposed contract.
ProposeUpdate- acs0.ContractUpdatelalfilash Create a proposal to update the specified contract and
Contract return the id of the proposed contract.
ReleaseAp- acs0.Release Contracgiopgie. protobyf Relpage the contract proposal which has been approved.
provedContract
ReleaseC- acs0.Release Contracglopgle. protobyf.Relpage the proposal which has passed the code check.
odeChecked-
Contract
ValidateSystem- acs0.ValidateSystem Gowgtecphdidizsf Mgpptate whether the input system contract exists.
ContractAddress
SetContractPro- google.protobuf. Bopl¥abgde.protobyf. Fenpnthority of contract deployment.
poserRequired-
State
CurrentContract- google.protobuf. Empgoogle.protobuf G 8kewrrent serial number of genesis contract (cor-
SerialNumber responds to the serial number that will be given to the
next deployed contract).
GetContractInfo aelf.Address acs0.Contractlnfaet detailed information about the specified contract.
GetContractAu- aelf.Address aelf.Address | Get author of the specified contract.
thor
GetContractHash | aelf.Address aelf.Hash Get the code hash of the contract about the specified
address.
GetContractAd- aelf-Hash aelf.Address | Get the address of a system contract by its name.
dressByName
GetSmartCon- aelf.Address aelf.SmartContréreRegg s;egtstration of a smart contract by its address.
tractRegistra-
tionByAddress
GetSmartContrac- | aelf.Hash aelf.SmartContréeReg sregtstration of a smart contract by code hash.
tRegistrationBy-
CodeHash
342 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIlf.Standards.ACS1
Method Name Request Type Response Description
Type
SetMethodFee acsl.MethodFees | google.protobulf. Betptye method fees for the specified method. Note that
this will override all fees of the method.
ChangeMethod- | Authoritylnfo google.protobuf. Elnpaige the method fee controller, the default is parlia-
FeeController ment and default organization.
GetMethodFee google.protobuf.StriagMaMethodFeefQuery method fee information by method name.
GetMethod- google.protobuf. Empaythoritylnfo | Query the method fee controller.
FeeController

20.6.2 Contract Types

AEIf.Contracts.

Genesis

Zero.ContractProposinglnput

Field Type Description La-
bel
proposer aelf.Address The address of proposer for contract deployment/update.
status ContractProposingInputSta- The status of proposal.
tus
ex- google.protobuf. Timestamp The expiration time of proposal.
pired_time
Zero.Initializelnput
Field Type | Description La-
bel
contract_deployment_authority_required| bool | Whether contract deployment/update requires author-
ity.
Zero.ContractProposinglnputStatus
Name Number | Description
PROPOSED 0 Proposal is proposed.
APPROVED 1 Proposal is approved by parliament.
CODE_CHECK_PROPOSED | 2 Code check is proposed.
CODE_CHECKED 3 Passed code checks.
Zero.SetContractProposalExpirationTimePeriodIinput
Field Type | Description Label
expiration_time_period | int32 | the period of expiration time
343

20.6. AEIlf.Contracts.Genesis

AEIf, Release release/1.2.3

AEIlf.Standards.ACSO0

acs0.CodeCheckRequired

Field

Type

Description

Label

code

bytes

The byte array of the contract code.

proposed_contract_input_hash

aelf.Hash

The id of the proposed contract.

category

sint32

The category of contract code(0: C#).

is_system_contract

bool

Indicates if the contract is the system contract.

acs0.CodeUpdated

Field

Type

Description

Label

address

aelf.Address

The address of the updated contract.

old_code_hash

aelf.Hash

The byte array of the old contract code.

new_code_hash

aelf.Hash

The byte array of the new contract code.

version

int32

The version of the current contract.

acs0.ContractCodeCheckinput

Field

Type

Description

La-
bel

contract_input

bytes

The byte array of the contract code to be checked.

is_contract_deployment

bool

Whether the input contract is to be deployed or updated.

code_check_release_met|

hodring

Method to call after code check complete(DeploySmartContract or
UpdateSmartContract).

pro-

aelf.Has
posed_contract_input_hash

h The id of the proposed contract.

category

sint32

The category of contract code(0: C#).

is_system_contract

bool

Indicates if the contract is the system contract.

acs0.ContractDeployed

Field

Type

Description

Label

author

aelf.Address

The author of the contract, this is the person who deployed the contract.

code_hash

aelf.Hash

The hash of the contract code.

address

aelf.Address

The address of the contract.

version

int32

The version of the current contract.

Name

aelf.Hash

The name of the contract. It has to be unique.

344

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

acs0.ContractDeploymentinput

Field Type | Description Label
category | sint32 | The category of contract code(0: C#).
code bytes | The byte array of the contract code.
acs0.Contractinfo
Field Type Description La-
bel
serial_number int64 The serial number of the contract.
author aelf.Address | The author of the contract, this is the person who deployed the con-
tract.
category sint32 The category of contract code(0: C#).
code_hash aelf.Hash The hash of the contract code.
is_system_contract | bool Whether it is a system contract.
version int32 The version of the current contract.
acs0.ContractProposed
Field Type Description Label
proposed_contract_input_hash | aelf.Hash | The id of the proposed contract.
acs0.ContractUpdatelnput
Field Type Description Label
address | aelfAddress | The contract address that needs to be updated.
code bytes The byte array of the new contract code.
acs0.ReleaseContractinput
Field Type Description Label
proposal_id aelf-Hash | The hash of the proposal.
proposed_contract_input_hash | aelfHash | The id of the proposed contract.
20.6. AEIlf.Contracts.Genesis 345

AEIf, Release release/1.2.3

acs0.SystemContractDeploymentinput

Field Type Description La-
bel

category sint32 The category of contract code(0: C#).

code bytes The byte array of the contract code.

name aelf.Hash The name of the contract. It has to be unique.

transac- SystemContractDeploymentIn- An initial list of transactions for the system contract,

tion_method_calpdisSystemTransactionMethodCallLishich is executed in sequence when the contract is de-

ployed.

acs0.SystemContractDeploymentinput.SystemTransactionMethodCall

Field Type | Description Label
method_name | string | The method name of system transaction.
params bytes | The params of system transaction method.

acs0.SystemContractDeploymentinput.SystemTransactionMethodCallList

Field | Type Description Label
value | SystemContractDeploymentIn- The list of system transac- | re-
put.SystemTransactionMethodCall tions. peated

acs0.ValidateSystemContractAddressinput

Field Type Description Label

system_contract_hash_name | aelf.Hash The name hash of the contract.

address aelf.Address | The address of the contract.
AEIlf.Standards.ACS1

acs1.MethodFee

Field Type | Description Label
symbol string | The token symbol of the method fee.
basic_fee | int64 | The amount of fees to be charged.

acs1.MethodFees

Field Type Description Label
method_name string The name of the method to be charged.

fees MethodFee | List of fees to be charged. repeated
is_size_fee_free | bool Optional based on the implementation of SetMethodFee method.

346 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

AEIf.Types

aelf.Address

Field | Type | Description | Label
value | bytes
aelf.BinaryMerkleTree
Field Type | Description Label
nodes Hash | The leaf nodes. repeated
root Hash | The root node hash.
leaf _count | int32 | The count of leaf node.

aelf.Hash
Field | Type | Description | Label
value | bytes
aelf.LogEvent
Field Type Description Label
address Address | The contract address.
name string The name of the log event.
indexed bytes The indexed data, used to calculate bloom. | repeated
non_indexed | bytes The non indexed data.
aelf.MerklePath
Field Type Description Label
merkle_path_nodes | MerklePathNode | The merkle path nodes. | repeated
aelf.MerklePathNode
Field Type | Description Label
hash Hash | The node hash.
is_left_child_node | bool | Whether it is a left child node.

20.6. AEIlf.Contracts.Genesis

347

AEIf, Release release/1.2.3

aelf.SInt32Value

aelf.SInt64Value

aelf.ScopedStatePath
Field Type Description Label
address | Address The scope address, which will be the contract address.
path StatePath | The path of contract state.
aelf.SmartContractRegistration
Field Type | Description Label
category sint32 | The category of contract code(0: C#).
code bytes | The byte array of the contract code.
code_hash Hash | The hash of the contract code.

Field | Type | Description | Label
value | sint32
Field | Type | Description | Label

value | sint64

is_system_contract | bool

Whether it is a system contract.

version int32 | The version of the current contract.
aelf.StatePath
Field | Type | Description Label
parts | string | The partial path of the state path. | repeated
348 Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

aelf.Transaction

Field Type| Description La-
bel
from Ad- | The address of the sender of the transaction.
dress
to Ad- | The address of the contract when calling a contract.
dress
ref_block | nimttlsr The height of the referenced block hash.
ref_block | pbefies| The first four bytes of the referenced block hash.
method_namgring The name of a method in the smart contract at the To address.
params bytes| The parameters to pass to the smart contract method.
signa- bytes| When signing a transaction it’s actually a subset of the fields: from/to and the target
ture method as well as the parameter that were given. It also contains the reference block
number and prefix.
aelf.TransactionExecutingStateSet
Field Type Description Label
writes | TransactionExecutingStateSet.WritesEntry | The changed states. | repeated
reads TransactionExecutingStateSet.ReadsEntry The read states. repeated
deletes | TransactionExecutingStateSet.DeletesEntry | The deleted states. repeated
aelf.TransactionExecutingStateSet.DeletesEntry
Field | Type | Description | Label
key string
value | bool
aelf.TransactionExecutingStateSet.ReadsEntry
Field | Type | Description | Label
key string
value | bool
aelf.TransactionExecutingStateSet.WritesEntry
Field | Type | Description | Label
key string
value | bytes
20.6. AEIlf.Contracts.Genesis 349

AEIf, Release release/1.2.3

aelf.TransactionResult

Field | Type Description La-
bel
trans- | Hash The transaction id.
ac-
tion_id
sta- Trans- The transaction result status.
tus action-
Result-
Status
logs | Lo- The log events. re-
gEvent peated

bloom| bytes

Bloom filter for transaction logs. A transaction log event can be defined in the contract
and stored in the bloom filter after the transaction is executed. Through this filter, we
can quickly search for and determine whether a log exists in the transaction result.

re- bytes The return value of the transaction execution.
turn_value

block_|nimrbér The height of the block hat packages the transaction.
block_h#thsh The hash of the block hat packages the transaction.

error | string

Failed execution error message.

aelf.TransactionResultStatus

Name Num- Description
ber
NOT_EXISTED 0 The execution result of the transaction does not exist.
PENDING 1 The transaction is in the transaction pool waiting to be packaged.
FAILED 2 Transaction execution failed.
MINED 3 The transaction was successfully executed and successfully packaged
into a block.
CONFLICT 4 When executed in parallel, there are conflicts with other transactions.
PENDING_VALIDATION 5 The transaction is waiting for validation.
NODE_VALIDATION_FAILEI® Transaction validation failed.
Authoritylnfo
Field Type Description Label
contract_address | aelf.Address | The contract address of the controller.
owner_address aelf.Address | The address of the owner of the contract.

20.7 AEIlf.Contracts.MultiToken

MultiToken contract.

The MultiToken contract is mainly used to manage the user’s account and transaction fees related Settings.

350

Chapter 20. Smart Contract APIs

AEIf, Release release/1.2.3

Implement AEIf Standards ACS1 and ACS2.

20.7.1 Contract Methods

Method Name Request Type Response -
AdvanceResourceToken tokenimpl.AdvanceResourceTokenlnput google.proto
TakeResourceTokenBack tokenimpl.TakeResourceTokenBackInput google.proto
RegisterCrossChainTokenContractAddress tokenimpl.RegisterCrossChainTokenContractAddressinput | google.proto
SetFeeReceiver aelf.Address google.proto
ValidateTokenInfoEXxists tokenimpl. ValidateTokenInfoExistsInput google.proto
UpdateRental tokenimpl. UpdateRentallnput google.proto
UpdateRentedResources tokenimpl. UpdateRentedResourcesInput go